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INTRODUCTION

Picard-Fuchs Equations.

Let X be a non-singular projective carve of genus g, defined over a field K of
characteristic zero. Recall that a meromorphic differential is said to be of the second
kind if all of its residues are zero, that exact differentials are all of the second kind,
and that the quotient space is of dimension 2g over K. (When K == C we may take
Yi? - • • 3 Y 2 ^ a basis of H^(X, C), and map this quotient isomorphically to C29 by
c o l - > ( | c i ) , . . . , | (o); thus the quotient is dual to Hi(X, C), and so identified

\ J *l u «2^ /

with H^X, C).) Thus the K-space of differentials of the second kind modulo exact
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72 N I C H O L A S M . K A T Z

differentials provides a cohomology group which is defined over K, and defined in a
purely algebraic manner [6 a].

Suppose X depends on certain parameters — i.e. that the field K admits non-zero
derivations. Heuristically, the periods f co are functions of the parameters, and hence

are susceptible to differentiation with respect to the parameters. It was first observed
by Fuchs that, given co, the 2g periods f o are all solutions of a linear differential

J Y^

equation of degree 2g which has coefficients in K, the Picard-Fuchs equation.
This comes about as follows. Let x be a non-constant function, so that the function

field of X is a finite extension ofK(^); every derivation D o f K may be extended to K{x)
by requiring that D{x) = o, and thus to a derivation of the function field of X. We call

this derivation D^ to indicate the dependence on x. Similarly, — is the derivation of KM
dx ,

which annihilates K and has value i at x', its extension to all functions is also denoted —.
d dx

It is easily seen that D^ and — commute, since their commutator annihilates both Kdx
and x. Finally, D^ acts on differentials by ^{fdg)=D^f)dg+fd(D^g)), or, more
simply, by ^{fdx)==D^f)dx. Because D^)=rf(D^), D^ preserves exactness.

The formula reSp(D^(co))=D(reSp(co)) insures that D^ preserves the differentials
of the second kind. By passage to quotients, D^ acts as a derivation of the differentials of
the second kind, modulo exact differentials. On the quotient space, the action of D^ is
independent ofx, because, ifjyis another non-constant function, (D^—DJ {fdx) ==d{fDy{x)).

Thus, the quotient space has a canonical structure of module over the algebra
of derivations of the base field K. Hence, for each G) of the second kind, the diffe-
rentials co, D^co, D^(co), .... D^(<x)), must be K-dependent modulo the exact differentials,

2fir

i.e., there are a^ a^ . . ., ̂ eK and a function g with S a^(u)=dg. Integrating
2g i=o

over the homology class Yj gives the equation S a,D^ f G)= f dg=o. Equivalently,
i == o */ Yj J Yj

let coi, .... o^ be a K-basis of differentials of the second kind modulo exact differentials;
2-7

each derivation D of K gives rise to the system of equations Dc^== S a-^-, (modulo
exact differentials), with fl^eK. J = l

The situation for non-singular X of higher dimension is more involved. For a
good notion of cohomology over K we must turn to the hypercohomology of the
complex £2x °^ sheaves of germs of holomorphic algebraic forms [4]. It should be
remarked here that the analogue of Leray's theorem allows the hypercohomology to be
obtained as the total homology of the bicomplex (G^tl5, U)), where U=={Uj is any
covering of X by affine open sets.

Let us compute the one-dimensional hypercohomology group when X is a curve.
We may take the covering U={Ui, Uj to consists of the complements of two disjoint
finite sets of points. The cocycles in C°(^1, ^©G^^0, U) are the triples, (^, co^/J,
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ON THE DIFFERENTIAL EQUATIONS SATISFIED BY PERIOD MATRICES 73

where each co, is a i-form regular on H-, f^ is a function regular on U^nUg, and
^i—^^-^y^^0- Thus (Oi and (Og are differentials of the second kind, whose difference
is an exact differential. The coboundaries are those triples (^, df^f^—f^ where
each^ is a function regular on U,. The mapping (c^, ̂ fi^^^i establishes the
desired identification of this hypercohomology group with the differentials of the second
kind modulo exact differentials.

We continue with this example, and introduce the action of a derivation D of K.
Select functions, x and^, so that at every point peX either x—x{p) or J^—^(p) is a
uniformizing parameter. Let Ui be those p where x—x{p) is a uniformizing parameter,
and take, for Ug, the analogous set for y. It follows [6 a] that D^ and D , respectively,
are stable on the functions regular on U^ and Ug, respectively, and that both are stable
on functions regular on U^nUg. Define X : ̂ -^ti0, by \{fdx)==fDy{x). The mapping
on i-cochains of the bicomplex, given by (^i, o^,/^) ̂  (D^co^, DyCOg, XcOg+D^g),
preserves cocycles and coboundaries, and so induces a mapping on the one-dimensional
hypercohomology. This mapping gives the action of D on differentials of the second
kind, modulo exact differentials.

In the higher-dimensional case, analogous formulae will, under restrictive hypo-
theses (see (1.6)), endow the bicomplex (G^H9, U)) with the structure of module over
the algebra of derivations of K, and thus allow the differentiation of cohomology classes.
This construction is presumably a special case of Grothendieck's c( Gauss-Manin connec-
tion " (1), but in any case our restrictive hypotheses are satisfied by principal affine open
subsets of non-singular hypersurfaces.

The differentials of the second kind in higher dimensions no longer give the coho-
mology, as they did for curves. Indeed, a closed meromorphic differential o on a pro-
jective non-singular X is said to be of the second kind if there is an affine open set U,
on which co is holomorphic, such that the cohomology class on U determined by co lies
in the image of the restriction mapping H^X^H^U). This mapping is seldom an
injection (except for H^X) —^H^U)), although for sufficiently nice U, one can determine
the kernel ( i . n).

Because differentiation of cohomology commutes, whenever it is defined, with the
restriction H^X^H^U), the image ofH*(X) in H*(U) will be stable under differen-
tiation, thus giving rise to a Picard-Fuchs equation for the subspace of H*(U) spanned
by differentials of the second kind.

Parameters and the Zeta Function.

Recall that the zeta function of a variety, V, defined over GF(y), the field

ofq elements, is the power series, exp( S —s^-), where N5 is the number of points on V
\s^l S /

(1) (Added in proof.) It is. A general algebraic construction of the Gauss-Manin connection is given
by T. Oda and the author in « On the differentiation of De Rham cohomology classes with respect to parameters »,
to appear in Kyoto Journal of Maths.

225
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74 N I C H O L A S M . K A T Z

whose coordinates lie in GF(^). This function, which we will write Z(r, V/GF(^)),
is known (Dwork [i]) to be a rational function of T, with rational integral coefficients.

Consider now a " variable 5' variety, Vp, defined over GF(^)[r]. For a special
r^GGF^) the special variety Vp^ is defined over GF(^), and thus we may speak of
the zeta function Z(r, Vp /GF(^)). We ask for its dependence upon Fo.

Let us begin by studying the elliptic curve E^ given by Jy2=x{x—l){x—X) (here
p-i

P-l 2 / 1.2
j&=t=2) . Let H(X)==(-—i) 2 S ( " 2 ) ^, the Hasse invariant, and denote by N,(Xo) the

j==0 v 3 I

number of points, (including the point at infinity) on E^ with coordinates in GF(j&8),
where it is understood that ^eGF^8). In this case, it is well known that

H(Xo)H(Xg).. .H«-1) =E i-N,(Xo) {modp)

and hence
I-H(Xo)H(XS)...H(<~ l)T

Z(T, E^/GF(^)) ̂  ——————TT^—————— (mod^

More precisely
(I—0)(Xo)T)(I—(o(Xo) -yT)

Z(..E,;GF(,-))̂  (:_ ,̂_,.:) •

where o)(Xo) =H(Xo). . .H(X^~1) (modj&). Clearly, when H(Xo) ^o (modj&), one reci-
procal zero, Q>(\)), of Z(T, E^/GF(j&8)), is distinguished by being a j&-adic unit; it has
been determined analytically [2 a].

Consider the hypergeometric series, F(i/2, 1/2, i, t)== S (~J1/2)2^, as function of

the j^-adic variable ^; it is convergent in \t\<i (here J&+2). The function
U(^)=F(i/2, 1/2, i, ^)/F(i/2, 1/2, i, ^) extends analytically to the region |^|^i,
|H(^) | ==i (we now regard H as a j&-adic function). Let IQ be the Teichmiiller repre-
sentative ofXo, and suppose |H(^o) | ==i ; then the previously distinguished co(Xo) is given

p5-!s-l
by co(Xo)=(—i) 2 .I! U(^). One might say that the hypergeometric series analyti-

V V, V , ^Q

cally determines the zeta function of the family E^.

Finally, we remark that F(-, -, i, t\ is annih
d2 d \2 2 /

Finally, we remark that F(-, -, i, n is annihilated by the differential operator,
//2 J \2 2 /

4^(1—^)—.+4(1—^T—13 corresponding to the Picard-Fuchs equation,
at at

^-^l-<-^}=-d(^•
Dwork's deformation theory generalizes these results to (c good " families of hyper-

surfaces. Consider a one-parameter family, Xp, of hypersurfaces in P^^Q), where 0.
is the completion of the algebraic closure ofQ^p. We envision a defining form F(X, F),
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ON THE DIFFERENTIAL EQUATIONS SATISFIED BY PERIOD MATRICES 75

whose coefficients are polynomials in F with Q-integral coefficients, and we suppose
these coefficients to reduce {mod?) to elements of GF(^), thus defining a family over
GF(?)[F].

The specialized hypersurface, Xp , corresponding to the special value Foeii, is
8

said to be non-singular, and in general position, if the forms X^-—F(X, Fo), i^^^+ 2,ax,
have no common zero. By elimination theory, there is a polynomial R(F), with
^-integral coefficients, such that the specialized Xp^ is non-singular, and in general
position, precisely when F() is not a zero ofR(r). Applying this result in characteristic^,
we find that, for ord F^o, the specialized Xp^ and its reduction (modj&) will both be
non-singular, and in general position, so long as F^ lies in the region [ Fg [^ i, | R(Fo) | = i;
it is in this region that the theory of Dwork applies.

This theory associates to each Fo with |Fo|^i, |R(Fo) | ==i, a finite dimensional
Q-space W^Fo), and a mapping, a (Fo) : W^Fg) — W^Fg). For |Fo-Fi|<i,
there is given a canonical isomorphism, C(Fo, F^) : W^Fo) -^W^Fi), which gives a
commutative diagram

WTO -a(r^ WTO

c(ro,rt) c(rf,r?:

W^Fi),-^ W^F?)

Observe that when r^=Fo and [R(Fo)|=i, the reduction {modp) of Xp is defined
over GF(</8), and the composition, a(F^ ). . .a(F^)a(To), is an endomorphism ofW^Fo).
Dwork related the number N^(Fo) of GF{q8) -rational points on the reduction (mod p)
of Xp to the trace of this composition:

„ ̂  , i-^+1) (-i)- trace a(Fr1). . .a(rg)a(Fo)
^^o)- ,__ys + y-s—————————.

Further, we may choose simultaneously bases for the W^Fo), in terms of which
the matrix coefficients of a(F) are analytic functions on the region |F|^i, |R(F) |==i .
(Recall that a function on such a region is analytic (in the sense of Krasner) if it is the
uniform limit of rational functions regular on that domain.) The matrix of C(o, F), on
the other hand, has entries which are merely convergent power series for [F|<i .
However for |F|<i, the relation

a(F)-C(o,r^a(o)Gfr,o)

holds identically in F. It follows, from the analyticity of the matrix entries of a(F),
that the matrix entries of C(o, F^a^G^, F), which apparently exist only for |F|<i,
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are, in fact, analytic throughout the region | Fj^i , |R(F) | =i. Further, the uniqueness
theorem for analytic functions shows that the relation

a(F^). . .a(P)a(F)-G(o, F^a(o)C(o, F)-1

is valid for |F|^i, [R(r ) [=i .
Thus, the matrix ofG(o, F) provides the analytic continuation of the zeta function

from F==o to the region [ F[^;i, |R(r) [ ==i, in much the same way as the hypergeo-
metric series analytically determines the zeta function of elliptic curves in the family E^.
The analogy goes even deeper, for the matrix ofC(o, F) satisfies a differential equation.
This arises as follows.

r\

The generic space, W^F)®^?), is, in a natural way, a module for —, by means
of an action (3p, which arises formally as the twisting

(Sp=c(o,r).^.c(r,o)
^ ?)

where _ operates in W^o)®^?) through the second factor. Because — annihilates

the Q-space W^oj, Sp annihilates the 0-space Cfo, F^W^o)). Let us write Wo
and Wp for the column vectors whose components are, respectively, the Q-basis for W^o)
and the ^(r)-basis of W^F), by means of which our matrix representation of G(o, F)
is given. As ©p acts on the Q(r)-space, WS(^)®Q(^), we may write

©r(Wp)=5(r).Wp

where 5(F) is a matrix of rational functions. To avoid confusion between
matrices and mappings, let C(F) denote the matrix of the mapping C(o,F); then
G(o, r)(Wo)=C(r).Wp, and we have the equation

acmo-Sp(qr).Wp)=-^-.Wp+qr)Sp.Wp
/aqr) \-(-^-+qr)5(r)).Wp

aqn
whence -^- == -C{r)B{F).

^n [3] Dwork computed the Picard-Fuchs equation for the family of elliptic curves,
X'+Y^Z^sFXYZ, and found it to be fin suitable bases)

aP(F)
v / 7-»/T^\ 7~»/T-S\-=5(F)P(F)ar

where P(F) is the period matrix of differentials of the second kind modulo exact
differentials.

It should be remarked that the result is of an algebraic nature: the generic
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ON THE DIFFERENTIAL EQUATIONS SATISFIED BY PERIOD MATRICES 77

space W^F), the operation Sp, and the Picard-Fuchs equations are all defined over f2(r).
The present paper grew out of attemps to identify the differential equation for

C(o, F) with a Picard-Fuchs equation, in greater generality. This is achieved by
Theorem (1.19). — Let X be a projective hypersurface in Pn+l^ defined over afield, K, of

characteristic ^ero, which is nonsingular and in general position. Denote by X0 the open subset
where no coordinate vanishes, and by H^X, K) and IP(X0, K) the n-dimensional cohomology
groups of X and X0 respectively. We regard IP(X, K) and IP(X0, K) as modules over the
algebra of derivations ofK, as explained earlier, while the K-space W8, associated to X by Dwork's
theory, admits the derivations of K by means of the G operation. There is an isomorphism ©
o/W8 with the image ofW^, K) in H^X0, K), which is an isomorphism of modules over the
algebra of derivations of K. Furthermore, the kernel of IP(X, K) -> IP(X0, K) is reduced to
^erofor n odd, and is one-dimensional for n even [and yz>o).

We should point out that the matrix C{F) is the transposed inverse of the matrix
denoted by the same symbol in Dwork [3, p. 262], which arises by passing from the
cc dual space " at o to the generic dual space at F; thus that matrix is the transpose of
the (suitably normalized) period matrix. (Also the B matrix is the transpose of its
analogue there.)

Explicit Computations.

To explain how Theorem (1.19) comes about, it is necessary to examine the
spaces of Dwork in some detail. We fix integers TZ_>O and d>o, and define »S? to be
the K-linear span of monomials Z^X^. . .X^g2 with w^ei, dwQ-==^Lw^o.
S contains certain subspaces of interest to us:

oS^0, where z^o-^1

<£y+, where all w^>_o
^01+, is J^nJS^
JS ,̂ where all w,>_i.

We fix a non-zero constant, TC, and corresponding to each defining form F, of degree d
in X^, . . ., X^2, we define twisted operators on J§f

Dx,=exp(-7rZF).X——.exp(7rZF)=X,——+7rZX^
o^i o^ oX.^
r\ r\

D^ = exp(-TrZF). Z _ . exp(TrZF) - Z _ + TrZF.
oL OL

This construction is rational over any field K, which contains n and the coefficients
of the form F. For each derivation D of K, we define the twisted derivation ©^
of oS? as K-space by

S^ = exp(-TrZF). D. exp(TrZF) = D + TiZF13.
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The fundamental problem is to construct a generic mapping from JS?0 to H^X0).
Corresponding to each element ZXW is the differential form, regular on X0, given, in
local coordinates, by

X" d(X,IX^) <WX,^)
—————————— __——————— A ... A

^F' XjJX^2 X^/X^_(.2
Xn+i nv^x^+i

For the generic F, given by S \XW with the \ independent, Q^ is given
\w\=d

by —— + TCZX^, so that oSf°, considered as module for the derivations of K, is spanned
^\

by its elements of Z-degree one. Thus, generically, there is at most .one homomorphism
from ,S?° to IP(X0) which is given as above on elements of Z-degree one and which
respects the derivations of K.

That this map exists, and that it annihilates DzJSf+SDx,^0, is almost the content

of Theorem i. We regard HF(X0) as coming from S G^), for a suitable covering;
p-}-q==n

in Theorem i we examine G0^"), and in Lemma (1.8) we turn to G1^"1).
In this way we obtain a surjection

© : ̂ /(SDx^+DzJSf) -> H^X0)

with ©(^s) lying in the image of H^X) in H^X0).
We then compute the Betti numbers of X0 and P^-X0 (P^ is the open

subset ofP^1 with all X,=t= o), making strong use of the assumption of general position
and the explicit formulas of Hirzebruch [5]. Then we construct an isomorphism,
suggested by [9],

^ : ̂ /(SD^oSf0) -> IP-^P^I-X0)

by defining
^7-W {WQ~Ir' ̂ ^i/^), /(X^/X^,)^(Z X)=^^^ ̂ ^ A . . . A x^/X^, •

It is clear that ^(^s) is the image of IP-^P^-X) in H^^P^-X0).
^F

The regularity condition, that the X,__ have no common zero, insures that

J§focSDxoS?o+ elements of Z-degree one. We explicity compute in local coordinates
{ l F

xi === XJX^ 4- 2 3 J === ̂ rd
^vn+2

xw dx, dx^^ xw dx^ dx^ if
^(ZX^———^A.- .A-^^^—————^——^.. .A——A-

f x, x^, 8f x, x, f
xn+l~

^n+1

and hence
©(ZX^Residue^ZX^)).
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ON THE DIFFERENTIAL EQUATIONS SATISFIED BY PERIOD MATRICES 79

The final result is best expressed by a commutative diagram

Hn+l(pn+l_X) ——re8idue > IP(X)

restriction restriction
^ ^

0 __> fin+l(pn+l) re8triction zjn+l/pn+1 V0^ re3idue TJn/VO^ __, .u ' •"- ^n+2) ——————> rl lrn+2—-A- ) ————> rl [^ ) ——> 0

f? ^ ^

o —————> (ZF) ———> ^'"/(SDx,^0) —————^ ^/(D^+SDx..^0) -^ o

t^ l t^ t^ l

o —————> (ZF) ——^ ^^/(SDx,^0^) —^ W=^o.+/(SDx,.S?o•++D^+) -^ o

u u
^s/(^snSDx;^?ot+) --^ WS=^s/(^sn(D^++SDx,^'o•+))

The P-adic computation of the Zeta Function.

Let F(X)==F(X^, ..., X^+a) be a form of degree d over GF(y). Denote by N^
the number of zeros ofF in projective space rational over GF(^), all of whose coordinates
are non-zero; this N^ is easily expressed as a character sum. Take a nontrivial character
X, : GF(^)+-^* of the additive group of GF(^) with " /»-adic values ".

For each x==^, . . . , x ^ +3) rational over GF(^),

[<f, if FM=O
11 X»(^F(•V)):== -

.eGF^)^^ [O, if F(^)+0.

Hence

(^-^N:^^^-!)^^^^^^))}

where the sum is taken over ^ x^ ..., x^^^eGF^Y.
It remains to construct ^. Fix a non-trivial character ^o of GF(^), and put

Xs^Xo-^ where "tr35 denotes the trace mapping tr : GF{q8) -> GF(j&). Explicitly,
for 6eGF(^), ^(6)===^:tr(6), where ^ is a fixed p-th root of unity, and tr(6)=S&<
the sum taken over y=o, . . ., s logp(y)~i. v

With this in mind, we fix an element n of 0., with T^"'^—^, and define a power
series 6o(Z) by setting eo(Z)==exp(TCZ—-^;ZP).

Then [i]
1) 6o(Z) has ^-integral coefficients, and converges for ord(Z)>^".
2) 6o(i)==^, a primitive p-th root of unity.
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3) for aeQ with 0^=0, the formal identity,

^eo(apyZ)=6o(Z)a+^+•••+a^-l

specializes at Z == i to

'n eo(apy)=^:a+a^+•••+a^'l.
Observe that the left-hand side is the value of Q^Q^). . .eo(ZPO~l)=exp(7^Z--7rZP^)
at Z == a.

Thus, if (B==(B^ is the Teichmuller representative of b eGF(^), we have ^(&)=the
value at Z==(B of exp(7I:Z—7TZg'). Hence, if we suppose F(X)==F(Xi, . . . . X^g) to
have coefficients which are (^—^—st roots of unity in a, and if a, [B^, . . ., (B,^ are
(<78—i)—st roots of unity,

_-- fthe value at Z=oc, X==(B of
^^=[ exp(.ZF(X)-^F(X^))

where P==(Pi , . . ., ^+2)5 and oc|->oc is reduction (mod^). Thus,

(^-I)N:=^((ys-I)n+2+2exp(7^ZF(X)-7rZ^F(X^)),

where, in the sum, Z, X^, . . ., X^^g vary independently over the (^—-^—-st roots of
unity in Q. We next express this sum as a trace.

Denote by L(o+) the space of power series SA^Z^X" which satisfy
n+2

1) dwQ==\w\= S w^ WQ>^O.
i=l

2) For some constants 6>o, and c, ord \^bwQ-{-c.
The endomorphism ^ of L(o+) is defined by

WZ-X..)^^ ifeach -"(=TO
y (o, if not.

For each element HeL(o+), we write ^.H for the endomorphism of L(o+)
given by

T)^^(HT]).

This operator is (c of trace class ", and [i, 9]

(?-I)n+3tr(^.H)-2:H(Z,X)

where Z, X^, . . ., X^^g are independently summed over the (y—i)—-st roots of unity
in ^.

In particular, this trace formula may be applied to a==^ .H, where
H^=exp(7TZF(X)—7TZ^F(X^)). It is immediate that the j-th iterate a5 of a is nothing
other than ^.Hyy. Hence, combining the above formulae, we have

^N:=(^-I)n+l+(^-I)n+2tr(a8).
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This is the connection of a with the zeta function. It is convenient to consider a one-
sided inverse (3 to a, given by

JB = exp(7cZ<^F(X^) -7rZF(X)). 0,

where ^(Z^X^-Z^X^.

Connections with Formal Cohomology.

We wish to relate the operators a and p to certain operators arising in the formal
cohomology theory of Washnitzer and Monsky.

We begin with a special affine variety over k==GF{q)'y this is, by definition, an

( r\T \

algebra A==k[x, r]/I, where T= 7(^), i — ^ g { x ) _ — — ) : herex=={x^ ...,^J. Fix
^n+l7

a complete, discrete valuation ring R, of characteristic zero, whose residue field is k,
and denote by R[^, T]4' the subalgebra ofR[[A:, r]] satisfying a certain growth condition.
Take liftings, f and ^, of / and ~g, to R[^], and define A4'==R[A:, r]4"/!, where

( ?>/"• \
I== f^ i — T ^ — — — ( . This algebra is independent of choice of liftings, up to non-cano-

^+1/ _ _

nical isomorphism. Fixing these choices for a moment, every map 9 : A-^B of special
affines may be lifted to a cp4' .•A'^-^B4'. Passing to continuous R-differentials, the
induced map, ^+ : ̂ (A'1")®^-^ ^(B^®^, is determined, up to homotopy, by 9.
In this way, the deRham cohomology (i.e., the homology of the complex ^(A4')®^)
becomes functorial in A.

In particular, A4' admits an endomorphism Fr, which lifts the q-th power mapping.
Fr is an injection and A4' is a finite module over Fr(A4'). Define an additive mapping,
^ : A'^Q^—'-A4'®^, by requiring that the composition, ^Fro^, be the trace mapping
from A4- to Fr(A+).

We first consider a special affine subset of an irreducible projective hypersurface,
F==o. Namely, let /(^, . . ., ^+i)==F(. . ., XJX^^g, . . .), and consider the locus

r\r

y(^==o, i—TA:i, . . .,^^.1———==o, with « plus » algebra A4'. The mapping ©of theorem i
^n+l

extends by c( continuity 3? to a map of L°(o +) to A4'®^, where L°(o +) is the subspace
without constant term, and our result is the commutativity of the diagram

L°(o+) -^ L°(o+)

A+®Q^ -F^ A4-®^

where Fr is that lifting of the <7-th power map with Fr(^)=^ for i== i , . . . , % + i .
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Somewhat more straightforward is the case of the " complement '3, i.e. the algebra
R[;v,T]/(i—T;q, • • •5^ ' n+ iy ) . Again, we select the Fr with Fr(^.)=A;? for z==i , . . . ,^+ 1 -

Our main results are the commutativity of the diagrams

L°(o+) -^ L°(o+) L°(o+) ̂  L°(o+)

^

A+®% 9^ A+®<^ A^-O^l
Fr

A-^Q^

Here the mapping 3i is the one explained earlier.
The image ofSS in A"^®^ consists of those functions regular on the larger open

set {^eP^1, F(^)4=o}, while, on the level of differential forms, the image of SS in
^n+i^+^Q^ consists of those forms, meromorphic on [xeP"1'^1, F(^)4=o}, whose only
singularities are, at worst, first order poles along the coordinate axes.

Working with the form X^. . . Xy^^X) would allow a surjection,

^:L°(o+) ^A+®%,

but at the cost that the differential operators D^ for this form are difficult to analyze,
even under the most favorable hypotheses on F. Difficulties of this sort prevent the
direct application of Dwork's work to prove the finite dimensionality of any « plus »
cohomology groups.

However application of (2.15) to the form X^. . . X^_^F(X) is easily seen to
imply the trace formula obtained by Reich and Monsky for the mapping ^ of A"^®^,
namely

N^-i)^1^)

where N is the number of points (^), rational over GF(^), where x ^ . . . x^^^f^x) 4=0.
I wish to thank my teacher, B. Dwork, for so very much, and to acknowledge

many helpful discussions with G. Washnitzer.

ALGEBRAIC THEORY

Notations. — We work over a field K of characteristic zero, and fix an element TreK*.
Let F(XI, .... X^g) be a homogeneous form of degree d over K, defining a non-singular
hypersurface X. Denote by X0 the open subset where no X^ vanishes, by U(6, z),

BF
b =(=?', the open subset where X^——4=0, and by U0^, i) the intersection U(&, i) nX0.

8X5
Any derivation D o f K extends to a derivation of each coordinate ring 0°{U{b, i))

by requiring D(Xj/X,)==o for z"4=J, j^rb over U(^,z) ; when there is no ambiguity
we will denote this derivation also by D.
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We define ^ to be the K-span of the monomials Z^61. . . X^ (hereafter
written Z^6) for which da==^b^ a>^o, oSf° the subspace cc divisible by Z ", i.e. with

1 ^) ^)TT
a^ i. (Observe that the ^ may be negative.) Define operators Dx ==X^—— +TCZX,——,

a ' ^ ^DZ^Z^+TTZF.
Any derivation D of K extends to a derivation ©^ of the K-space J? (or J?°)

by setting (3j) = D + TrZF^ where D acts only on coefficients and FD is the result of
applying D to the coefficients of F. Formally (5D=:exp(--7^ZF)D exp(TrZF), while

Q

Dx,=exp(—TcZF)X,_-exp(7TZF), whence each Q^ commutes with all D^ and D^,
c^\..

and SD commutes with (3jy if D commutes with D'.
Theorem (i). — There exists for every nonsingular F and for each {b, i), b^=i, a unique

K-linear mapping © : J§f° -> ̂ (U^A, i)) satisfying:
a) © ij compatible with specialising the coefficients of the form F;
b) ©. Q-Q == D. © for every derivation D of K;

c) ©(ZX^X^H-;

d) ©Dx^.^—0 /or j ^b . i , where ^==X^X, ^zrf —^==8^ if j^b.i and k^b.i',
ex. ox»

e) Q(D^)=o, 0(Dx^°)=o.
Proo/'. — We begin by constructing © for the generic form F == SA^X^^ where

w

the A^, are independent variables. To fix ideas we work over U^TZ+I, n-\-2) and
a

first content ourselves with verifying b) for the special derivations —— (we write G^

for G^ ). Uniqueness follows from b) and c ) , since ©^ (Z^X^TrZ^X^ so that
every monomial of oS?° is obtained from one of Z-degree i by successive iteration of
any <5^ ; clearly for a fixed A^,, that expression is unique.

As to existence, the last remark shows that for each A^, there is a mapping ©^
satisfying b) and c ) for \.. We first show that ©^ is independent of \. We have
^Z^X^SIJZX^^S^ZX6-^), so we must show, for /==F/X^,

^/V \ // ^fV ^\ yb—aw-av \ / I ty | 6 — aw — av
^ i l ^ / „ , , « ! , . . I X9 \" \9\/ / 8 Y \8A

8AJ 8f \8\! 8f
xn+lf)y / \ xn+li)voxn+i / \ ^n+l

i.e. that for every monomial x" in the x^ and x^~1 we have

iJLX li^LX ̂ \ ̂  (IX l i ^ X _^_
\8Aj ( \8\/ 8f \8Aj \8Aj _8f

Sx,,,, \ 8x~,
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For a==i this is

9 i 8x^(_^'w»± l)^_^f_^^»±l^c!L± l .8X^9X^_ ̂ U+i)
8A^\ 8A., / 8A.,\ 0A, / x,.+/ 3A, 8^ x 8A...8A..'8\ I 9\

Now by induction

// sfY^

3AA

9 Y+1 \9A.
^A.,

x'1

8f
8x,n+l

9 Y
^J

sf (8f\ \
9^\8\J x

8f i
^n+l 1

/ 8 Y+1

^AJ
[ ( ^ Y^ \
^J

9f

\ ^n+l /

Let r denote the coefficient of X^.g in F, i.e. the constant term of /. As

©p commutes with the Dxp and — commutes with the x,— for i==i , ..., n, we are
o\. â .

reduced to showing d ) for a monomial ZX6 of Z-degree i, say for D^ .

©(D^(ZX6))=0(^ZX6+7TZ2X6X,aF)
v (7X^/

=©^ZX6)+^0(x,Z^X6X^,)ar
^n+l__ a

ar ar
a^,n + l (we write xe=xbx^^)=-^ ^r a^,

==—^A;6-
8x,n+t 8 /8x
ar - X X.

n +1

^v ar
^n+l a

a^ ar
„._ /'y ye\
n-n ̂ l^ J

a / a^,,\ a
—^^-©(ZX^).-^—\x'lBx,\ ^^ar

As for e ) we first use b) to reduce to showing ©(D^X^^o, but this is
.A6

©(TrZFX6)^————,—=0. Similarly it suffices to compute
y

^n+l 8xn+l

© . Dx,,, (ZX6) == ©(^^ZX6 + Sp (ZX^X^-^X^) ) = ̂ n±^- + ̂  (^) = o.a/ araxn+l
"n+l 8x,n+l

We now regard this generic definition as providing formulas for © in terms of
the coefficients of the defining form.

Clearly it remains only to demonstrate that b) holds for all forms F. Consider
F(X)+XX^2 over K(X) where X is transcendental over K. Extend D by D(X)=o

a , 8K 8
and — by —==o, whence D and — commute, as do 6^ and (5^, whenceax ax ax
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( yvw \ / , ^ \ W o — l
©S^Z^X") == ©ST1^ -^ X^.-^ = - . ©.S^ZX'-X^-^), while

/i ar'-1 7t
D© (Z"'«X"') = - — . D. © (ZX^-X^ -w); hence we are reduced to Wy = i.

\7T C\/

©. ©, (ZX-) - ©©.(ZF^X^) = - (—^——) = -a (-^D(^)),
^^n+l^/^n+l7 ax ^n+l /

( ^w I \ / ^w (^ \ ^
while DO(ZXW) = D —— —— \ == -D —— —n±l , and as D and — commute, both

^+i_J/_ ^+1 ^ / ^

^n+l/

-^"/^n+l^ K+l-l)^^n4-l-^, , ^^sides a re——D^———^-——,——————D(^) . Q.E.D.
•^n+l x C7A / ^n+l (:7A

Corollary (i. i). — O^r ^^A U0(6, i), © ̂  a natural extension to a mapping from the
Kos^ul complex on oSf°/(Dzo?7 + D^^0) with operators the D^.yj+i, b to the de Rham complex
QCU0^, i)) of differentials regular on U0^, z).

Proof. — We define the Koszul complex and give the proof in the following
section.

Koszul and de Rham complexes.

Let (pi, • • • ? ? n be commuting endomorphisms of a vector space V/K. Write
S = = { i , . . . ,%}, AS the exterior algebra of the free K-space with basis the elements
of S. On Hom(AS, V) the Koszul boundary may be defined by

So)(T)==S9,(o)(TAt))
»eS

where reAS, (oeHom(AS, V).
Define * on AS by linearity and the requirement that for a monomial reA^S,

*T is the monomial ofA^^S with T A * T = i A 2 A . . . A 7 z , and let * act on Hom(AS, V)
by defining *(O(*T)=O)(T).

Let L/K be a function field in n variables with separating transcendence basis
x^ . . ., x^. The monomials in the dxjx^ form a basis for ^(L) as L-space, which is
thus isomorphic {dxjx^i) with AS®L, i.e. with Hom(AS, L). Thus exteriorK i
differentiation d induces a coboundary on Hom(AS, L), while the ^—, i== i, . . ., n
provide the Koszul boundary. xi

Proposition (1.2). — *.8==rf.*.

Proof. — For a monomial T] and zeS, *Y)==ZA *(T] A i) so long as T] A z'+o. Hence

rf(*(o)(*^)^2^,——(*(o(*(^Ai)))=S^——((o(7]Az))=(8co)(7])= Q .̂E.D.1 fl̂ - » a^-
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GIobalization for n-forms.

Lemma (1.3).— Let b^i, and say {i, ...^+2}=^ ...,^z}. Define^i)
on U{b, i) to be

/i, . . ., n+2 \ X^^(X^/X,)A...A^(X^/X,)
Ui, . .., A^, 6, z/ BF ^x,x,— n x,.' ^x^-i ^

T^ on U{b,i)nV{cJ), ^{b,i)==^cj).
Proof. — Suppose first that [b, i]={c,j}-, to fix ideas take b=n+i=j, i==n+2=c,

so we are asserting that

X:^-(^)A•••-©=-^^(^)—(^).
Now Xprf(X,/Xp)=,?X,--(X,/Xp)^X3, so we want
/ ^F BF \
^n+l.^——— + X ^ 2 _ _ — — — j rfX^A . . . A^X^=

^n+l 67A-n+2/

/ BF BF \ n ^^
^ ^ — d x ^ + _ — r f X ^ ^ A S (-i)"-1^^^..^^^..^^,

^^n+l <7A7^+2 / v=l

( ^TT \
and the right side as r fF==S——rfX,=o) is

» ^X, /
v ^F n /— n BF
A a^^^?! (-I^X^A . . . ArfX,A . . . ArfX,=- S^X,^rfX,A...A^X,;

now apply the Euler relations.
In general, given (b, i) and (cj), we compare both with (bj], and hence, by the

first part, we are reduced to comparing {b, i) with {c, z). To fix ideas we compare
(^+2) with (Tz+i^+2), and write A,=X,/X^,/(^, . . ., ̂ )==F^ . . ., x^ i),

, . , d x ^ ^ . . . ^ d x ^ dx^^. . . ̂ dx^_.^dx^^
so that our assertion becomes ———_—— ==- ————————1——n±-l which follows, as

n+l y a/ ^f_

^===s^^==o• ^^ .̂1 ^

Lemma (1 .4) . — £^ L/K be a separably generated function field in n variables with sepa-
rating transcendence basis x^ . . ., x^; let D be any derivation of L trivial on K. Tto on ̂ (L),
D==rfX+Xrf, wA^ (/or ^ , eL)I,...,A: ^

^(\....,AA . . . A^)==^^^,^S (-l)^-^^)^,^ . . . A^A . . . Arf^.

Pn<. — We readily compute that for Q)e^K(L)^(^AT)==^(co)AT+(-I) JcoAX(T),
whence it follows easily that (rfX+Xrf) (co A r) = (rfX + Xrf) (co) A T + co A (rfX + W) (r), so that
d\-{-\d is a degree zero derivation oi^(L) which commutes with rf, hence is determined
by its restriction to L, and (^X+W)(A:,)==D(.y,). Q.E.D.
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Differentiating Cohomology Classes whith respect to Parameters.

Let V be a non-singular variety defined over a field of characteristic zero; a theorem
of A. Grothendieck [4] gives an algebraic method of computing the cohomology of V
as complex manifold. Namely, fix a covering {Vj of V by affine open sets; denote
by O? the sheaf of germs of regular algebraic differential forms, and by 0^(0^, {Vj)
the (alternating) j^-cochains for the nerve of the covering {Vj with coefficients in
the sheaf Q9. When the context is clear, we will simply write C^n9). These C^Q9)
form a double complex, with d : G^^) -> G^n^1) the usual exterior differentiation
and a : C^) —G^1^) the nerve-coboundary; for o(io, ..., ̂ eC^), recall
(ao))(io, . . ., ^+l)=S(~I) j(o(^o, . . ., ^., ..., ip^). Then the cohomology of V is the
homology of the total complex (whose term of degree n is S €7(0^)) under the diffe-

p+q=n

rential which acts on Cp{0q] by a4-(~ I)p^ which we will write A. Now consider
a derivation D of the field of definition ofV;we suppose chosen for each V^ an extending
derivation D^ at the function field of V in such a way that the coordinate ring of each
intersection V -̂ n . . . nV^ is stable under D^ , . . .3 D^ . We recall (lemma (1.4))
that D,—Dj==rfX^+\^ where

\(udx^/\.. . A^)=^/S(—I)^(^—Dj)(^)A:lA . . . A ^ A . . . ^dx^

Finally we define X : G^)^ C^1^-1) by (Xco)(zo, . . ., ̂ )=\^(co(^ . . ., z^))
where we have z'o^^ • • •<^+i. and D : C^) -> G^Q^) by

(Dco)(zo, ...,z,,)=D,^(^, . . . , ^ ) )
^^^

where again i^i-^... .^i. Finally we will write D for the operator which is
D+(—i)^4"1^ on C^Q9); this is " differentiation with respect to a parameter ".

Lemma (1.5). — The operators D=D+(—i)^^ and A = = ^ + ( — ^ - Y d commute.
Proof. — Let oeG^n3);

D(A(o)==D(a(o+(-I)p^)==Daco+(-I)PDrfco+(-I)pxaco-X^

while A(D(o)=:A(Dco+(-I)p+lX(o)==aDco+(-I)p+l^co+(-I)^D(o+^co. Compa-
ring components on both sides we must show that DAo=rfDci) in G^ty4'1), that
Daco—W(o=aD(o+^Xco in G^4'1^), and that xa<o+aX(o=o in C^2^-1). The first
point is clear, as each D .̂ commutes with d. For the second,

(Daco-aD<o)(zo, . . ., ^+i)=D^(o(^, . . ., ip+i)+

"'"^i^""1^^'0^05 *"5^ •••^p+i)-^^^!. •••^p+i)-

-^(-i)^,^^. • • • . ^ •••^^(no-A-.M^ •• •^p+i ) .
while (^Xco+Wco)^, . . ., ̂ +J=rf\^(o(^, . . ., ip+i)+\^,d^{i^ . . ., iy^)
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(where i^< . . .<^+i). Finally

(Xaco+^)(^ • • •. ̂ +2)-\^((^)(^ . . .^+2))+ S (-i)^X(o)(Zo, . . .,z., . . .,z..2)=j^.o " " •

^•o,^^ ••• . z p+2)+\ •„ ,^ .^ (—I) j - 1 0)(^ , . . . , ^ , . . . , Z p + 2 ) +

+\^(0(^2. • • • . ip+2)—\,i^{h. "^^p+2)+^{—^j\,i^{h-> • • • 5 ^ • • • 5 ^ + 2 ) 5

and it is clear from the definition that X, , ==X, ; +X, • . Q.E.D.
^Ol^ ^Dt^ l ' ^It^ '<"

Lemma (1 .6) . — Suppose/or every derivation D of the field of definition we have chosen
the various extensions D^ over the V^ in such a way that for derivations D and D' we have
[D, D'j^lD^ D '̂]. Suppose further that for each pair D, D7 ̂  ^A z, j, the ratio
(D^—Dj)(A)/(D,'—D^)(A) ^ independent of the choice of function h (whenever it is defined)
and of the choice of { i y j ) . Then the assignment D }->• D is a Lie homomorphism from the ring of
derivations of the constants to the ring of additive endomorphisms of the total complex ofCP{Qq, {Vj).

/- '̂ /-^/
In particular., if D and D' commute^ then D and D' commute.

Proof.—Let coeC^^); we readily compute [D, D'JC^-^+T+Y with T^C^),
TEC^1^-1) and yeC^2^-2); here ^ . . . , ̂  =[U,, D^o, . . . , z,),
^o. ..., ^^^-(-i)^^-^,^^-^^^.^^,^.^^,^,^^^, . . . , ^4-1). and
Y^o? • • • ? ^+2)=(—\•o,^\^,^,+XL^lxtl,J(o)(^25 • • • ? ^4-2))- we first ^ow Y=o; write
co(4, . . ., ip+g) as a sum of terms of the form udh^f\. . . f\dhy where h^ . . ., hy are functions;
it is sufficient if ^^^{dh^\^^dh^=\^^{dh^\^^(dh^ for every a and b, and as
X^,^AJ==(D^—D^)(AJ this is insured by the hypotheses.

Turning to T], we begin by showing ^^•^X^^D^+D.^^^-X^^D^-D^,^^
is a derivation of degree — i of differentials. As the X and the D are derivations of
degrees — i and o respectively, it follows that D^X^^—X^^D^ and \ ̂ D^—D^X,^ ,
are derivations of degree —i , whence it suffices that

X^^/D^-DJ-(^-D,JX^^=X,,^X^^-^,^X^^

be a derivation. Here d is a derivation of degree i, and so it suffices for X^ ^ X, ^ to
be a derivation. However ^,z\\'o,t\+\'<,,^^,^ is a derivation, and hence it suffices if
^o^'i^o^'i^^o^'i^o^i' ^ich is verified just as in the last paragraph. Finally the ope-
rator X^ ^ does enjoy d\^ ̂  +X^ ,^= [D, D']^— [D, D'],^, as an immediate computation
shows, and hence X^ ^ has the proper effect on i-forms, and thus on all forms. Q.E.D.

Application. — The hypotheses are satisfied by a non-singular hypersurface of
equation F===o, if we take the covering from the U{b, i). We will write functions in
homogenous coordinates P/Q,, and use P13 to denote the result of applying D only to
the coefficients of P; then we readily compute

QPD_PQD g / g p v

"i.,.,(p/tt) = -Sa— + x•,x;(p/tt)(-F/x••iixJ
and hence the ratio (^-^^(^/(n'-D^^^F0^.
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Globalization of the © Mapping in Middle Dimension.

We begin with globalization to X0, where matters are greatly simplified by taking
the covering U0^, n + 2), b == i, . . ., n + i. The proof of theorem i, together with our
recent definitions, gives the following

Theorem (1.7). — There is a unique mapping © : ̂ °-> Z; G^t^) which is a homo-
p+q==n

morphism of Lie modules over the ring of derivations of the field of definition, which is compatible
with specialising the defining equation, and which assigns to a monomial ZX^ the element qfC0^)
which is Xw^b,n+2) over U0{b,n+2).

In this way the elements of oSf° of Z-degree one correspond with the algebraic
Tz-forms regular on X0. As these are closed, it follows that the image of oSf° in 2 C^9)

p+q=n
lies among the cycles (of the total complex), and hence by passage to quotients we have a
map © : .JS^-^H^X0). Further, the aforementioned theorem of Grothendieck [4]
states that on the non-singular affine variety X0, every cohomology class is realized by
a regular algebraic form, whence JSf° maps onto ]-P(X0).

Lemma (1.8) . — The kernel of © : JSf^H^X0) contains D^+SDx.JSf0.
i ^

Proof. — The assertion for D^ admits the same proof as given in theorem i. To fix
ideas consider D^oSf0; it suffices to show the kernel contains D^ZX") by our general
reduction procedure. To this end consider the element T] of C0^"1) whose value over

(_l)n+l~bxw dx ^ix^ dx
U0{b,n+2) is o for b==i,———————-^A . . . A—'A . . . A-^ for U°{b, 72+2), b>i.

°J_ ^2 xb ^n+l

xb^

Part d ) of theorem i assures us that ©(D^ZX^)) and A-^ (A=the total coboundary)
agree in their components in C0^); it remains only to consider the components

( r\T^ \

in G1^-1). Consider ©(D^ZX")) = ©(^ZX-) + © T ^ X - X . J ; we compute by
passing to the equation F + FX^g = o; then 1

? / BF \
©(D^(ZXW))=©(^ZXW)+^©(ZXWX,^-X,^),

and the component in C1^""1) assigns to U(&, n + 2) n V(c, n+2) (where b<c) the form

Sfxwx^— ——
8x. 8x. dx. ^x,,i

(-I)1^-!)^1-6—————^...A^A..^-^——
V_ ^ x, x^i

X.
'Sx.

Sf
Y^y J ^^

_^r .n-cr ^-if"1^1. dxb ^ dxn^———_- ^—i^ (_i) I — — \ — — ^ ^ _ ^ — — ^ _ ^ — — ^ ^ ^ ^————^
a/ L / r1 xb xc xn+lc ̂  \ b a~ /Ox, \ 8x^

241
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xw dx^ dx^ ^n+i
Incase 6 = = i , this is (—i^ 1 ' 1 c — — — A . . . A — A . . . A———, as asserted. Similarly
•p ..,. , . . V ^ ^ ^n+lit i<b<c^ this is XQ—

8x,

(-i)——6-1^/ Sf \ dx, dx, dx^,
———————-——-—— \ ——dX,,-\-——OX. \1\——A . . . A — — A . . . A———— =

Sf_9j^ \9x, b ' ^ e / x, x, x^,
xbxc^^ ^

(_i)»——i^^ ^ dx^, (-1)"-^" dx, 'dx, dx^,
=——————_—————A. . . A — — A . . . A — — — — + — — — — — _ — — — — A . . . A — — A . . .A————

V_ •»2 xc ^n+l Sf_ ^ Xi, X^

xc^ xb^

again as asserted.
Corollary (1.9). — © maps ^/(D^+^Dx^0) onto H^X0).

^FFinally we require a definition. A form F is said to be regular if the forms X,——
^X,

have no common zero; i.e. the locus ofF is non-singular, as are all its intersections with
the coordinate axes.

The Cohomology of Regular Hypersurfaces.

Fix in P^^^ a system of homogeneous coordinates (X^ . .., X^g), and a positive
integer d. X" denotes the locus in P^1 of a regular form of degree d, XJ1 the open subset
where the first i coordinates are all non-zero, and P^^ thLe open subset of P^1"^1 where
no coordinate vanishes. IP denotes the j-th singular cohomology group, W = dim I-P;
H^) is thej-th group with compact supports, B^ its dimension.

o if Ko
Theorem (1.10). — B^X^a)^ d^+n if l==o

(^tl) if l>o
o if Ko

B»+i-i(p^^_x^,)== ^+i+n+i if l=o

('?:!) if l>o-

Proof. — First notice X^=X^—X^~1, whence the exact sequence

H^W-1) -^ Hf,)(Xr) ̂  H?,)(XO») ̂  H^(Xo"-1)

and by the Lefschetz theorem [6, p. 91] p. is an isomorphism for q^n—2, an injection
for q==n—i, and a surjection for q^n. As B^)(X^)=B(?;)(Pn) for q^n by the same
theorem, B^(X?)=o if q<n or n<q<2n, while B^(X?)=i. Similarly for
i^n+2 we have X^X^.-X,^ whence Bf^XH^B^^X^+Bf^X^,),
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which already shows Bf^X^o if i^ i and q<n. Iterating our last inequality, we
have for r>i that

n+l

B^^X^^^^^^B-^^Xr^^t^^Qti).

To reverse the inequality we turn to the exact sequence of (P^g, X^ .g ) ,
W~l('\n } -^ W fpn+1 vn \ nq f-on+l\
-"-(c) \^n+2) -> ^l(c)(.A•n+2—Jxn+2J ^ ^(^'•n^^J-

Now P^ is just the (7z+i)-fold product of the non-zero complex numbers, so that
B^Wt^m for />o, ofor Ko. This already shows that Bf,)(P^-X:;^)=o
if q<_ n, while for l^ i we have

-Dn+l+^pn+l_-V-n \ < /n4 - l \ i / n+ l \ __/n+2\ __ / n+2 \
^(c) ^n+2 ^n+2>'-^ U + l ^ l V I ) — { l + l ) — [ n + l - l ) -

By Poincare duality, the left side is B^-^P^-X::.^). In P^-X^, taking

^^'^/X^^g.^F^, .. .,^+1, i), we claim the n+2 cohomology classes —l/\.. .A n+l

^ ^ ^ ^^, xl xn+l

and — A — A . . . A — A . . . A ———, i^i<,n +1 are linearly independent (hence the (n+ 2)
J x! x! -^n+l J

rff dX^ ^n+1
monomials of degree j in ,, —, . . ., ——— will give linearly independent cohomology
classes). Observe J xl xn+l

BF
df dx, ^ dx^ ^'ax,^ dx^,
- . A —— A . . . A —— A . . . A ———— == ± ————— —— A ... A ———-
f x! x. ^n+l F l̂ X,^

and so by the Euler relation we may assume a relation

a, BF
y^Sx,^ dx^,
^ — — — — — — A . . . A — — — — ^ / O .
^i F ^ ^^,

We claim ^,=o; let ^=X,/X, if i<j, ̂ =X^,/X, if ^j; as

^i ^n+i ^i ^n+i
— — A . . . A — — — — = ± — — A . . .A————,

Vl J^n+1 ^1 ^n+l

it suffices to show ^3=0. We rewrite our relations

^1 ^n+l "y^^-^+l^/ î ^ ^n+1
an-}-2——A...A————^ 2j I — — — . — — I — A — — A . . . A — — A . . . A — — — — .

x! ^+1 i=A d I f X, X, X^,

The regularity ofF insures that every term Xf occurs with non-zero coefficient &,, so that
when ^, . . . ,^+i are all small, f{x) is close to ̂ , hence P^-X^ 'contains
a region

{O<IA;J<£}X...X{O<K^|<£}

.?4J
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where s is sufficiently small so that log/is a " single-valued 5 ? holomorphic function
in that region. Integrating our relation over y = {I ̂ i [ == | ^21 = • • • = I ^n+11 == ̂ M
we get

-̂ lî  ̂ v^'"^ f ,/, . A ^ rf^^n+2 y ^:-^+2 f ,/, ,Al ^ dx^A
-—————— == 2j ———^—— 6 1 1 102 /—— A . . .A —— A . . .A ———— |
(STT^1 i=l d Jy \ OJ X, X, X^J

and the right side vanishes.

Hence for ^i, B^(X^)-(^), B^^^^-X^^^^f^, and for /<o
everything is zero, so we must look at Euler characteristics. We readily compute
y(Pn'}~l—Xn }—(—I^n+^(<Bn+lfPn+l_Xn '» n j \ ^F^ ^ f T^n(<Rn / ' •Y^ ^ ^\/.^n+2 ^vn+2;—^ 1 ; ^(c) ^n+2 ^vn+ 2^ —^— I ) , Z^n+2J==(— IJ (r)(c)(xn+2) ~7Z) ?

while ^(P^t^^x^^^o, so x(X^)==-^(P^-X::.^ whence it suffices to
show ^X::,,)^-!)^4-1. But x(Xn=z(X^_,)-)c(X^1) for i<^+2. Upon

iteration x(X;^)= .S(-I)n-j(^f)z(X5), whence S ̂ X^^Z^ 2 x(X^)(-^-Y.
J^O n^O j^o Vl+Z/

But W)Z^^^^-^ [5^.465]. Q.E.D.

Corollary (i. n). — For i^i and every q we have a short exact sequence

o-^H^X^) ->H^X^,) ->W-\^-1) ->o

and thus for i^i, o-^H^-^Xo'-^-^H^Xo^-^H^X^).

Proof. — The second assertion for i==i is part of the Lefschetz theorem, and
follows for i> i from the first assertion. The first sequence is certainly exact without
the end zeros, and our computation showed the alternating sum of the dimensions
to be zero.

The Cohomology of the Complement.

Define a mapping ^ : ̂ -^^(P^-X^,) by ^(Z-X6)^ ^l^^. It is

easily verified that <^.Dx;==X,_- .^, and that ^(D^Z'X^^Ji-^^Z'X6), so
(?X^ \ F/

that DgoSf0 is precisely the kernel. Write ^,=XJX^2 and take monomials in the -^
as a free basis for ^(P^-X^) over ^(P^-X^). We obtain '̂

Theorem ( 1 . 1 2 ) . — The mapping 39^ together with the ^-operation provides^ an isomor-
phism of the de Rham complex on P^—X^g with the Kos^ul complex on JS^/DgJSf0 with
operators Dx^,...,Dx^; in particular an isomorphism of IP-^P^—X^) ^h
^/(Dz^+SDx.JS?0).

i i-

Corollary (i. 13). — In the case of a regular F, dim J?o/(SDx^o)==rfn+l+%+ i.

Corollary (1.14). — For regular F, dim ^°1(D^+^D^^)==.dn+l+n.
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Proof. — As Dz=^SDx , DzJSfcSDx J^°+DZ (elements of Z-degree o). If X6

d i l i l

has Z-degree zero, but X^+i , say ^i+o, then

D^X^^Dx^Dj'X^-Dj-TrZX^X6) so D,JSfcSD^°+(ZF).
\ \b^ J i \b^ (7X^ / z

/jiy n y
But <^%(ZF)==—^A . . . A—n-^^ a non-zero cohomology class, whence ZF^SDx^0, so

x! ^n +1 t

the drop in dimension is precisely one. Q.E.D.
Remark. — Define JSf-^JSfniqZ, X^, .. ., X^], JSf^+^^nJSf4-. It is clear

that J^OC^O'++SDx^(), whence ^/(D^+SDx^0) is a quotient of

^^/(DzJ^+SDx,^0'4-).

In the regular case, the latter space has dimension ^rf^1^-^ as dim JSf^'/SDx^4'
is ^ l + w [2, p. 55]. Similarly, dim J^O '+/SDx^o '+^ l+n+y^+i in the regular case.

Corollary (1.15). — St establishes an isomorphism of JS?0'+/SDx^ Ji^0'+ with
H^^P^—X0), which maps W^J^/^nSDx^0'4") isomorphically onto the image
of H^^P^-X) in IP+^P^-X0).

We write W for ^-^/(D^4- +SDx,JSfo'+).t
Theorem (1.16). — £^ 7 be a regular form. The mapping © : W—H^X0) is an

isomorphism of modules over the ring of derivations of the field of definition.

Differentials of the " second kind "•

Consider now the complete variety X, and the open cover of all the U(&, z).
Writing ,Sf8 for the subspace of S^ divisible by all the variables, it is easily seen, following
the proof of theorem (1.7), that there is a unique map © : oSf® -> S G^Q9) with the

p+q=n

proper effect on elements of Z-degree one, which is a homomorphism of Lie modules,
and whose image lies among the " cycles " of the total complex. Thus, letting W8

denote the image of J?8 in W, we have that the image of W8 in H^X0) under © lies
in the image ofIP(X) in H^X0).

Finally we recall that a closed algebraic differential form X is " of the second kind 59

if for some affine open set U on which it is regular, the cohomology class it determines
on U is the restriction to U of a cohomology class on X.

Theorem (i. 17). — Let F be a regular form. The isomorphism © ofW with H^X0)
maps W8 isomorphically onto the image oVI-l^X) in H^X0), i.e. onto the space of n-forms of the
second kind holomorphic on X0, modulo exact such.

For any derivation D of the field of definition of F, the equations of deformation
ofDwork (the action ofS^ on W8) are identified with the Picard-Fuchs equations on X0

(the action of D on the image ofH^X) on H^X0)).

^J
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Proof. — By ( i . 11), the image ofH^X) in IP(X0) has dimension B^-B^P^1),
and explicit formulas ([2, p. 54] and [5, p. 455]), show this is the dimension of
^/(^nSDx^) for T^I. It is enough, then, to show ^nSDx^^^nSDx,^0'^

' BF i l i '

or, that ifS^ZX^——e^+SDx.oSf0^, then all ^=o. To show ^.,2==^ we follow
i ^X^ »

( i . 10) and apply 3^

8F
l ^ aX .̂ rfx^ ^n+l

2^——_———A . . . A———^the restriction of a class on Pn+l—X.
1 F x! ^n+l

The cycle y m Ae proof of (1.10) is homologous to zero in p^1—X. Inte-
grating over Y thus annihilates the right hand side while the left hand side gives

-an——=^ Q.E.D.
(STT^4-1 ^

Residues [8 a\.

Let B be a nonsingular subvariety, of codimension one, of a nonsingular variety A,
in characteristic zero. The exact sequence of cohomology with compact supports

H^(A) ̂ H^B) ̂ H^(A-B) ̂ H^(A) ->H^(B)

gives by duality an exact sequence of de Rham cohomology
H^-^B) -^H^A) ->ff(A-B) ->}f-\V) -^H^^A)

The map H^A—B) -> H^^B) is the residue map. When B is given by an equation
dg

g==o, the residue map, roughly speaking, extracts the coefficient of — on the level ofp
differential forms.

Theorem (i. 18). — ©== residue ,̂ so that we have a commutative diagram.,

o —> Ip^P^) -^ IP-^P^-X0) _!sldul^ H^X0) —> o
-^ ^-^ -.4^?p ?|« q®

o—————> (ZF) —> ^°/(SDx.^°) —————^ ^°/(Dz^+SDx,^°) —> o

}i '\, f
o—————> (ZF) —> ^o•+/(SDx,^'o'+) —^ .^<70•+/(SDx,^o•++Dz^+) —> o

t l % !

BF
PT'OO/'. — By assumption the forms X^.—— have no common zero, and henceax,

every form of sufficiently high degree lies in the ideal they generate. Momentarily
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let us write S{n} for the subspace of S of elements whose Z-degree is n\ thus
^|7 Q 2T

^(»)=^(^-i)+SZX,_^(»-i); because Dx,=X.——+T.ZX.—— it follows that
^^i C^i <7X^

<Sf(7z)==^(7z—i)+S;Dx,JSf(%—i) and, in particular, oSf(i) spans JSf°/(SDx^°). For
ZX^JS^i), taking local coordinates ^==X,/X^,

^w^
^ (ZX W )= -——A. . .A

T V

dx.n+1

f ̂ -n+1

dx^ dx^ df

^'^•••^7
^n+l 8x,n+1

Thus, residue (^(ZXW))=- dx, dx
Of x, A . . . A -

n+1

"n+l
^©(ZX^. Q.E.D.

"'n+1 a^n+1

Remark. — This provides an independent proof that ©(W8) lies in the image of H^X)
in IP(X0), as follows from (1.15) and the commutative diagram

Hn+l(pn+l_x) ̂ l IP(X)

restriction restriction

H^^P^^-X0) ^sld^ H»(X0)

ANALYTIC THEORY

Let 0 denote the ring of integers in a fixed finite extension of Q,p containing TC,
where now v:P-1 =—p, with residue class field k = GF(^). The valuation is normalized
by ord(^)=i. A special affine A:-algebra is one of the form A=k[x, T]/T, where x

means (^, ...,x^), and 1={f(x), I-T^)) with ~g{x) divisible by-0/w-. Fixing/
8x.'n+1

and ge0[x] lifting/and g, we define A'^(P[x, T]/I, I=(/(^), I-T^)), a special
affine Ufting of A, and we define A" == lim A'//>'*A*. Finally define A+ as the subalgebra

of A" consisting of series J^^(^ r), a^Q, ̂ eA* with ordain and degree hn bounded
from above. "— "

We recall without proof the basic property of these algebras [6, 8, io].
Proposition (2). — Let A, B be any special affine k-algebras. A* and B* any special

affine liftings over Q. Given any homomorphism (p : A->~B there exists (p°° : A^-^B"
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a homomorphism of (9-algebras lifting 9; cp00 is determined by specifying 9°°(^), ...,(p°°(xJ,
subject only to the condition that 9°°(^) lifts y(^); further if the 9°°(^) ^ ^ B^ then cp00

m^ A4' to B^
Lemma (2.1). — Suppose f depends linearly on x^ let D^ be the derivation of A* with

D^x,) ==S^ for i == i, .. ., n. Then D^A* c n !A*.

Proof. — Let A^==^[^o, ^, r] /I^, IQ== (/(^) +^09 I ~^g{x)) ^d define D() and D^, deri-
vations of A^, by D^.)==S^for i=o, i,o<j^<7z$ define C^^EA^DJ^GTZ! A^ if 72^1}.

n

Leibniz' rule D^r^) == S (^D^^DJ^"^^) shows that C^ is a subring, and that if xy= i,
A:eC^^eG^. As C^ contains the subring generated by XQ, . . ., ̂ , it suffices to show

/ a/each ^+1/———^C^; but recalling the relation
^n+l

/ / ^ n ^

. p(.) \ / ^ pw

"nn/ v / \ '̂ n v 1/___DJ^/- =DO —a/—
\^+i/ \ ^+1 /

for p(^)eC?[A:2, . . .5 ^+1] we see that Co==A^=>Gi==A^, whence it suffices to show
•^n+l6^'

Lemma (2.2). — Let R. be a torsion free domain and let y(Y)eR[Y] with y(Y)=l=o.
Write A=R[Y,T]/(i—Tf(Y)) ^rf rf^ D to be the ^-derivation of A with D(/)=i.
Then D^Ac/z! A.

Proof.— We may suppose /(o)=o, and write/(Y)=^(Y)+/'(o)Y where Y2^).
It thus suffices to consider the polynomial A(Y) =g(Y) -{-uY over the ring R[u] where u is a
new indeterminate (then specialize u->f\o)Y However R[^, ̂ "^[[YjJ^R^, ^"^[[A]]
by the Inverse Function Theorem, so we can write Y= S a.h3. Then Dn(Y)==7^! S b.h3

j^i J j^o J

^.eR[^-1], hence D^Y)^^! S C.Y^ C,eR[^ z/-1], so D^^eyz! R[^ ^-^[[Y]].

Clearly we may write D^Y)^ "^^j_^ with ^[^Y]eR[^,Y]. Multiplying by

^(Y)^-1, we have ^[z/, Y]eR[^ Y]n^! R[^ ^-^[[Y]]. Q^.E.D.

Corollary (2.3). — There exists a constant k, depending only on the degrees and number of
variables in f and g such that for p{x, ^)e(P[x, r], degree 'D^p[x, r)_< degree p^{x, ^)-\-nk^
and 'D^p{x, r) has all coefficients in n\ (9.

The Analytic 0 Mapping.
n+2

Denote by L°(o+) the space of series SA^Z^X^ .. . X^j with dw^= S w,,
w 1

WQ>_I, all w^o, such that for some constants 6>o and c, ord \j^.bwQ-\-c\ the A^,
are taken from ^®Q,. Consider a form F with coefficients in 0, f the affinization
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xn+2=:'i• The © mapping for F is easily computed; pass to F+FX^g,
a V00-1/ xw

W

r\

so <5r==.p+"ZX^ whence ©(Z^X") =-^-(—
OL TC ° \ OL

3 hence
\x.'n+1 8x,n+i/ r==o

y©(Z^X^ is a polynomial in ^, ...,A^, I / A ^ + . — — all of whose coefficients have
8x•n+l—log WQ

ordinal ̂ >ord(wo—i)! —ord Tc^"1^ . Hence we havelog^
Theorem (2.4). — © naturally extends to a mapping © : L°(o+) -^A4'®^ where

A^^kT]/!,!^^),!-^...^,^).
^x•n+l/

Deformations. Explicit Construction.

Let /, heffl[x],f^f+rh, ^=Q[x, F, r]/!, I=(/r, 1-^+1.^-) and define
\ ^n+l/'n+l/

r\

A^=limA^/(^, F)^^. Our previous estimates show that, defining — on A]° by
^ <- , . ^ ( - r r /av ar/ p\n / f\ \n

'i . 1 - V ^ — 1 t \^ == o, i == i, . . ., n, the series 2j ——^— I —_ I converges to an endomorphism D of A?
n>_Q n\ \d\. ' '

— == o, t == i. . . ., n. the series 2j ——— | — iar ? ? n^o %! \ar/
(a homomorphism by Leibniz rule). Clearly D= identity mod(F), D(F)==o so

D(FA?)=o, and D{x)==x ^—^o- Hence D induces D^?) :A?/FA? ->A?. Write,

for ord (A>O, A^==A^/(F—[JL); composing with D^ p the specialization F-^ then
provides D(() ^ : A^-^A^, a map reducing to the identity mod p and fixing x^ ..., x^.
Here p is the maximal ideal of 0.

Lemma (2.5). — Suppose F and H are forms of degree d, and let ©^ for ord [L>O
denote the © map for F+^iH. T%^ z^ Aff^ ̂  commutative diagram

L-(o+) -exp(^^ LO(O+)

Ao4-®^
u(0, (X)

A^®%

The Frobenius (Diagonal Case).

Denote by P the endomorphisna of L°(o+) given by

^(Z^X^ == exp(7^ZgF(Xa) --^:ZF(X))ZffwoX3w,

249
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( r^r \

and by Fr the endomorphism of A* where A* = (0 [x, r] /I, I = f(x), i — ̂ ... x^ , i ———)
^n+l/

which reduces to the q-th power mapping mod p, and maps x^\->x^ for z = = i , . . . , n.
We will prove

Theorem (a. la). — For F irreducible mod p, ^©o(B=Fro©.
We begin with a special case.
Theorem (a. 6). — Z^ F(Xi, • • • ? X^g) be a form of degree e such that upon qffini^ation

by X^2 we have f{x^ ..., x^^^)==g{x^, ..., x^)—^+1 wA^r^ d is prime to p. Then over
U^+i^+s) we have a commutative diagram

L°(o+) -^ L°(o+)

FrA+®% ——^ A-^-^Q,

Proof. — Write AM^^)—?^; then

M^iY-gW-gW+^)-<^+^W^^^^^

whence Fr(^^)=^^S(^)A^W. Let B^^[^T]/I where
m ^n+l

I=(^(^)^-^^ I-T^...^+i),

this is not special affine, but clearly there is a restriction mapping res : B^'-^A4', and
our formula shows that we may interpret Fr as factoring A4' —> B4' —> A"^.

Now we return to the Q mapping over V0(n+l,n+2) for G(X)—-X^X^.
We introduce the family G(X)--X^iX^+rX^2, and we then have

©(Z^X^^Or^-^S^-^ZX^X^^^)))
^o-1

WQ-I f)VWO~l \ //V^ ! 9

r=o Tc; C7i \~aA:n4-l/ | r==o
t0, W^ ,.Wo — 1

x! ' ' • ^n _^____ /^n+i-^

^rf^-^r0-1—1 Jw w, ^n4.i /^ /'-y^n-YT-1^write A: =.Vi1 . . . x^\1, so Q(Z °X )
^relation ^4.l=,§^(A<l, • •.,-vj+r, _=o if i<_n, shows

; but the
r=o

,̂'n+1^o-i
w-,, —d

y '•+1.(̂Cri1 )=(^o-i)! ^ar"0
Wo—I

-Wnd

"'n+1

so that finally

'̂n+l( » j I 7 ( - 1 - J . »

©fZ^X^—^-^0^^! ~~rf~"~1 \xwl x^x^1"^.U^ ^ J— ^_^ I fl l̂ l • • • ^ " n ^n+1

W.—l
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We note that if we replace d by qd and w^^^by qw^^ then our answer is cc essentially "
integral; so define L^o^-) to be the space of series SA^Z^X^ with the usual growth condi-

n+2 w

tion but with homogeneity condition qewo== S w,, w^ i, and such that each w^+i is
divisible by q. Then let ©^ mean the © mapping for G(X^)—X^X?Je^2d), over
U0{n+I,n-{-2); we have computed that ©^ maps L^o^-) to B4"®^.

Finally define O^ and 0^ by O^Z^X'^Z^X^, O^Z^X^^Z^X^ define

H = exp(7rZX^,X^-7ryX^,X^ +7^G(X)^-7rZG(X)) eL°(o+)

and G==exp(7^ZG(X^)-7^ZG(X)^eL(?)(o+), as ==o.
BG

ix•n+l

Clearly now ^(Z^X^Hod^oGoOW, and so it suffices if both the following
diagrams are commutative.

gGoO(i)
Lte)(o+) H^ L°(o+)-> L(?)(o+)L°(o+)

e,

A+0Q, Fr B-^^Q. B4-®^ A-^O^

The first diagram. — Take T^Z^X^ then

Fr©(7])==
f^n+l

^1 ' • •^n+l v| T~-K-i)!|
.̂

-Wo|A(^)'
———A,———21 rf

d^0-1
^n+1 m

qmd
^+1

_ -̂ F1 • • • 4"riy (^+^0-1)! ({w^ld)-i\ A^)"'^-1^ , ^ ^+^_I ;^-
7t

The other way, q@^G^l\r^)=q@^{^—CZG{XI')-ZG{Xy)mZW^W). The expres-
^ m 1U\ /

sion under the S is a sum of monomials whose Z-degree is m +WQ, and whose X^i-degree
is yz^+i; we have

^^-^^^•"-.-^(^T)^.
The second diagram. — Say I^'(o4-)^ = Z^X^... X:"X^iX^2; to compute

©(HO® Y)), first define constants A,, and B» by

(a.7) SA^X''=exp(7tX^-7tX), SB^X^exp^X-TcX').
w n
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Then ©(WT)) =e(SB,AJZX:^X:^)"(ZG(X))OTZ^W«xrl... X:''X^X:'̂ ). For
yi,Wl

fixed ^5 m the expression under the S is a sum of monomials of Z-degree n-\-m-\-qw^
whose X^ .^-degree is nd+qc, so that

e(HT^)-S -SnA^+m+^o-i)! / (g^)+^-iV^^?...C^,
^n+w+?w0-1 ^+^+^-r/ ^^o)

but 5=^4.1, so

QfIM^fT^-S ̂ n^+^+^o-i)! / {qcld)+n-i \ x^ . . . x^x^,
nm J n+m+qwo-1 1 i i I ^nd^ 0 \n+m+qwo—i/ x^

( \\ f f iri\ \ w^ wn ^c

Finally ©^(-y])=———w~i[ 1 ~1——aT1—n:+:l? whence we are reduced to showing
-qdn ° \ WQ-I ] <^>

K-i)!/(^)-n i vSnA .J(^W+^i\
— — — — ^ o l =='^ ^"n'm^^+^+^O—1) '

^TT 0 \ WQ—I ] 7r'^^TT TT ^+^4-^^—1;

Lemma (2.8). — Let a be a strictly positive integer^ and b a rational p-adic integer. Then

(fl-i)! !b-i\ ^B^A^, / qb+n-i \
—^ ==S-:-^(^+^+m-i)! y '
^TC \fl—i/ nfm^ ^ \qa+n+m—i]

Proof. — First ord(A.)^(^1), ord(B,)^J(^II; for fixed fl, both sides represent
\ pq / \ pq I

continuous functions of b on the rational j&-adic integers, and so we may assume that b is a
positive rational integer. Both sides vanish unless 6J> a, and in that case the right side

B A j
becomes S-^ +n—i)! S—1———--——-. The second factor is the coefficientn T^ m T^ {q(b—d)—m)\

A ^K^ / X^ \ / ^C^ \
ofX^-("in exp(X)S-»^-=exp(X)exp —^-X =exp(——), so the right side is

T> OT 7C \7t-1 / \TC' /

/^^j-^ri)(r=-^S^(^+ra—i)! and we are reduced to showing

V^/ , . 7t'«-l'6(6-I)!S^+»-z)!=———^.

Define

( •\^5 \ -D

/(X)=X^-lexp X-^^S^X^^-1,

convergent for ord X>———-——, and set ^(X)= S -..—(/(X)), easily seen to
p—i pq n^orfX

converge for ord X> —— — ——, and satisfy g— g ==/(X). As the only solution
p—i pq dX.

of the homogenous equation is a constant multiple of exp(X), converging only
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ON THE DIFFERENTIAL EQUATIONS SATISFIED BY PERIOD MATRICES 101

for ord X>——, it follows that ^(X) is the unique power series solution of
p— i

g— —— = X56 ~1 exp ( X— ——,) which converges for ord X> —— — ——.' dX. \ T^ / p—i pq
I X9 \

In fact there is a solution of the form ^X^explX—-—^. >We must have

H(X^)-(I-^1)H(X^-—H(X^)=X^-1, or, multiplying by X,
\ Tr* / d.2\.

- ^ X ^ X 9 ) -X-^-HCT = X^71 "X

which is equivalent with -^^H(X)—^X.H(X)==X 6 ; so

H(X)»(,-.--)-'('•'^X'-)=S•^-'-)i('^X-).
\ rfX/ \ q \ I j - o V rfX/ \ y /

^-1)6 / X^ \
In particular H(o)==———(b—\)\, and by uniqueness ,§^(X)=H(X^)exp^X--——^|,

^-D& 9 B \ ^ /
so ^(o)=———(6-1)!, and ^(o)=S-^(^+?^-i)!. Q..E.D.

q n TV

We pass to the general case by a sort of analytic continuation.
Lemma (2.9). — Let A* be an Q algebra with A^/pA* a domain^ and p not a ^.ero divisor.

Suppose xeA\ x^pA\ .yA'/pA'+A'/pA'1', and that for every aep, p is not a ^ero divisor
in A*l(x-a)A\ Then H (x-ajA^^o. i

aep
Proof. —We proceed in short steps. .
(1) A: is not a zero divisor in A*/?^*.

Proof. — For r== i, A^/pA* is a domain, and x^pA*. Using induction if xjyep^1^
then (j^^P^ whence ^epA*, whence ^epA*.

(2) (p'A'/p^^*) h (^A^p^^^^^VA*/?^^'.

Proof.—Let a, beA* with ^assp^modp^1; then ((^p^, so (A;nfl)=^nprrf.

(3) n^A^/p^^o.n^:0 .
Proo/'. ̂  For j==i, ^/pA* is a proper ideal in a domain. Now let j/eA*, with

y mod p^e n (^A*/?^*); by induction we may suppose j/=o mod p^"1, and So by (2)
n^> 0

y mod p^e n^p^^'/p^A*) —^(A;"A*/pA*) == o.

(4) n (A^A^O.
' -/ 06 p

Proof. — Let ye D (A:—a)A00; let ^, . . .3^ be distinct elements of p. Write
aep

jy=={x-—a^{a^) and reduce mod(A;—^); then {a^—a^{a^==omod{x—a^) whence
^a^==(x—a^{a^ a^ as p, and hence 03—^, is not a zero divisor mod^—^).
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Continuing we get y^{x—a^..^x—a^a^ . . . , aj. In particular taking all a.ep'
shows y mod ̂  lies in .ynA*/prA!(;. As n was arbitrary we conclude by (3) that
j/==omod p^*; as rwas arbitrary we conclude that y=o by definition ofA00. Q.E.D.

The Pseudo-Frobenius.

Let F(X, F) be a form with coefficients in (Q[T}. Define L^(o+) to be the
space of series SA^Z^X10!^ with the usual growth condition (i.e. w^o,

n+2

ord \ ̂ a^o+^+P), a>o) and homogeneity dwo= S w^ w^ i. Define an endo-
morphism (B(r) by

(^(Z^X^r^expOrZ^X^ P)-7rZF(X, r^Z^X^I^.
Define

and

Ar=^[r,^T]/I, where I =(/(^ F), I-T^, .. ̂ a/^)
v ^n+l /

Ar,=(?[r, ^ T]/I,, i,=(/(^ n), i-T^.. .^^^^s))
x ^A"*, -1-1 /

and for aep, A^=A*p/(r—a)A*p. We note that /(^ r)^=/(^, r^mod p and conclude
the existence of a unique homomorphism Fp : A^->A^ with Fp(r)==r, Fp(^.)=^
for z=i, . . . , n. (Here the + is taken with F as a space variable.)

We denote by ©p and ©p? the © mappings from L^(o+) to Ajt and A^ respectively,
and for <zep, ©^ is the © mapping from L°(o+) to A^.

Lemma (2.10). —Suppose ©o°?(B(o)=Foo©^ and that T^(r—fl)A^=o. Then we
have a commutative diagram

aep

L°p(o+) ̂  L°p(o+)

©r<? ©p

Fp
A^®% —> A?®%

Proo/. — Let 7]eL^(o+)$ multiplying T] by a power of p we may suppose
<^w> ^y^

©^(P(^)7])—F^(©^?(7))) lles ln A?? §0 lt suffices to show it lies in d (r-ff)A^. But
specializing r->a, aep we have the diagram

LO(O+) -^^^-^^ L°CO+) ̂  L°(o+) ^^-^^ L°(o+)

©^

A^
D(^. 0) ^ Ao4-

^a) A4-
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ON THE DIFFERENTIAL EQUATIONS SATISFIED BY PERIOD MATRICES 103

The middle box commutes by assumption, and the end boxes arise from deformations,
hence commute. Finally it is clear that F^=D^oFooD(^, as both sides have the
same reduction mod p, and agree on x^ ..., x^.

Corollary (a. 11). — Under the assumptions of the lemma, we have a commutative diagram
for F(X, i)

L°(o+) -^ L°(o+)

A,+®% -^ A,+®%

Theorem (2.12). — Let F(X) be a form of degree d whose reduction modulo p is irreducible.
Then ^©o(3==Fro©.

Proof. — Over U0^ +1,^+2), to fix ideas, write f{x) = ̂ +1— i +g(x) (we may
suppose/has degree >2) and consider the family f{x, r)==^i—i+r^(.y). As/(^, i)
is irreducible mod p, it is not divisible by ^+1—1, hence neither is g(x), whence/^, F)
is irreducible, and remains so mod p. Hence A*p and A'p/pA'p are domains; clearly
r^pAp and r generates a proper ideal mod p. Finally for flep,/(;c, a) is congruent to
^n+i~~1 modp, so thatj& is not a zero divisor in any A°p/(r—fl)Ap. Thus we may
apply (2.11). Q.E.D.

ANALYTIC THEORY OF THE COMPLEMENT

Let F be a form of degree d (non-trivial modp), / the affinization X^2==i;
define C;=^,T]/I, I=(i-^... x^f).

Deformations. — Here C^ and Cf~ clearly depend only on/modulo p (if f==g mod p,
rl=/-l(I+/-lte-/))-l-S(^-/)y—^).

n

Lemma (2.13). — Suppose F=G mod p; then we have a commutative diagram

LO(O+) ^^ L°(o+)

^a

^
id.

Ct
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Proof.

^°exp(7tZ(F-G))Z<•X6=W S 7t"(ZF-ZG)»ZaXt')=
Vx^o"! /

_ ^ 7t»(«+g-l)!(/-g)"^ ^-^/-^V^g^,

^o n! (_TC)»+'-y+'» "^(-TC)"-1^ n A ^ / ̂ -

( f f-1)1 / /./-^"''̂  (a-i!) ^
-^-\^[-f)) ^F^^Z^). Q.E.D.

The Frobenius.

Write A=/(^)-/^(^); Fr^U.^^S.^ and hence we may (< factor 55

robenius u / y 1 njthe Frobenius

c+ x-^> r'+ id, p+ -̂  p+
^fW ——> /̂(^) ——> ^(x^ ——^ ^f(x) •

Similarly (following the proof of (2.6)) write

H^exp^Z^X^-T^X)), G=exp(7^ZF(X3)-7^ZF(X)^,

1^(0+) the corresponding space for qd, and maps O^ and O^ by 0^ (Z^6) = Z^^,
Od^X^Z^X6; then p is

LO(O+) -^ L^(o+) -G^ L^(o+) H^ LO(O+).

Theorem (2.14). — Fro^==^op; i.e. the/allowing diagram commutes.
x—q p

/(a;) —————^ .Ll

^

. ^ ^ .

idt . p id-

^w

t»\ f . •>, G ,

W > ^f •(a;)̂  '- ^/(

^?

^ , . , oHoO(«) ^ .

Proo/*. — The commutativity of the left hand box is clear, and that of the middle box
is the content of the last lemma. Writing H = SA^ZT^ yHO(2)ZaX6=yZIA„ZnFnZa<^X6,
whence n n

^(,HO^(Z^))=,SA„-("±a?=o!^=,SA ("t0?^1)1^/ v - 1 v / / -1 ^(__^n+^-l^n+^ y ^f^n+aq-l^

{a—i)\ ^
while ^(Z^6)^: ^ ̂ . This identity may be established by the technique

of (2.8) (for q odd, A^—i)^ and the identity appears there). Q.E.D.
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The ({; Mapping.

Define on C/- a linear mapping ^ by setting, for geC^-

105

s^oo.^M- „»>+!r"v-
Clearly <KFr(^)A)==^), and in particular

, / ^ \ w<vw fw
where ^(O-o unless ^, ...,^ are all divisible by y, in which case ^(^)=^.
Again there is an evident " factorization " of ^

id. id,cy- --> c ,̂ -. % -. c^.
Recall the endomorphism a of L(o+) defined by ^oexp(7tZF(X)—7^ZT(X';)),

where ^X^o unless ^ and ^,...,6^, are divisible by q, in which case
.KZOX6)=Za/W Define ^>: L(o+) -> Lte)(o+) by ^'(Z'X6) = Z-^X6 if ^
o otherwise, and ^2' : L^(o+) -> L°(o+) by <^/2'(Z'lX6)=Z'lX^ if y|^, ..., q\b '
and o otherwise. ' ' "+2'

7-Afform (2.15). — ̂ oa=^, i.e. the/allowing diagram commutes.

C, id. c/?;W.t) %) ^

3t," f .̂(̂

^(^oH-1

G-1

-^ Lte>(o+) —^ L^(o+)L°(o+) L°(o+)

Proo/: — Here it is clear that the right-most and central boxes commute. Write
H-1=SB.,Z»F";

n+a

^H-(Z«X^^^B^Z-TF"X^2B,^Z»F——X^
whence

W^H-^Z-X^ 2 B^ (^-i)!/"^^^ (n-i). ^
^1 ^-"(-TC)"-1 /?» ~n>,l{-^Y-^-»p

(a-l)' ^ y ("-!)!whence we are reduced to showing =-S Bno-a-k n — l n f f — a(_TC)<—1 y^i(_^»-l

Consider the space L of all those power series in one variable S a^ with
•w ̂  ftn>_0

orda^^bn+c with ^>o, L0 the subspace vanishing at x=o, D the operator x-^+w,
8x

257
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r^

a the operator ^.exp(nx—TO^). Clearly L°/DL0 is one-dimensional, with basis {x} and
the relation aD=^/a shows a acts here. Further a(D(i))==yD(a(i))=^D(i)+yD(7))
where 7)eL° and hence, on L°/DL°, a induces multiplication by q. Finally,

^ = T^ -̂——! ̂  mod DL°. Q.E.D.
(—71:)

Remark. — This technique gives another proof of (2.8) as (B induces multiplication
by i l q on L°/DL0.
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