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RATIONAL SURFACES OVER PERFECT FIELDS
by Ju. I. MANIN

RESUME

Let k be a perfect field of arbitrary characteristic. The main object of this paper
is to establish some new objects associated with algebraic surfaces F defined over k which
are invariants for birational transformations defined over k. There are two main appli-
cations. The first is that if K is any extension of k of degree 2, then there are infinitely
many birationally inequivalent rational surfaces (1) defined over k which all become
birationally equivalent to the plane over K. The second application is to a partial
classification of the del Pezzo surfaces for birational equivalence over k. For our
purposes a del Pezzo surface defined over A: is a nonsingular rational surface with a very
ample anticanonical system, so the nonsingular cubic surfaces are a special case. As
we use the language of schemes (2), we have to prove some classical results in the new
framework, notably some results of Enriques [7] on the classification of rational surfaces.
In the last section we produce evidence for the conjecture that if the field k is quasi-
algebraically closed (in the sense of Lang [n]), then a rational surface defined over k
always has a point on it defined over k.

We shall now describe the contents of our paper in more detail.

Section o. — Preliminaries.

Subsections o. i and o. 2 recall and reformulate theorems about the resolution of
the singularities of a surface and about the removal of the points of indeterminacy of
a rational map (cf. Abhyankar [ i ]). In subsection o. 3 a curve on a surface F is defined
to be an effective Carrier divisor and also the subscheme belonging to that divisor
(cf. M. Artin [3]). I fF is defined over k, we denote the corresponding surface defined
over k by F ®A. Lemma o. 3 states that a necessary and sufficient condition for a divisor X
on F®A: to arise from a divisor X on F (defined over k) is that it should be invariant under

(1) A surface defined over k is rational if when considered over the algebraic closure ~k of k it becomes bira-
tionally equivalent to the plane.

(2) In particular, we use the terms "proper" (C06CTBeHHbIH) and tt regular" (peryjIRpHblH) instead
of the classical tt complete " and <{ nonsingular ", respectively.
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ioo JU. I. M A N I N

the action of every element s of the galois group G == G (kfk) (cf. Carrier [5]). Section o. 4
gives the following necessary and sufficient condition for a proper regular ^-surface (1)
to be ^-minimal, i.e. such that every birational A-morphism /: F->F', where F' is a
regular surface, is an isomorphism:

Lemma (0.4). — A proper regular k-surface F is k-minimal if and only if for every irre-
ducible exceptional curve (2) X of the first kind on the k-surf ace F®A there is an element s of
the Galois group G such that s(K) =)= X and the curve X+^(X) is connected.

The necessity of the condition follows from the Lemma of Mumford [13] about
the negative definiteness of the intersection matrix of the irreducible components of the
kernel of the corresponding A-morphism f : F0A: -> F'®A:. Conversely, if there is an
exceptional curve X of the first kind which does not meet any of its conjugates ^(X) 4= X,
then a standard argument provides a ^-surface F' and a A-morphism f : F->F' whose
kernel is precisely the union of X with its conjugates (cf. M. Artin [3]). Finally the
Lemma of Subsection 0.5 states that the monoidal transformations F'->F whose
centre is a closed point of F correspond precisely to the monoidal transformations
/ : f'^k -> F®k whose centre is of the type U x^ where x^, . . ., x^eF0k is a

1 ̂  i ̂  n
complete set of closed points conjugate over k.

Section i. — Enriques^Theorem.

In this section we generalize results of Enriques to surfaces defined over a general
perfect field k.

Theorem (1.2). — Let F be a rational k-surface. Then there exists a proper regular
k-surface F' quasirationally equivalent (3) to F, a k-curve C and a k-morphism f: F'-^G with
the following properties:

a) The curve C is proper, regular, geometrically irreducible and reduced (4), with arithmetic
genus pa(C)==o.

b) Let x be the generic point of C. Then the generic fibre F^ of f is a proper, geometrically
regular, geometrically irreducible k{x)-curve, with arithmetic genus pa^F'x) ^iher o or i.

For, following Serre [19], we show that there is an integer n^o such that (1 .2 .1 )
holds, where (Op is the canonical sheaf. Then a pair of linearly independent sections
SQ, ̂ eH^coil^®^!)) determine a ^-map g : F->P^, which may be supposed to be a
A-morphism on applying appropriate monoidal transformations to F. The curve C is
then taken to be the integral closure of the scheme P^ in the field of functions R(F) of F.
Then p^(C)==o because F is a rational surface. The arguments of Serre [19] show

(1) I.e. a surface defined over k.
(2) I.e. with arithmetic genus j^(X)==o and self-intersection (X,X)=—i.
(3) In characteristic zero this is the same concept as birationally equivalent over k. In the general case, two

surfaces F and F' are said to be quasirationally equivalent if there is a ^-surface F^ and two radicial dominating
A;-morphisms

/^-^F; g'.f-^F'.
(4) I.e. no nilpotent elements in the structure sheaf.
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RATIONAL SURFACES OVER PERFECT FIELDS 101

that (1.2.2) holds. IfF^ is reduced, this completes the proof. In the general case one
has to invoke a result of Grothendieck (Prop. 4.6.6 on p. 69 of [8], Part IV).

In all that follows we shall consider only birational classes of surfaces for which
there is a map onto a curve with the properties enunciated in Theorem 1.2. In charac-
teristic =t=o this is equivalent to neglecting radicial morphisms.

A A;-morphismyofthe type described gives F the structure of a C-scheme. We shall
say that F is C-minimal if every diagram

F -̂  G,

•[ A
F'

where g, h are A-morphisms and g is birational, implies that g is an isomorphism. Over
the algebraic closure k we define the A:-morphism f==f®k : F®A -> G0A in the obvious
way. Then the (C®A)-minimality of F®A is equivalent to the absence of exceptional
curves in the fibres, whereas, by Lemma o. 4, the C-minimality of F is equivalent to the
statement that every exceptional curve in a geometrical fibre intersects one of its
conjugates.

Theorem (1.5). — If the C-surface F is C-minimal and the generic fibre has genus i,
then F®/; is (C®k)-minimal.

The proof depends on the
Lemma (1.5). — Let F®A->-F' be some (C^k) -birational morphism and for a closed

point x^G^k suppose that the fibre F^ has the two following properties:
a) Each irreducible component X has either (X, X)<o or ^(X)4=o.
b) -yX,, Xy are distinct components of the fibre and also exceptional curves of the first kind.,

then X,4~X, is not connected,
Then the fibre (F®A)^ enjoys the same properties.
The proof of Lemma i. 5 follows by induction from the easy case of a monoidal

morphism. To prove the Theorem i .5 we note that if the k -morphism F'->C®A with
generic fibre of genus i gives a (G®A)-minimal surface, then the geometric fibres satisfy
the conditions of Lemma i. 5 from the classification of the possible fibres given by Kodaira
and Neron [15]. By the Lemma, the geometric fibres ofy must satisfy the same condi-
tions: and on comparing condition b) with Lemma 0.4 we deduce that the geometric
fibres off cannot contain exceptional curves of the first kind, so F®A is (G®A)-minimal,
as required.

Theorem (1.6). — Suppose that the surface F is C-minimal and that the genus of the
generic fibre is ^ero. Then there is a {C®k)-surface F' and a birational (C^k)-morphism
g : F®I->F' such that:

a) The structural morphism F'' ->C®k makes F' a ruled surface with fibre P .̂
b) The morphism g is either an isomorphism or a monoidal transformation with its centre

at a finite number of closed points ofV lying on distinct fibres. The sum of the g-inverse images
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102 JU. I. M A N I N

of those fibres on F®^ is G(k /^-invariant and is a collection of a finite number of orbits each
of the form

—i —i —i — i — i —i

(i.e. a set of pairs of intersecting irreducible curves of genus o, each with self-intersection —i).
For F' is obtained by blowing down the exceptional curves contained in the fibres

of F®I-^G®i.
Theorem (1.7). — Let F®A; -> C®~k be a rational (G®k)-surf ace, where C®A;=P^

and the generic fibre has genus i. Then the rank n(¥®k) of the group Num(F®A:) of classes

for numerical equivalence is 10 and there is a birational k-morphism F®A-^P^. For every
irreducible exceptional curve of the first kind XcF®A we have (X, FJ==<2, where the number
a is defined by the condition

^-^W-FJ.
For any irreducible reduced curve XcF®A with j^(X)==o satisfies

^((X,X)+2)=(X,FJ,

where xeC0k is arbitrary and a is defined above. Hence there are no such curves
with (X,X)<—2, all the curves with (X, X)=2 are components of fibres, and all
exceptional curves of the first kind satisfy (X, FJ==—a. Let g : F®/;->F' be a bira-
tional morphism onto a ^-minimal surface. Then it follows that F' is isomorphic to P2,
P1®?1 or to the ruled surface Fg, the standard section of which has self-intersection —2.
The existence of the A-morphism F®A:-^P^ in the latter two cases follows from a
detailed discussion. Finally, Noether's formula implies (cop, (^p)+n(F®k)== 10, and
so yz(F®I)=io.

Finally we discuss ruled rational A-surfaces. Each of these is the k-form of one of the
surfaces F^, where F^ in Grothendieck's notation ([8], Chap. II) is P{0y{n)@(Pp.{—n)).
For n^-i there is a canonical section ^ : P^F^, the image of which is the unique
curve on F^ with index of self-intersection —n. In the remaining case n==o we have
Fo=PlxPl, and so the forms of F() are just the 2-dimensional quadrics. Otherwise we
have

Theorem (i. 10). — a) (1) For n=. i (mod. 2) the only k-form of F^ is F^ itself.
b) For n^o (mod. 2), n^-2 the k-forms of F^ are in i—i correspondence with the

k-forms of the protective line P1, the correspondence being between the surface F and the curve with
self-intersection —n lying in it.

(1) In [12] it was erroneously asserted that the statement in b) is true for all n.
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RATIONAL SURFACES OVER PERFECT FIELDS 103

Section 2. — Some birational invariants.

For a regular ^-surface F we shall denote by N(F)=Num(F®A:) the group of
divisor classes on ~F®k for numerical equivalence. It can be regarded as a G-module
(where G is the Galois group of kfk) and has a non-degenerate G-invariant pairing
into Z given by the index of intersection. A A-morphism jF:F->F' determines a
G-homomorphism

/*:N(F) ->N(F').

I fF and F' are proper and f is birational, theny* is a monomorphism and preserves the
index of intersection. In this case we can define the canonical homomorphism

/^(F^-^F)

by (/^)^)-(^r(^)) for all 73eN(F).
We denote by SB (A) the category whose objects are the proper regular ^-surfaces

and whose morphisms are the birational A-morphisms.
We recall the well-known
Lemma (2.1). — Let f : F'->F be a morphism in the category 23 (^). Then there is a

direct decomposition
^F^Irnf+Ker^

ofG-modules (cf., e.g. Nagata [14]). If, further^ fis a monoidal transformation with centre at
a point .yeF, then KerjF is generated by the components of the geometric fibre f~l{x)®k\ and
with respect to this basis the intersection matrix on Kerjf is —E. Further Imf* and K-erf
are orthogonal with respect to the intersection index.

We denote by (£(A) the category of continuous Z-free modules of finite rank. We
shall call an element of£(A:) trivial if it is isomorphic to a direct sum of a finite number
of modules of the shape Z [G] ®Z[H]Z where H runs through the open subgroups of G
and H acts trivially on Z.

We can now enunciate our key
Theorem (2.2). — A necessary condition that the k-sur faces F, F' in the category 93 (A) be

birationally equivalent over k is that there exist trivial G-modules M and M' such that

N(F)+M'«N(F')+M.

For since a birational equivalence can be decomposed into monoidal transfor-
mations it is enough to consider these : and for these Theorem 2.2 is an almost immediate
consequence of Lemma 2.1. In what follows we shall consider only the G-module
structure ofN(F). It would be possible to give finer invariants by considering the index
of intersection and the behaviour of the canonical class, but we have not seen how to
exploit this. In fact we use only the following

Corollary (2.3). A necessary condition that F, F' be birationally equivalent over k is that

H^K^F^H^K^F'))
for all finite extensions K D k.
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104 JU. I. M A N I N

We note in passing that the category d{k) is dual to the category of A-tori, and so
the work of Ono [16] provides further invariants, for example the Tamagawa number
of the torus N(F)° dual to N(F). In fact the zeta-function of the torus N(F)° and the
surface F itself are connected as intimately as the zeta-function of a curve and its Jacobi
variety.

As a first application of Theorem 2.2 we prove
Theorem (2.5). — Suppose that k possesses a quadratic extension K. Then there exist

infinitely many rational k-surfaces F which are birationally inequivalent over k, but which all become
birationally equivalent to the plane over K. In other words the kernel of the map

H\k, Cr) ̂  H^K, Cr)

is infinite, where Cr=Aut k ( x , j ) l k is the Cremona group.
For the proof, we consider the surface

Wofm^O^ ^l)==Vlgm^O, ̂ l)

on the direct product PJ^xP^xP^ of 3 projective lines with respective homogeneous
coordinates, where f^ g^ are forms of degree m with coefficients in k such that^^ has
no multiple factors. Then F is birationally equivalent to the plane (for consider the
map onto P^xP^ got by throwing away the ^-coordinates). The surface F has a
biregular automorphism of order 2, namely intechangeing {XQ, x^) and (j^J^)- Let F^
be the ^-surface obtained by twisting F with respect to the cocycle which maps the
nonidentical automorphism ofK/A: into this automorphism ofF. It turns out that

ui,, ^-r^__ W"2 ^fmgm ^s a divisor of odd degree
±1 (/i, 1M ̂ r ) ) — ^

(Zg) otherwise;

where x is the number of divisors off^g^. In particular, ifk has infinitely many elements
we may chose f^, g^ which factorize into linear factors over ^, and then

H1^, N(F)) » (Z,)2—2

By Theorem 2.3 the ̂  obtained with different values of m are birationally inequivalent.
This proves Theorem 2.5 except when k is a finite field, when a slightly more subtle
argument is needed.

In evaluating Ps^F^) we use the following Lemma, which is perfectly general and
also required in Section 3.

Lemma (2.9). — Let 'FeS(k) and let {XjcF®! be a G-invariant set of irreducible
curves the classes of which generate N(F). Let S be the group of divisors generated by the X^ and
let SoCS be the subgroup ofdivisors numerically equivalent to o. Let HcG be a normal subgroup

of finite index which acts trivially on the X. and put N== 2 ^eZfG/HI Then
geGin L J

H^, N(F)) ^H^G/H, N(F)) ^ (NSnSo)/NSo.
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RATIONAL SURFACES OVER PERFECT FIELDS 105

Here the second isomorphism is a consequence of the exact sequence

o-^So—S->N(F)->o.

The first isomorphism is not a natural one, but follows from the case p == i of the natural
isomorphism

Horn (H-^G/H, N(F)), Q^Z) -> FP(G/H, N(F));

which itself follows from the fact that N(F) is Z-free and has a nondegenerate pairing
into Z (cf. [4], Chapter XII, Corollary 6.5).

In the application of Lemma 2.9 to Theorem 2.5 one takes for S the \m lines on
which /J^o? ^i)<?w(-^ ^i)=° together with the two lines Xp : XQ==^==O; Xi : x^==^-=o.

Section 3. — Del Pezzo surfaces.

A regular rational ^-surface F is called a del Pezzo surface if the sheaf cop"1 is very
ample and the anticanonical system has no fixed components. We first discuss the
geometry over an algebraically closed field and require

Lemma (3.2). — Let F be a regular rational k-surf ace for which (cop, cop)^ i and let X
be an irreducible curve on F for which (X, X)<o. Then only the three following cases are
possible:

a) X is an exceptional curve of the first kind and (X, cop"1) == i.
b) X is a component of a fixed curve of the anticanonical system.
c) (X,X)=-2 and A(X)=o, (X.cop^^o.
The proof is a fairly straightforward computation using the Riemann-Roch theorem

on F and the formula for j^(X) in terms of (X, X) and (X, o)p). An immediate
consequence is

Corollary (3.3). — An irreducible curve with negative self-intersection on a k-del Pe^o
surface is an exceptional curve of the first kind. The injection F—^Pn with 7Z==(ci)p, (Op) defined
by the anticanonical sheaf takes the exceptional curves of the first kind on F precisely into the straight
lines in the image.

This gives us at once the geometric form of the del Pezzo surfaces:
Theorem (3.4). — Let F be a k-del Pe^o surface and put n-==((^y, cop). Then 3^ n^Q

and we have
a) When n==g, then F is isomorphic to P2.
b) When n=8, then F is isomorphic either to PlxPl or the image ofP2 under a monoidal

transformation with centre at a single closed point.
c) When 3 ̂ 7^7, then F is isomorphic to the image off2 under a monoidal transformation

with centre at 9—n closed points^ no three of which lie on a straight line and no six on a conic.
d) Every exceptional curve on F is the image of either a point of the centre of the monoidal

transformation, or of the straight line through two such points, or of the conic through five such points.
For one considers the birational morphism p : F->F' onto a minimal model.

465
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106 JU. I. M A N I N

The only F' possible are P2 and P^P^ For 72^7 there is in any case a morphism
F->P2 by the arguments of Theorem 1.7. The rest follows from a computation of
indices, using Noether's formula.

We later need the
Corollary (3.4). — The exceptional curves of the first kind on a del Pe^o surface F gene-

rate N(F).
We now consider del Pezzo surfaces over a general perfect field k. Before consi-

dering the different values of n separately we make some general remarks.
Let F be a del Pezzo surface canonically embedded in P^ On intersecting F

with a sufficiently general hyperplane P""2 and performing a monoidal transformation
with centre FnP^2 on F, we obtain a surface F' with a pencil of elliptic curves over the
projective line B, the basis of the pencil of hyperplanes in P^1 through the P^2: and F'
is B-minimal. Hence the birational A:-forms of a del Pezzo surface are particular cases
of the k-forms of surfaces with an elliptic pencil: they are obtained by blowing down a
A-curve which splits over k into the union of n nonintersecting irreducible curves of the
first kind which are also sections of the elliptic pencil.

By Theorem 3.4 all del Pezzo surfaces with fixed 7^5, %=}=8 are A-isomorphic and
for 72=8 there are only two isomorphism classes. Hence we can classify their biregular
A-forms. After that a special investigation, different for each case, shows that the exis-
tence of a A-rational point is equivalent to the birational triviality of the surface. Further,
at least for n^- 6, the question of the existence of a rational point in the most interesting
case, namely when k is an algebraic number field, turns out to be a purely local one:
the Hasse principle is valid.

The cases %=3, 4 are much more difficult. Now the criterion of Corollary 2.3
permits us to establish the existence of birationally nontrivial A:-forms, even over a finite
field k or for k =R, which possess ^-rational points. Here we limit ourselves to a detailed
exposition of the case 71=4. The detailed computation of the cohomology in the general
case becomes here very cumbersome. It may be that one should use the connection
between this class of surface and the Weyl groups of the exceptional simple Lie groups.
I hope to return to this question later.

To compute the group H^A, N(F)) for the application of Corollary 2.3 we must
know something about the intersection properties of the exceptional curves. For 3^72^6
let <?„ denote the graph whose vertices correspond to the lines on a del Pezzo surface
of degree n, and where a pair of vertices are joined if the corresponding lines have
an intersection. It is easily seen from Theorem 3.4 that S^ is unique up to isomor-
phism (1). Let r^ be the group of automorphisms of <^.

Proposition (3.6). — a) There is a natural embedding <§>nc^n-l m ^ich <?„ is identified
with the set of elements not meeting a fixed element of <^_r

(1) Of course ̂  does not exhaust the possible information about the intersections of the lines. For example
on a cubic surface it may or may not happen that three lines are concurrent.
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RATIONAL SURFACES OVER PERFECT FIELDS 107

b) r^ acts transitively on S^ and the stability group of any element is isomorphic to T^n-i'
c) The orders [<^J, [FJ of €^ 1^ respectively are given in the following table:

n

m
[rj

6

6

^.s

5

10

^•3-5

4

i6

^•3.5

3

27

^•^•5

All this is classical and straightforward. We give a proof in the Russian version
only for lack of a suitable reference.

One may ask whether the full group F^ can be realized as a Galois group acting
on the lines (1). For 72=6, 5, 4, 3 this follows from the case n= 3, the non-singular
cubic surface in P3. Let U be the complement on the surface of the discriminantal
hypersurface in the space of the coefficients of cubic forms in 4 variables. The
group Ti:i(U, u) clearly acts on the set of lines of the cubic surface corresponding to a
point 2/eU. Segre [18] asserts that the image of 7Ti(U, u) is the complete group F^
of automorphisms of <^, at least over the complex field.

We now discuss the separate n.
Theorem (3.7). — Let F be a k-del Pew surface of degree n.
a) For 72=9, F is k-isomorphic to a Severi-Brauer surface.
b) For 72=8, F is isomorphic either to a quadric or to the image ofP2 under a monoidal

transformation with centre at a k-point.
c) For n = 7, F is k-isomorphic to the image of P2 under a monoidal transformation with

centre at two k-points or with centre at a closed point xeP2 for which [k{x) : k]==2.
Corollary 1. — A del Pe^o surface of degree 7 always has a rational point.
Corollary 2. — Let k be a field of algebraic numbers (of finite degree) or a field of func-

tions of transcendence degree i over a finite field. If a del Pe^o surface of degree 7 or 8 has a
rational point over all local completions ky of k, then it has a rational point over k.

Corollary 3. — A necessary and sufficient condition for a k-del Pe^o surface of degree 7, 8
or 9 to be k-birationally trivial is that it possess a k-point.

All this follows immediately from Theorem 3.4, Lemmas 0.4 and 0.5 and well
known results.

The treatment of the case 72=6 is more complicated and depends on the fact
that F\X has the structure of ^-homogeneous space over a certain 2-dimensional torus,
where X is the union of the exceptional curves. Before enunciating this result in detail
we must describe a general construction which generalizes one of Serre [22].

(1) The possibility discussed in the last footnote of the concurrence of three lines certainly limits the possible
galois groups.
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Let V be a proper irreducible and reduced algebraic ^-scheme and let {XjcV^F
be a finite set of divisors each of which is an irreducible and reduced subscheme
of V0A:. Let So be the group of principal divisors generated by {X,} and let
RcR^VOA:)"1 be the group of rational functions on V®k whose divisors are in So,
so Rcr(V®A;\UX,, ^v®fc)- A section O : SQ->R of the exact sequence

(3.8.1) o-^P->R-^So->o

determines a ring homomorphism

I[So] -^I[R] -> r(V®i\UX,, ̂ ),

and so the A-morphism
/: V®I\UX, -> Spec I[So]=T®^,

where T == Spec k [So].
Suppose now that the divisor SX, is G-invariant (G as always the Galois group

of k f k ) . Then (3.8.1) gives the exact sequence

o -> Homz(So, P) -> Homz(So, R) -> Homz(So, So) -> o,

in which Hom.z(So, k*)=T{k) is the group of geometric points of T. We denote
by AeH^Gi, T(A)) the image of idg^ under the connecting homomorphism

S^om^So.So^H^T^)).

This is the characteristic class of the G-extension (3.8.1) and at the same time it defines
a principal homogeneous space T71 of T over k. Finally let X cV be a divisor such
that X®I-UX, on V®i.

Proposition (3.9). — With the above notation define a k-morphism

g : V\X ̂  T^

by means of the ring homomorphism

(k[W-^(kW-^ r^v^Ux,, ̂ )-r(v\x, ̂ ),
where the action of G on k [So] is determined by means of the cocycle h in such a way that
Spec (1^0])°==^. Then g®1c==f with the appropriate identification of T®I, T^®!.
Further^ g does not depend on the choice of section 0.

The proof is essentially a formal calculation with the explicit forms of cocycles.
In our special case we have

Theorem (3.10). — Let F be a k-del Pe^o surface of degree 6 and let X^ . . ., XoCF®A;
be the exceptional curves of the first kind. Let XcF be a divisor such that X®A;==SX^ and

put U == F\X. Then the torus T = Spec k[So] is 2-dimensional and the map of the scheme U
into a principal homogeneous space over T described in Proposition 3.9 is an isomorphism.
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RATIONAL SURFACES OVER PERFECT FIELDS 109

Since all del Pezzo surfaces of degree 6 are A-forms of each other, it is enough to
verify Theorem 3.10 for one of them, say the fcPlxPlX'Pl given by the equation

^o7o^o ==^1^1

where (^, .x^), (j/o ,j^), (^o, ^) are the three sets of homogenous coordinates. In this
X V 7

case we take for 9(80) CR the group of functions generated by -°, -° and -°. It is clear

[ x x y y 1 x! Vi ^i
that F\X —• Spec k -°, -1, -°, -l is an isomorphism.

\ -i. y y I) i) I
•^1 ^0 Jl J^OJ

Corollary 1. — A necessary and sufficient condition for a del Pew surface of degree 6 to
be birationally equivalent to the plane over k is that it possess a rational k-point.

We may suppose that F is A-minimal, since otherwise we are reduced to a del Pezzo
surface of higher degree for which the result is already proved (Cor. 3 of Theorem 3.7).
Lemma 0.4 then limits the possible orbits of G on the X^: in particular they cannot
contain any G-invariant points. If now A: is a rational point on F one can obtain a
birational equivalence with a quadric by first blowing up x, so getting a del Pezzo
surface F' of degree 5, and then blowing down a set of three appropriate lines on F'.
Since the quadric has a A-point, it is birationally trivial, so F is trivial.

Corollary 2 (1). — A del Pe^o surface of degree 6 defined over an algebraic number field or
over a function field k has a k-point if and only if there is a ky-pointfor every local completion ky.

This follows from Voskresenskij's result [25] that the Hasse Principle holds for
2-dimensional tori.

To deal with ^==5 we need another general theorem about rational points on
del Pezzo surfaces.

Theorem (3.12). — Let F be a k-del Pe^o surface of degree n.
a) If the field k is infinite, suppose further that there is a ^eN(F)0 for which (Z, (Op'1)

is relatively prime to n. Then F has a k-point. If, further, there are no G-invariant exceptional
curves of the first kind on F®A (e.g. when F is k-minimat) then there is a k-point not on an excep-
tional curve.

b) If k is finite, then every rational k-surface has a k-point. On a del Pe^o surface of
degree n one can find a k-point not on an exceptional curve provided that the number q of elements
of k satisfies

q>io+e^—n,

where e^ is the number of irreducible exceptional curves of the first kind on F®A.
The finite field case b) follows from Well's results [24] about the number ofA-points

on rational ^-surfaces. It would doubtless be possible to improve the bound for q

(1) This implies in particular Selmer's result [23] that over an algebraic number field a surface of the type
A-^^3^3-!-^8)

satisfies the Hasse principle. For as Segre [17] remarks there is a triplet of lines which can be blown down over
the ground field. The same result is true for any cubic surface with such a triplet.
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somewhat, but that some bound is needed is shown by the del Pezzo surface of degree 5
over the field k of 2 elements obtained by blowing up four A-points in the plane.

In the general case a) we need the following Lemma due essentially to Igusa [9].
Lemma (3.13). — Suppose that k is infinite and let F be a regular projective k-surface

of degree n. Then there is a k-morphism f: F'->F such that f®k is a monoidal transformation
with centre at closed points of F®A and a k-morphism p :F'->P1 such that

P\^W}-f\W)^A-^).
where X is a divisor on F' blown down by f. Further, we may suppose that all the fibres of p are
geometrically irreducible.

For one considers the pencil of intersections with a sufficiently general pencil of
hyperplanes and blows up the base points of the pencil.

To prove Theorem 3.12 we show that there is a G-invariant section P^-^F1®!.
We omit the rather elaborate details. The image of the section in F is a A-curve of genus o
(with a ^-rational point) which is distinct from the exceptional curves. The proof may
be seen to generalize to surfaces with an anticanonical system without fixed components
of degree 2.

The application to del Pezzo surfaces is
Theorem (3.15) (1). — Let F be a k-del Pew surface of degree 5, and K a normal extension

ofk of degree d prime to 5. If F®K has a K-point, then F is birationally equivalent to P .̂
Suppose first that there is a A-point x on F. If x is not on an exceptional curve,

let F' be obtained by blowing up F. The image of x is met by a set of 5 nonintersecting
irreducible exceptional curves on F'®A. The union of these 5 curves is thus G-invariant
and by blowing them down we obtain a Severi-Brauer surface, which is trivial since it
contains rational points. The cases when x is on precisely one exceptional curve and
on the intersection of two are dealt with by variants of this technique.

By Theorem 3.12 b) this concludes the proof for finite k. Otherwise we have to
show that the hypotheses of Theorem 3.15 imply the existence of a Appoint. It is enough
to show that the hypotheses of Theorem 3.12 a) follow from those of Theorem 3.15.
Indeed arguments similar to those above show that the existence of a K-rational point
implies the existence of a curve X with (X, cop) N= o (J) on F0K (which we now know
is birationally equivalent to P^). Let ZCF be such that Z®K is the sum of all the
^-conjugates of X. Then (Z, cop) =j=o (5), which is all that was needed.

Finally we come to the case 72=4. This is distinguished from the cases already
discussed not merely by its greater complexity but because (i) a surface of degree 4
with a rational point need not be birationally trivial (2) (ii) the surfaces are not necessarily

(1) I have been unable to verify the assertion of Enriques [7] that every del Pezzo surface of degree 5 has a
rational point.

(2) Similarly Segre [17] showed that a minimal cubic surface is birationally nontrivial, although it is easy
to construct examples with rational points.
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k-forms of each other and (iii) the criterion of Corollary 2.3 can be used to demonstrate
the nontriviality of certain surfaces (while it cannot for ^5).

The del Pezzo surfaces of degree 4 are of special interest because they are connected
with one of the simplest Diophantine systems of equations: two quadratics in 5 variables
(cf. Section 4 below). It would be interesting to know whether the Hasse Principle
holds for it. Again the question of the birational triviality of a cubic surface with a single
rational line, left open by Segre [17], reduces to this case. Our criterion gives a partial
answer (twelve cases out of 19, see below).

In order to apply Corollary 2.3 we have to compute H^, N(F)) for del Pezzo
minimal surfaces of degree 4. It is first necessary to compute the number of possible
dissections into orbits (i) of the set of lines on F®A under the action of the Galois
group G. It turns out that there are 19 types. For each it is automatic to compute
H {k, N(F)) by means of Lemma 2.9. For 10 of the 19 types it is nontrivial, so F is
nontrivial and for the remaining 9 it is trivial. In two of these cases F is nontrivial
because H^K, N(F)) is nontrivial for an appropriate extension K of k. I do not know
whether F can be trivial in the remaining 7 cases, though we shall show in one of them
that ffi(K,'N(F))=o for all extensions K of k.

We shall use the following representation of the graph g^.

(3 i7.i)

4

3
•————
2

•—————
I

4

3

2

I

8

7

6

5

8

7

6

5

Here, in addition to the edges shown, each point is connected with precisely one of the
vertices of each of the pairs on the other side of the vertical Une, and, in particular, a
left (right) vertex is connected with the left (right) vertex of the pair on the same line and
with the_right_(left) vertex of the pairs on different lines. Thus the vertex i is joined
to ^ 5, 6, 7, 8.

Lemma (3.18). — The graph just described is isomorphic to S^.
Corollary. — The group 1^ of automorphisms of ̂  acts transitively on the subgraphs of

the type •—————•

The proofs are routine. We shall describe (3.17.1) as the canonical graph.
We shall call a subgroup Fcl^ admissible if no subgraph corresponding to an orbit
consists of isolated vertices. By Lemma 0.4 and the remark preceding Theorem 3.7

action0 ^"^y11"""®^1060111?"^ H^^F)), and we do not need to find the number of types of group
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in this r6sum(^ the admissible groups are just the possible images of Galois groups acting
on minimal surfaces.

Lemma (3.19). — Let Z^, . . . , Z^ be the subgraphs corresponding to the orbits of some
group acting on ^4. Let a^ be the number of vertices of Z,. and let l^ be the number of edges going
from a fixed vertex ofZytoa vertex of Z,. Then l^ is independent of the choice of vertex and we
have the equations

^lrs-5

^rs^^sr

S Oy == I 6

r

The group is admissible if and only if l^ i for all r: and then a^2.
Lemma (3.20). — Let TcY^ be an admissible group. Then each orbit consists of 6, 12

or 2 a (i ̂  a ̂  4) vertices.
Lemma (3.21). — Suppose that T is admissible and that there is an orbit of6 or 12 vertices.

Then after a suitable identification of ^4 with the canonical graph the orbits Z, are given by one of
the three diagrams in (3.21.1) (see Russian text) (1).

Lemma (3.22). — Suppose that T is admissible and that all the orbits have 201 vertices for
some a. Then after a suitable identification of §^ with the canonical graph, the orbits Z^ are given
by the 16 diagrams in (3.22.1) (see Russian text).

Lemma (3.23). — Let T be a group of automorphisms of the canonical graph corresponding
to the case XVIII (diagram (3.22.1)). Then F has a subgroup of type IV.

Lemma (3.24). — Let Y be a group of automorphisms of the canonical graph of type XII.
Then it has a subgroup either of type IV or of type VI.

These five lemmas are all finite combinatorial statements which can therefore be
verified in a finite amount of time.

Lemma (3.25). — Let each subgraph of the canonical graph correspond to the divisors
on FOOA given by the sum of the lines corresponding to the vertices. Then the group of principal
divisors spanned by the lines is generated by the differences of pairs of cycles corresponding

•—————«

to squares

The proof is straightforward.
We can now compute H^A:, N(F)) in terms of the dissection D : U Z, of the

' v ? v / / l^i^n l

canonical graph into orbits. Let ^ be the number of vertices ofZ, and let rf=lcm(<7,).
Let C° be the group of o-dimensional chains of ^4 and let N^ : C°->C0 be the homo-

morphism defined by Nj^=- S y for A;eZ,. Denote by P the kernel of the pairing
^i y£Z,"

on G° induced by the index of intersection.

(1) In this case one can show that 5 does not divide the order of r, which must therefore be of the type 3.2°'.
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Lemma (3.27). — Let D be the dissection of the canonical graph into orbits corresponding
to a k-del Pe^o surface of degree 4. Then in the above notation

H1^, N(F))=NDC°nP/NDP.

This follows easily from Lemma 2.9.
We are now in a position to construct table 3.28 of the Russian text. The first

column gives the type, the second a set of generators of N^C^n P, where Z^ denotes S x.
xe^i

The third column gives H^A:, N(F)). When this is nonzero, the surface is birationally
nontrivial by Corollary 2.3. In types XVIII and XII the surface is nontrivial in virtue
of Lemmas 3.23 and 3.24 and because types IV and VI are nontrivial.

Finally we note that it can be shown that F has order 6 in case II, and a further
exmination shows that H^K, N(F))=o for all extensions KDk.

Section 4. — Remark on rational points.

The following statement appears to me to be probable.
Conjecture (4.1). — Every rational k'surface F has a k'point if k is quasi algebraically

closed (1).
After Theorem 3.12 it is enough to consider infinite fields. For these we have
Theorem (4.2). — Conjecture (4 .1) is true for rational surfaces with a pencil of curves

of genus ^,ero, for forms of the absolute minimal models and for del Pew surfaces of degree ^4=5.
For surfaces with a pencil of curves of genus o this follows from a repeated appli-

cation of the fact that the Brauer group of k is trivial.
The absolutely minimal models are forms of P2, P1 X P1 or ruled surfaces. The

forms of P2 are the Severi-Brauer varieties, which are trivial because the Brauer group is.
The forms of P1 X P1 are embeddable as quadrics in P3, so have a rational point by the
definition of k. The third case has already been dealt with.

By Theorem 3.7 the del Pezzo surfaces with 72=9,8 have already been dealt
with and n == 7 is trivial. By Theorem 3.10 the case n == 6 reduces to that of a homo-
geneous space over a 2-dimensional torus, which has been dealt with by Serre [20].
The del Pezzo surfaces with n == 3 are the cubic surfaces in P3: and for these the theorem
follows from the definition of k.

Finally, a del Pezzo surface with n = 4 is the complete intersection of two quadrics
in the anticanonical embedding (2). Hence the theorem follows from a theorem of
Lang [n] (and a remark ofNagata freeing it from auxiliary restrictions on k).

(1) I.e. there is a Appoint on every A-hypersurface in P{̂  of degree a$n for all n (cf. Lang [n]).
(2) For it is easy to deduce that dim H°(F, wj2) == 13 from the representation of F®A: as the blowing up

of five points of the plane.
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