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I N T R O D U C T I O N 

1) This work belongs to the direction initiated by K.Mackenzie in 

[20; Chap. III.§§2.5.7, Ch. IV], [21] and developed by the author in [17], and concerns 

the "clean" theory of Lie algebroids. [Thèse works isolate this theory from the common 

theory of Lie groupoids and Lie algebroids]. 

Originally, the notion of a Lie algebroid was invented by J.Pradines [28], [29] 

(1967) in connection with the study of differential groupoids, generalizing the 

construction of the Lie algebra of a Lie group. Since every principal bundle Ρ 
détermines a Lie groupoid PP 1 of Ehresmann [6], therefore - in an indirect manner -
détermines a Lie algebroid A{P). The construction of this object with the omission of 
the indirect step of Lie groupoids (with the use of the vector bundle ΓΡ/G) was made 
independently by K.Mackenzie [20] and by the author [15]. In [15] there is also a third 
manner of constructing a Lie algebroid of a principal bundle P(M,G) as an associated 
bundle W1{P)x 1 ((RnxA) with the first-order prolongation of P. 

Since 1977 another source of transitive Lie algebroids (discovered by P.Molino 
[23]) has been known, namely, the theory of transversally complète foliations. On this 

ground R.Almeida and P.Molino discovered in 1985 [3] (see also [24]) non-integrable 

transitive Lie algebroids (i.e. ones which do not corne from principal bundles), 

refuting an assertion of J.Pradines concerning the non-existence of such objects [30]. 

More precisely, they proved that a TC-foliation ? has an integrable Lie algebroid if 

and only if !F is developable. Since the fact that any TC-foliation with nonclosed 

leaves on a simply connected manifold is not developable is obvious, therefore its Lie 

algebroid is not integrable. A more concrète example is the foliation of left cosets of 

a connected and simply connected Lie group by a nonclosed Lie subgroup. In [16] the 
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author gives a direct définition of the Lie algebroid of such a TC-foliation (without 

using Molino's theory) and develops the method of a Lie algebroid on this ground. 

Differential geometry of the last five years has revealed new objects which 

détermine Lie algebroids: Poisson manifolds (A.Coste, P.Dazord, A.Weinstein [5], 1987) 

and some complète closed pseudogroups (A.Silva [32], 1988). To sum up, the method of a 

Lie algebroid in differential geometry has acquired weight. 

2) Can the characteristic classes known on the ground of principal bundles 

[Pontryagin classes, the classes of flat or of partially flat principal bundles] be 

constructed on the level of Lie algebroids ? - was the problem the author posed some 

five years ago. 

The first resuit in this direction concerns the Chern-Weil homomorphism of 

principal bundles. In [15] the author observed that the Chern-Weil homomorphism of 

principal bundles is an invariant of Lie algebroids of thèse bundles in the case of 

connected structure Lie groups [the troubles refer only to the domain of this 

homomorphism]. The full answer to this question is included in work [17] which is based 

on 

(a) the author*s observation that the Chern-Weil homomorphism of a connected 

principal bundle is an invariant of the Lie algebroid of this bundle [this forced the 

initiation of the notion of a représentation of a principal bundle on a vector bundle 

and the obtaining of some related results], 

(b) the construction of an équivalent of this homomorphism for the class of 

regular Lie algebroids over foliated manifolds [containing the class of transitive 

ones] (in [17] the author initiated the theory of connections in nontransitive Lie 

algebroids), 

(c) the discovery of a class of transitive non-integrable Lie algebroids having 

the nontrivial Chern-Weil homomorphism. 

Due to (b) and (c), the technique of characteristic classes can be applied to the 

investigation of the objects différent than principal bundles but possessing Lie 

algebroids, such as TC-foliations, nonclosed Lie subgroups, Poisson manifolds, some 

pseudogroups, or vector bundles over foliated manifolds. 

As to (c), the author calculated the Chern-Weil homomorphism of the Lie algebroid 

A(G\H) of the foliation of left cosets of a Lie group G by a nonclosed Lie subgroup H. 

The superposition 

X ' 

serves as this homomorphism, where h : (Vf) ) >H (G/H) is the Chern-Weil 
_ Ρ I dR ' 

homomorphism of the //-principal bundle P = (G »G/ff). Next, it was noticed that the 
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case of a compact and semisimple Lie group G is a case in which h is not trivial 
A ( G ι H) 

( 2 ) 

(more precisely, ^ * 0 ) . Adding the simple connectedness of G, we obtain a 
non-integrable Lie algebroid. 

Some version of Bott's phenomenon on the ground of regular Lie algebroids is the 
aim of work [18]. There, this Vanishing Theorem is interpreted for TC-fouations, 
especially, for nonclosed Lie subgroups, and used to the proving of the nonexistence of 
Lie subalgebras of some types. 

3) The présent work has 3 parts and concerns the construction of the 

characteristic homomorphisms for flat and for partially flat regular Lie algebroids. 

The first part is devoted to the investigation of some properties of regular Lie 

algebroids over Euclidean spaces, needed in the sequel, such as, for example: 

— Any regular Lie algebroid over the foliated manifold (RpxRq, TRpxO) possesses a 

globally determined flat connection and is trivial in the sensé that it is isomorpic to 

the pullback of an entirely nontransitive Lie algebroid over IRq via the projection 

( R ^ > R^. 

Next, the invariant cross-sections with respect to a représentation of the trivial 

transitive Lie algebroid 71Rpxg and of a regular Lie algebroid over the foliated 

manifold (RxM.nRxE) are studied. The results obtained here are used further, for 

example, in the proofs of the homotopic invariance of the characteristic homomorphisms 

with respect to subalgebroids. Thèse results are elementary but with the use of a 

theorem about some system of partial differential équations with parameters (given here 

together with the proof ) . Some of them are known from works of R.Almeida and P.Molino 

[3] or K.Mackenzie [20] (but with other proofs, more sketchy or less algebraic). 

The second part is devoted to the characteristic homomorphism of a flat regular 

Lie algebroid. This part has 7 chapters. In Chap. 1 the author introduces the theory of 

cohomology with coefficients for arbitrary Lie algebroids, defining three operators c , 

Θ Τ, dT and proving their fundamental properties [given in K.Mackenzie [20] with the 
proof "standard"]. The characteristic homomorphism of a flat regular Lie algebroid 
equipped with some subalgebroid is constructed in Chap. 3. Chaps. 4 and 5 concern its 
properties: the functoriality and the dependence on a subalgebroid. In 5 we introduce 
the notion of a homotopy between Lie subalgebroids (Def. 5.2) and prove the équivalence 
of the characteristic homomorphisms for homotopic Lie subalgebroids. We add that 
[Prop. 5.5.3] two homotopic //-réductions Ρ , £ = 0 , 1 , of a principal bundle P(M,G) 
détermine homotopic subalgebroids, and that the converse thorem is not true unless Ρ 
and G are connected. The homomorphism constructed agrées with a suitable one for a flat 
principal bundle with a given réduction if the flat regular Lie algebroid cornes from' 

such a bundle. According to the above, thèse homomorphisms are équivalent not only for 
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two homotopic réductions but also, more, for two réductions having homotopic Lie 
subalgebroids. In Sec. 6.2 it is pointed out that the so-called foliated bundle 
(Ρ,Ρ',ω) where P' is a réduction of Ρ and ω is a connection in Ρ flat over an 
involutive distribution F gives a flat regular Lie algebroid (Λ(Ρ),Α{Ρ' ),λ|F) over the 
foliated manifold (M,F) and then, the characteristic homomorphism 

àF:Hig;A{P' )F) >ff (M) 
# F 

(having the values in the tangential cohomology algebra H^{M) of (M,F)). The 
"tangential characteristic classes" of (Ρ,Ρ',ω) - the cohomology classes from the image 
of Δ - measure the independence of ω and P' , i.e. they do exactly the same as the 
exotic characteristic classes. 

An interprétation of the homomorphism introduced, on the ground of TC-foliations, 

especially, for noncloscd Lie subcroups, is given in Chap.7. There are obtalned some 

examples on the ground of nonclosed Lie subgroups (in transitive and in non-transitive 

cases) having nontrivial the characteristic homomorphism. 

Part III concerns the characteristic homomorphism of partially flat regular Lie 

algebroids, gêneraiizing this notion from the theory of Kamber-Tondeur [10]. Here, some 

idea of G.Andrzejczak (unpublished) of a change of variables in the Weil algebra 

[offering facilities for the operating on it] is used in the construction of the Weil 

algebra for a bundle of Lie algebras. 
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P A R T I 

L O C A L P R O P E R T I E S O F R E G U L A R L I E A L G E B R O I D S O V E R F O L I A T E D M A N I F O L D S 

1. T R I V I A L R E G U L A R L I E A L G E B R O I D S 

oo 

We assume that in our work ail the manifolds considered, are of the C -class and 
Hausdorff, and that the manifolds M, M' ,... over which we have Lie algebroids are, in 
addition, connected. By Ω°{M) we dénote the ring of C°° functions on a manifold M, by 
λ [M) the Lie algebra of C°° vector fields on M, and by Sec A the n°(M)-module of ail C°° 
global cross-sections of a given vector bundle A (over M). 

We recall [17] that by a regular Lie algebroid over a foliated manifold (M,£) (E 
is a constant dimensional C involutive distribution on M) we mean a System 
A = (Λ, [[ · , · 1, γ ) consisting of (a) a vector bundle A over M for which there is defined 
an (R-Lie algebra structure [·, 1 in the space Sec A of global C°° cross-sections, (b) a 
homomorphism of vector bundles γ: A >TM (called an anchor) such that Ιπιγ-Ε, 

Sec γ-.Sec A is a homomorphism of Lie algebras and the following equality 
'.:Ç,f-T)]l = f'[[Ç,T7])+ (r°Ç)(f ) -T7 , f€n°(M), ξ,-qeSecA, holds. 

If £ = 0, then A is called [20] completely intransitive. It is simply a bundle of 
Lie algebras (Lie algebras A and A , x,yeM, need not be isomorphic, although the 

v I χ I y 
bracket [ξ,η] of C cross-sections of A - defined point by point: [ξ,η] χ= [ξ χ.Ή χ] ~ is 

00 Ν 

C , tooj. 
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One of the most important constructions of the building of a new regular Lie 

algebroid is the inverse-image f*A by a homomorphism of foliated manifolds 

f : (W ,£' ) > (M,£) [17] : 

fAA = E'x A = Uv,w) <=E'xA; f Jv) = le £'ef *A, 
<f*,r> { * ) 

Œ ( X , I f j - Ç o f ) , ( y , I g k ^ o f ) i = ( [ x ( y ] , f j - g

k . i ç η l o f + χ ( / ) . η o f - y ( f J ) - ç o f ) 
j j j k j κ * J 

for f J, g k € Ω°(ΑΓ ), ζ , η e S e C i 4 . The projection onto the first component 

pr, : / Λ ΐ = Ε'χ il >£' 

serves as the anchor. 
A nonstrong homomorphism H:Af >A of regular Lie algebroids (over 

H Λ Κ. 

ίι(Μ',Ε') »(M,£)) [17] can be defined smartly as a superposition A' >f A >A 

of some strong homomorphism H and the canonical one K = pr^. 

Hère we write the basic (easy to prove) properties of the opération of the 

inverse-image: 

a) (gof)AA = Α/Λ), 

b) if i x : { x } c >W is the inclusion, then ix

AA = g^ (g: = Kerv and g is a 

bundle of Lie algebras; Lie algebras g ( and g^ are isomorphic provided that χ and y 

lie on the same leaf of the foliation £ ) . 

Définition 1.1. By a trivial regular Lie algebroid over (M,E) we shall mean each 

algebroid t isomorphic to f A i4 for any completely intransitive Lie algebroid A. 

Example 1.2. Transitive trivial Lie algebroid. Let a trivial Lie algebroid fAA 

(where A is a completely intransitive Lie algebroid A on a manifold N) be transitive 
(this means that it is over (MtTM)) . Then f is a constant mapping, say, f{x)=y. Put 
y:M >{y},xi >y, and let iy:{y) c >N be an inclusion. Then 

fAA*yA{iy

AA) = y A ( â ) = T M x â ( â = 9 , Y ) * 

Clearly, y A ( g ) is a usual trivial transitive Lie algebroid [26], [17]. 

Example 1.3. Consider two manifolds M and N, the projection pr^-.NxN >N and a 

vector bundle of Lie algebras f on W considered as a completely intransitive Lie 

algebroid. Of course, pr : {Ν χ Ν, TM χ 0) >(W,0) is a homomorphism of foliated 

manifolds. We see that the inverse-image pr A ( f ) is equal to {TMx 0) θ pr * ( f ). Each 
2 2 
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cross-section of pr^A{f) is a sum of cross-sections of the form {Xtf-(ropr^) for 
X e Sec(7YÎ χ 0 ) , f€Q°(MxN), <reSecï. Therefore the structure of a Lie algebra in 

Secpr^iï) is determined uniquely by demanding that 

KX.f-Çopr 2), ( 7 , ^ . η ο Ρ Γ 2 ) 3 = ( [X, Y], f-g-Ιξ9 η'ΐ ·ρΓ 2 + Xig) - η ο ρ ^ - Y(f ) ·Ç<>pr2). 

00 

Example 1.4. Each C constant dimensional and completely integrable distribution Ε 
on a manifold Ai is a regular Lie algebroid being, of course, trivial. 

The fundamental rôle in the proof of some structural theorems on a local shape of 
regular Lie algebroids and their properties is played by some theorem concerning global 
solutions of some System of differential équations, see below. 

2 . G L O B A L S M 0 0 T H S O L U T I O N OF S O M E S Y S T E M OF D I F F E R E N T I A L E Q U A T I O N S 

W I T H P A R A M E T E R S 

Dénote the canonical coordinates on (RmxlRn by (χ 1, . . . ,x m,y\ . . . , y n ) . 

Theorem 2.1. Let C°° functions b*, ak^:IRmxlRn >(R, r,k<q, i < m, be given. 

Consider a System of partial differential équations 

dzk k q k r 
— - (χ,y) = - b (x,y) + £ a Ax,y)-z , ^ < q , i<mt (1) 
dx* 1 r=i r i 

satisfying the conditions of local integrability: 

k k 
db db q q 

— L - — î = - Σ a k -b" + £ a" V 
Sx s θχ 1 "=i u i 5 «=i u s 1 

i, s < m, r < q. 
Q k k 
da oa Q q r i r s A k u X k u - = > a -a - > a -a 
dx dx u = 1 u = 1 

Then, for an arbitrarily taken C°° mapping g:lRn >(Rq, there exists exactly one 

globally defined C™ solution z:(Rmx(Rn >IRq such that z(0,y)=g(y), ye!R n. 

Remark. The simple classical theorem asserts the existence and the uniqueness of 

some 0°° solution determined in some neighbourhood of an arbitrarily taken point of the 

15 



form (0,y). 

Proof of Th. 2.1. In this proof we use some elementary facts concerning the theory 

of foliations and the global existence of a solution of some system of ordinary 

differential équations without parameters. 

Put M = JRmx (Rnx (R q with coordinates (x l,y J, z k) and define 1-forms tt> k on M by 

w k = d z k + £ (fc>k(x,y)- £ a k (x,y ) •z r)dx i. 
1 = 1

 1 r=l r l 

00 

Consider the following System of linearly independent C 1-forms on M: 

(ω 1,.. . ,ω ς,dy 1, . . .,dy n). 

1) The distribut ion Ε generated by this system of 1-forms is integrable. 

This results from the following (easy to obtain) équations: 

d(dy j) = 0 , 

do)k = Y ock AUU + T e k A d y J 

u U J J 
k k 

db Q da 
k m k i k m • i ^ r i r \ i in which α = y a -dx , β = Γ ( + 7 ·ζ ]-dx . Ε has the dimension 
U 1 = 1 u i 1 = 1 a y J r=l 3 y J 

*?qual to m. 

2) A C°° mapping z;(RmxIRn >(Rq is a solution of (1) if and only if, for each 

point y o€lR n
f the manifold Ly (z):={(x,y0,z(x,y0)); x e\Rm} is an intégral of E. 

Indeed, Ly (z) is an m-dimensional C°° manifold with the global trivialization 
ο 

Zy :IRm >IRmx IRnx R q, x i > (x, y , ζ (χ, yn ) ). Therefore the tangent space to L v (z) 
O ° ° y ο 

at x: = z y (x) is spanned by the vectors v l : = d ( z y ) ( — Ι ) = —- . + Σ — - ι — — ι · The 
° ax l'x dx^x r a x

l l ^ az r'x 
cqualities 

d y j ( u i ) = 0 and 

k i dz^ k ^ k r 
ω (ν ) = — - (x,y 0) +6 (x,y 0) - Σ a , ^ . y 0

) , z ( * > y o
) = 0 

ax1 1 r=i r i 

demonstrate our assertion. 

3) The space £ lies on the plane OXZ. Besides, for ' 
ι ( χ,y» Z ) 

a ·—r + L c ' » w e have: ω {v)=c - Σ a * z J'a » which implies 
* θχ r dzr i 1 r=i r i 
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that 

c / ( v ) = 0 « c

k = - r i b k - Σ * k " Z r ) - a l . (2) 
ι 1 r=l r l 

As a simple corollary we obtain: if ε* = 0 for ail jt then v = 0. 

4) Let L be the leaf of the distribution £, passing through a point (x o,y o,z o) and 
take the projection pr 1 : L >R m. Since pr x * ( J ] a 1 ·—— + £c r- —— ) = E a * » 3) above 

ax 1 a z r dx* 
gives that pr x * is an isomorphism, therefore pr a is a local diffeomorphism. According 
to the simple connectedness of I R m , to see that prx is a dif f eomorphism, we only need 
notice the surjectivity of this projection. For the purpose, take arbitrarily a point 
x 1 € (Rm and choose λ: = χ 1 - x 0 . Define the embedding 

<p:(Rx(Rq >{Rmx(RnxiRq, (t, z) ι > (x o + t-A,yo,z) 

* i i . * k k /""le ^ - k r \ i and calcula te : φ (dx ) = λ dt, φ ω = ό ζ + £ ( £ > - £ a ·ζ )·λ di, i<<q, where 
~ k ~ k i r = l ~ k k 
b , a :(R >IR are defined by the formulae b (t)=b (x +t-A,y ), 

i r i i i ° ° ~k k ν * k 

c. ̂ (ί)=3 ^ (x o + ί*λ, y o ). The 1-forms φ ω correspond to the System of ordinary 
differential équations of the first order, being linear nonhomogeneous 

U L i 1 r = l i r l 

Consider the initial condition z k(0)=z k. The well-known classical theorem [27] states 
ο 

that there exists exactly one ^lobally determined (on the whole space (R) solution 
ζ= (z 1,...,z q) of this System, satisfying the initial condition. As previously, 
L = {( t, ζ ( t ) ) ; t e IR} is a maximal intégral of the one dimensional distribution 
determined by the System of 1-forms (φ ω ,...,y> ω ς ) . k : ( R >L, t ι >(t,z(t)), is a 
global trivialization of L. Now, we prove that <p[L] is an intégral manifold of the 

distribution £. To this end, we notice that the tangent space to the manifold L at a 

d ~ k 3 ~ k ~ k i 

point (t,z(£)) is spanned by the vector - t t + Z c ' where c = - Γ & (ί)·λ + 
d t χ a z

k » 1 

+ £ (£a k (ί)·λ')·ζ Γ(ί). It is easy to obtain that φ„ (-̂  + £ c k · — ) = ̂ λ' · — + 

+ £ c k - — and c k = - £ ( b k ( x o + t-A,y 0)-J> k (x o + t-A,y o) ·ζ Γ( t )) ·λ'. Therefore, 
k 9z k ' 1 . . . . r r l 

according to step 3) above, the vector £λ' ·—— + £ c k - — — lies in the space 
» dx'1 k 3z k 

c , which is the reason why <p[L] is contained in the maximal intégral of 

£ passing through ( χ
0>3Ό> ζ

0'· T n e n x : = pr t ( X j ,y 0, ζ ( 1 ))= pr a (<p(l, z(l ))) = ' ' 
= prj °φ°κ(1) € pri [L]. 
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5) Take into considération a function g:Rn »IRq and a submanifold 
N= {(0,y,g(y) ) ; y e R n} of M. It is a transverse manifold of the foliation E. Indeed, 

let v ë T NnE . Then ν = Σ b J · — + £ c k '^τ = Σ a* — ^ 7 + Σ ^ — 
< 0 . y , , ( y ) > K O , y t i ( y > > t 3 y J k 3 z

k Τ flx
l k 3 ζ " 

i i k ~k i i for some reals a , b , c , c , therefore a = b = 0 and, by step 3) above, v = 0. 
Dénote by Ly the leaf of the foliation £, passing through (0,y,g(y)), and define 

l = U Ly. 

y€R n 

L is, of course, an embedding submanifold of Ai. We prove that 

pr: = pr^ 2 | I : I >IRmx(Rn 

(being clearly a smooth bijection, see the previous step of the proof) is a 

dif f eomorphism. Take a point (x.y .z J e L and a vector ν € Γ I such that 
0 0 0 {O>yo>zo) 

pr^(v)=0. The equality v-0 is what we need to assert. ν is of the form 
k 3 

v = Yc · . Consider two complète transversals Τ and Τ of E determined by the 

équations x = 0 and x = x o , respectively, and a dif f eomorphism <p:T >Γ such that 
the points (x o,y,z) and <p(xo,y,z) lie on one of the leaves of Ε. φ is, clearly, 
uniquely determined. The vector ν is tangent to Γ . Since φ is of the form 
<p(xo,y,z) = (0,y,<p(y,z) ) for some function <p, therefore w: = <p^{v) is of the form 

k 3 3 
~-' = E c ' " > i--e- i t s coordinates with respect to the vectors are zéro. On the 

k 3zk _ 3y} 

other hand, veT, Lr\Tt Τ = 7 (Ln7 ) fin Γ is equal 

to v> 1 [ J V ] and is a submanifold) and φ{χο , y o , zQ ) = (0, yo , g (y o ) ) ; then 
W € T Jtf. However, Ν is the image of the mapping 0:IRn >R mxIR nxlR q 

( 0 , y o ^ ( y o ) ) 

y ι >(0,y,g(y)), so, ν = Ψ„ (ν) for some w e T !Rn. Therefore 
0 = prAw) = pr {w))=w, which implies w = 0 and, next, ν = 0. 

* Ο 

6) Let pr^:Rmχ lRnx (Rq >(Rq dénote the projection onto the last factor. The 
mapping z;lRmx(Rn >IRq equal to z: = pr ο (pr ) _ 1 is, according to step 2) of our 
proof, the sought-for solution of System of differential équations (1). • 
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3 . A R E G U L A R L I E A L G E B R O I D O V E R ( R p x R q , T R p * 0 ) P O S S E S S E S A F L A T C O N N E C T I O N 

The following theorem generalizes the resuit of K.Mackenzie [20] concerning 
transitive Lie algebroids (see also [3]). 

Theorem 3.1. Every regular Lie algebroid over ((Rp χ R q, TIR p x 0 ) possesses a flat 

connection. 

We recall [17] that by a connection in a regular Lie algebroid A = (Λ, Ι· , · 
over a foliated manifold {M,E) we mean a splitting of the following Atiyah séquence of 

A: 0 >g c >A >£ >0, i.e. a homomorphism of vector bundles λ:£ >A 

such that yoX = id . A connection λ is flat if SecX-.SecE >SecA, Χ ι >λ°Χ, is a 
Ε 

homomorphism of Lie algebras. 

Proof of Theorem 3.1. Consider any regular Lie algebroid B over ((Rpχ IRq, 71Rpx 0) 
and its Atiyah séquence 

0 > g c > B TRpx 0 > 0 . 

IRP x[Rq 

Assume that on lRpxlRq we have the canonical coordinates (y \ . . . , y P , y P + \ . . . ,y P + q) · 
We prove, by induction with respect to n=l,2,...,p, that 

(*) there exist linearly independent cross-sections Y ,...,Y of B such that 
1 η 

(a) γογ = -fL f i < n, 
1 (3) 

(b) IY^ ,y ] = 0 , i, j <n. 

Of course, the cross-sections Y ,...,Y fulfilling (a) and (b) for n = p give rise 
1 n a 

to the connection X:TIRpxO >B defined uniquely ' by demanding that λ<> = V , · 
dyl 1 

i <p. Clearly, λ is flat. 
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(*) is evidently valid for n = l . Let assertion (*) be valid for some number 
me {1, . . . ,p-l}. We prove that it is true for m+l. For the purpose, take linearly 
independent cross-sections X,...,X,,Y,...,Y of β such that X , . . . ,X , form a basis 

l q l m 1 . _ < * 
of g and Y,...,Y fulfil (a) and (b) from (*) for n = m. Let Y be an arbitrary 

1 m d oo cross-section of B for which r°Y = . We shall find C functions 
. m+l 

z\...tzq €Q°(IRpxlRq) such that ΙΥ , Y 3 = 0, i < m, where Y := Y ζ ·Χ + Y. To 
, i m+l , m+l i 

this end, put I[Y,Y3 = Γ b ·Χ , i < m, and [X ,X ] = Y a - X , i, j < q' . Then the 
1 k = i 1 k 1 J k = l ^ k 

équations ŒY ,Y 3 = 0, i < m, are ail équivalent to the following System of 
i m+l 

ι . . i i ι m+l P + q differential équations with parameters y , ...,y : 

a

 k o ' 

oZ , i m+l p t q , . k , i m+l P+q Χ τ-, k , i m+l p+q % r 
— r ( . · .y y , . . . , y F ) = - b ( . . , y y y ) + £ a . ( . . y . . , y y F M ) - z 
dy r = 1 

k < q' , i < m. 

The system like this is always uniquely integrable and is locally integrable if 
and only if the following conditions of local integrability are satisfied: 

dbk dbk q ' q ' 
i s ^ k u ~ k , u - = - Γ a · b + Y a - b 

ο s , . 1 u i s - u s 1 dy <3y u = 1 u = 1 

i, s < m, r < q' . 
da ôa q ' q ' 

r i r s ^ k u ^ k u 
- = Y a ·a - V a -a 

0 s i , . u s r i , u i r s 
dy dy u -1 u =1 

However, thèse conditions hold by the Jacobi identities UiY ,Ϋ3,Y 1 + cycl = 0 
s i 

and EUX ,Y 3,Y 3 + cyci=0. According to Theorem 2.1, the system has a global solution 
1 Γ 7 S ο 

(z , . . . z q ) eQ°((Rpx(Rq,IRq ) fulfilling an arbitrarily taken initial condition. To prove 
our theorem, take the system (Y , . . . , Y , Y ) of vector fields where 

/ 1 m m+l 
« i -

Y = Γ ζ ·Χ +Y. • 
m+l ^ i 

i = 1 

4. A R E G U L A R L I E A L G E B R O I D OVER ( R p x R q , T R p * 0 ) IS T R I V I A L 

Theorem 4.1. Every regular Lie algebroid B over (IRpxlRq,TIRpx 0) is trivial; more 

precisely, it is of the form pr\f) for the projection pr2:(RpxlRq >IRq and some 
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vector bundle f over (Rq of Lie algebras. 

We begin with two lemmas. 

Lemma 4.2. (cf. [3]) Let Y , . . . ,Y be cross-sections of B satisfying conditions 

1 ρ 

(3) (forn = p). Then there exists a basis (X ,...,X , ) of g such that 
v ' 1 q 

D ^ . X 1 = 0, i <p, j<q'. (4) 

Proof. g being over R p x R q is trivial, therefore it possesses a global basis 
(Χ , ...,Χ , ) of cross-sections. We find C functions f , j, r<ç', such that ι q j 

(1°) det[fr[x)]*0 for ail x€=(Rpx(Rq, 
(2 ) the cross-sections X = £ f *X satisfy (4) above. 

j j r 

(2°) is équivalent to the following condition: 

o = i y ,x i = Œy ,7f r-x i = rfr-i[y ,x u + — (fr)-x . 
i j i r j r j i r dyi j r 

q

 k . 
Since r 4 ï , X l = 0, therefore ΟΎ , X 1 € Sec g , thus ŒY,X]) = Γ a ·Χ for some 

i r i r i r . r l k 
k 00 D Q Ο ™~ function a eC ((R x IR ). Therefore (2 ) is further équivalent to 
Γ i 

k r J dy J 

9 k q r k 

i.e. to the conditions (f )+Y f -a = 0, i < p, k,j<q'. Consider the 
a y 1 J r J r i 

following system of partial differential équations (with parameters (y p + 1, . . . ,y p + q)) 

9
 k <*' 
σζ , i p + i p+q-i r - k , \ p + i p+q-> r . , 

— r ( - .,y,...,y y ) = - E a , ( - - . y y , · · · ,y ) - z . k<q', ι <p. 
a y 1 - i r l 

The following équations 
da k <9ak ς' q' 

r i r s « k u ^ k u . , 
= Ta -a - T a -a , i,s<p, r < q 

d y * a y i u = i u i r s u = i u s r i 

are conditions of its local integrability. They are équivalent to the true equality: 
EX , IY >Y 3]1 = 0. Take into considération q' initial conditions of the form: 

r i s 

z k(0,y)=ô* , k=l,...,q', yelR q, 

indexed by j' = l,...,q'. Let f 1 f q be the solution of (5) defined on R pxlR q and 
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satisfying condition (the existence is obtained by Th.2.l). It remains to show 
condition (1°) above. Assume to the contrary that, at some point (xQ,yQ ) € IRPχ IRq, 
let[fr{xQ9y0)] = 0 . This means that the vectors [f ̂ (x o ,y o ) , . . . , f q tx0>y0)h J < <l'* a r e 

linearly dépendent. Changing, if necessary, the numération of the initial conditions, 

we may assume that [/J(x0.y0) fQ' U 0 , y 0 ) 1 = Σ C]· [f1 (x 0,y 0 ) < * 0 · * Ο ) ] . F I X 

Ι J _ 2 J J 

in équations (5) the parameters (y p + ,...,y P + q) by putting yo instead of them. In the 
équations just obtained (without parameters) consider the initial condition: 

z k ( x o ) = Σ ci-f\xotyo), k<q'. 
1 = 2 J 

It is clearly fulfilled by the solution (f ( · , yo ),...,fq (*,yo)) and, simultaneously, 
ι 1 1 

k q \ k 
by the family g - Σ C f ("»yo^» ^ <<7'> which is also a solution of the System of 

J = 2 
differential équations obtained . By the uniqueness of solutions of this System, 

k k k k 
f (' >yo) = g for k < q'. In particular, we have f (0,y o)=g (0), which means that the 

^ / 1 Σ ' 

vector [f i (0,y o),...,f q (0,y o)] is a linear combination of [f (0,y o),...,f^ (0,y o)], 
2<j < g', which is not possible. • 

Lemma 4.3. Let cross-sections (X , . . . , X , , Y , . . . , Y ) of Β satisfy conditions (3) 
1 q 1 u p 

k k and (4) above. Then the structure functions c such that IX ,X 3 = 7 c -X are 
i j i j u i j k 

constant on plaques of the foliation 71RpxO, i.e. on the submanifolds lR pxf*J. 

Proof. Since ΙΥ , [[X ,X 11 + cycl = 0 , we have 
s i j J 

o = ïy-,[x ,x 13 + Œx ,cx ,y ii + ix ,([y ,x 1 1 = iy ,ŒX ,x ïï = ïy T c k -x 1 
s l j i j s J s i s i j s ^ i j k 

= £ c k -ly ,x 3 + -^-(c k )·χ = — (c k )·χ , 
k l J s k ô y

s υ k

 a y

s *J k 

which asserts our lemma. • 

Proof of Theorem 4.1. Assume that the cross-sections (X , . . . ,X , ,Y ,...J ) 
1 q a 1 p 

satisfy conditions (3) and (4). The mapping A:7(RpxO >B given by λ<> = y is a 
ôy 1 1 

flat connection. Take the embedding i:IRq >(RpxlRq, y ι >(0,y), and put 
# 

f = i g-

The System (X ,...,X ,) of cross-sections given by X (y)=X (0,y) serves as a basis of 
1 q i i κ 

f. Consider the projection pr^:\RpxRq >(Rq and an isbmorphism of vector bundles 

<p:pr2 (f) >g, 
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such that (J^a1 ·Χ. (0,y) ) = £ a 1 -X^ (x,y). Next, we shall treat f as a completely 
nontransitive Lie algebroid over (lRq,0). Our aim is to prove that the mapping 

F:pr A(f) = (7TRpxu) θ pr *(f ) >B, (ν,ν) ι >λ(ν) + 

is an isomorphism of regular Lie algebroids. Of course, F is an isomorphism of vector 
bundles. It is sufficient to check that 

φοίζ,νΐ^ίφοξ,φονί (5) 

for ξ, ν € Sec pr^if ) of the form ξ = ( X , f-popr^) and ν = ( Υ , ^ - η ο ρ ι ^ ) for 
X , YeSec(T(R pxO), σ,^7€Secf and f, g € C°°((Rpx IRq). . From the définition (see also 
Ex.1.3) we have 

IÇ,v]l = | [ (X, f · σ ο ρ Γ ), (Y,g-Tîo p r ) I = ( [ X , Y] , f ·£· Ισ , 7)]]opr + X ( G ) - 7 ) O P R - Y(f)-<r<>pr ) . 

Theref ore 

F O I Ç , P ] ) = A O [ X , Y ] + < P O ( f ^ - Ι σ , Η Ι Ι Ο Ρ Γ + X ( g ) - 7 ) o p r - Y(f ) -cropr 2 ) 

= Ε Λ Ο Χ , Λ Ο Υ ] ] + f -G -<PO (0>,T)]|opr ) + X ( G ) · φ ο ( η ο ρ Γ ^ ) - Y(f ) · Ρ Ο (<ropr ) . 

On the other hand, 

Œ F O Ç . F O V I = ŒFO ( X , f · Σ Ο Ρ Γ 2 ) , F O (Y,g-T?op r ) I 

= Œ A O X + f-^° ( σ ο ρ Γ ^ ) , Λ ° Υ + g-<p° (v'fopr^) Ι · 

= Ε Λ Ο Χ , Λ Ο Υ ΐ + I F ·<ρο ( ^ o p r 2 ) , Λ Ο Υ ΐ + | [ A O X , G - < P O (ηορΓ )3 + ŒF -<ρ<> (σ<>ΡΓ ) ,g'<p° ( η β ρ Γ 2 ) J 

= Ι Ε Λ Ο Χ , Λ Ο Υ ΐ + F - G - Ιψο (σορΓ 2 ) , <Ρ<> ( η ο ρ Γ )3 + Ι λ < > Χ , £ · < Ρ Ο ( η ο ρ Γ )3 - Ι Λ Ο Υ , / " · ρ © ( σ ο ρ ^ ) ! . 

In order to gèt (5), it will be necessary to observe that 

(a) φο ( Ισ ,Tj jopr ) = Ιφ° (<ropr ).,φ© (η©ρΓ ) Ι , 

(b) X(g) ·<ΡΟ (η©ρι- ) = Œ A O X , G - < ^ O ( η ο ρ Γ )3. 
Το see (a), write σ and η in the form r = j V - X , η ^ τ ^ - Χ , σ*, T?J<=n°(lRq), 

and calculate 
( Ι σ , η Ι ο ρ Γ ) =<ΡΟ([[ (τ 1·Χ Τ η ^ Χ ] °pr ) = <?<>(£ σ* °Ρ Γ, " V °Ρ*\ ' Ι*, » X J ° P r ) 

2 i J 2 i » J 2 I J 2 
= φ ο ( ^ σ

1 ο ρ Γ · η 3 ο ρ Γ · ( a K . - X )©pr- ) = £ σ 1 © Ρ Γ V°pr -a* ·Χ 
2 2 1 J K 2 j ^ j 2 2 1 J Κ 

= Σ σ ! ο Ρ Γ - T i J o p r -IX ,Χ ] ^ Œ E ^ . p r - X . , Î T i J o p r ·Χ Ι 

= 1<ρ<> ( σ ° ρ Γ 2 ) ,φ<> ( η ° ρ Γ 2 ) 1 . 

Το see (b), write additionally X= Σ a"- — , a k e Ω° ( R p + q ) . Then 
w fl k = 1 d ^ 

Ι Λ Ο Χ , ^ - φ ο ί η ο ρ Γ )ï = IUo(£a · — ) , g - « p o ( ( l T j J - X )°pr )1 
2 a y

k
 J 2 

23 



k 2 J k . J Qy* * } 

= Σ a k --?-(g)-T, Jopr -X = X (g)V°pr -X 
k. J 3 y k 2 J J 

= x(g)-¥>°((J>J-x.)°pr ) =X (g) ·*>»(η°ρΓ ) . • 
j 2 2 

Corollary 4.4. Any transitive Lie algebroid over (Rn is isomorphic to the trivial 

algebroid 7TR nxg for some Lie algebra g. • 

Because of the trivial fact that each point of a given n-dimensional manifold M 
possesses a neighbourhood U dif f eomorphic to R n ({Rn * >U c—-—>M)f any transitive Lie 
algebroid A over M is locally isomorphic to the trivial algebroid 71R nxg ( = φΑ{ΐA[A) )) 

for some Lie algebra g. 

5 . R E P R E S E N T A T I O N S OF T H E T R I V I A L L I E A L G E B R O I D T R N * < | _ O N A V E C T O R B U N D L E 

With a real vector bundle f over M there is associated a transitive Lie algebroid 
A{{) (over M) [17; Sec. 1.2] whose fibre over xzM consists of ail î-vectors at x, i.e. 
linear homomorphisms i:Secf >f for which there exists a vector u e T M such that 

ι χ x 

1 (f · v) = f (χ) · 1 {v) + u(f ) · ι>(χ), feQ°{M) and yeSecf. The vector u is determined by 
1 uniquely and serves as its anchor. A local trivialization of A{f) gives the mapping 
îjjiTU χ End{V) »>4(f) (̂  is the typical fibre of f) defined for a given local 
trivialization \p:UxV >f of f by the formula: 

ι u J 

\p{vta){v) =ψ (v{v ) + a{v Αχ))) 
\ χ Φ Φ 

where, for veSecf, vt:U >(R is a function χ ι >ψ 1{vv) [l7;Lemma 5.4.41. 
Φ ι χ x L J 

A cross-section ξ € Sec A{ï) détermines a covariant differential operator 

ZçiSec (f) »Sec(f) by the formula ^ (ι;) (χ) = ξχ {v ). The correspondence Çi > £ ç 

is 1-1. The bracket is defined classically (from the point of view of 

differential operators). The Lie algebra bundle adjoint of A{i) can be identified with 

the vector bundle £nd(f). Lem.5.4.4 from [17] mentioned above asserts also that ψ is an 
isomorphism of Lie algebroids. In particular, taking é-id „ , we assert that the 

κηχν 
Lie algebroid A{iR xV) of the trivial vector bundle f = (R nxK is isomorphic to the 
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trivial algebroid TRnx EndiV) via the canonical isomorphism 

£:mnxEnd{V) >A(RnxV) 

defined by the formula: !£. ( v, a ) (v) = v{v) + a ). Dénote by J£ the differential 

I χ x ( X t <r ) 

operator determined by the cross- section £o(X , c r ) of >4(IR x K ) , where XeI((R ) and 

σ «ξ Q°(IRn,£nd(f) ). Clearly, 
£ : Ω ° ( ( ΐ Λ ΐ / ) >n° ( !R n,lO, y ι »Χ ( ι ; ) + σ ( ι > ) . (6) 

( X , cr ) 

By a représentation of a regular Lie algebroid ^ on f (both over M) we mean a 

strong homomorphism T:A >/4(f) cf Lie algebroids. Γ induces a linear homomorphism 

7 + : g >£nd(f) of vector bundles of Lie algebras [17]. 

Let T:A >Λ(Π be any représentation of a regular Lie algebroid Λ on f. A 

cross-section veSecif) is called T-invariant [17] if T{v)[v)=0 for ail vzA. The 

space of ail Γ-invariant cross-sections is denoted by (Sec(f))^ 0 (or, briefly, by 

(Sec(f)) / e). 

Theorem 5.1. (cf. [20]) Let T: TIR x g >Λ(Π be any représentation of the 

trivial Lie algebroid T IR nxg on f. Then, for each f + -invariant vector vef , there 

_ \ X \ X 

exists exactly one T-invariant cross-section veSeciï) (determined globally /) such 

that νχ = v. . 

Proof. A vector bundle f over (Rn is trivial, therefore we may assume that 

f = RnxV. f détermines a homomorphism 

T:TRnxQ >7(Rnx EndiV) 

such that £oT = f. A mapping v:Rn > V (understood as a cross-section of IRnx K) is 

Γ-invariant if and only if 

£ ( i/)=0 for X € Ï ( [ R n ) , veQ°{Rn;Q). 
Τ ο ( Χ , σ ) 

T can be written in the form 

Γο(Χ,σ) =Το(Χ,0) + Γ(0,σ) = (Χ,ω(Χ)) + (0,Γ*οσ) = (Χ,ω(Χ) + Γ*ο σ) 

for a 1-form ω e Ω 1 {Rn\End(V) ). ω and T + satisfy the following (easy to verify), 

identities (cf. [20; p.102]): 
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-άωίΧ,Υ) = (ω(Χ),ω(7)](7) 
Χ ( Γ + Ο Σ ) - τ + Ο ( Χ ( Σ ) ) + [ω ( Χ ) , Γ + Ο(τ] = 0 . (8) 

ν is Γ-invariant if and only if 

(a) £ (v) = 0, 
T o ( X , 0 ) 

(b) JE f n (v)=0. 

(a) is équivalent to the condition of the invariance of ν with respect to the "reduced 

représentation" 

T\Rn c >IlRnxEnd(l/) —^ - > i 4(IR nxK), 

whereas (b) says that, for each x€lRn, the vector vv is f + -invariant. Condition (a) 
x I χ 

yields that 

0 = £ (ν) = <β {v)=X{v) + <£ ( y ) , 
Τ ο ( Χ , Ο ) ( Χ , ω ( Χ ) ω ( Χ ) 

i.e. that the following differential équation 

X(v) = - £ ^ v ^ ( y ) , (9) 
ω( X ) 

called the differential équation of an invariant cross-section, is satisfied. 

(7) is the condition of the local integrabi1ity of this équation. Indeed, taking a 

basis w19...9Wq of V and writing ^ = E z S ' W s > we can equivalently exchange équation (9) 

for the following system of partial differential équations of the first order: 

d z k £ r , k r , Λ  = - L a ζ , κ η , K < q , (10) 

r k θ ? r k where a ' are functions such that ω( )= £ a ' -u k , u p k being the following 
ax l r=i 1 

basis of £nd(K) (=K u

r . k = v r ® v k · H e r e a r e t h e conditions of the local 
integrability of (10): 

r , k r , k aa aa Q σ i , s Λ u , k r , u u , k r , u . 
+—— = Σ a -a - £ a -a , i,s<n, rtk<q. 

ax s ax l "=i 1 «=i 1 

They are équivalent to the equalities: 

0 = ΤοΜ—,0)Λ—,θη ( = Ϊ Γ Ο ( ^ - , θ ) , Γ Ο ( - ^ - , θ ) ] | ) 
ax l ax s ax l ax s 

which say the same as (7) above. 

According to Th.2.1, the initial conditions 
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ζί(0)=ζ1 z q(0) = ζ\ 
Ο Ο 

(uniquely) détermine a solution (z 1,...,z q) of (10) defined on whole IRn. It remains to 
solve the following problem: if the vector y(0) = J]z i-w 1 is 

ο 
(r*Q:ô » End (V))-invariant, then, for each χ e IRn, the vector v{x) = J ] Z (x)'^j is 
7 + -invariant. The invariance of i>(x) means that £ . ( i> ) = 0 for ail h e o . ι χ r* ( h ) * ^ ι χ 

Therefore it is sufficient to show that the function ϋ . (ν) is identically zéro for 
ail where h dénotes the constant function IR > 3 always equalling h. Put 
β = £ iv) and assume that β(0)=0. Ail we need to prove is Χ(β)=0 for X€l(IR n). 
Using (8) and (9), we have 

= 2 + + (v)+£ + (X(y)) 
Τ + ο χ ( fi) - [ ω Χ , Τ + o h ] T + o f i 

= 2 + + (v) + JE . (X(i>)) 
- ω ( X ) o( T + 0 7 3 ) + ( T + 0 7 3 ) ο ω ( χ ) r + o h 

= 2 , , «. (ν) + £ + («2 (y) + X(v)) 

- ω ( Χ ) o( τ + o h ) T + o 7 j ω ( χ ) 

- ω ( Χ ) 

The linear first order differential équation just obtained Χ ( β ) = £ (β) is, 
- ω ( X ) 

clearly, fulfilled by the function identically equal to zéro. On account of the 
uniqueness of solutions, we have the conclusion: β = 0, which ends the proof. • 

As a corollary we obtain 

5.2. For an arbitrary représentât ion T:A >Λ(Π of a transitive Lie algebroid A 

on f, each invariant cross-section of f [defined local ly on a connected subset} is 

uniquely determined by the value at one point. Particularly, if such a cross-section is 

zéro at one point, then it is zéro globally. m 

Remark 5.3. The above theorem can also be checked in a différent way, somewhat 

exceeding the clean theory of Lie algebroids, by proving firstly the following 

auxiliary theorem 5.3.1 and, secondly, by using Propositions 5.5.2-3 from [20]. Thèse 

propositions assert that, in the case when a homomorphism Τ of Lie algebroids is the 
differential of a μ-homomorphism F:P >L(f) of principal bundles (i.e. 
μ-.G )GL{V) is a homomorphism of Lie groups, L(f) ïs the GL(K)-principal bundle of 

repers V >f and F(z - a) = F(z) - u{a)), P is assumed to be connected, a 

I π ζ J 
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cross-section v of f is Γ-invariant if and only if there exists a μ-invariant vector 
weV such that v = F(z)(w) for ail z«=P. (Since F(z) is an isomorphism, we have 

Π Z 
y = 0 provided v is zéro at at least one point). 

Theorem 5.3.1. A homomorphism T: 7TRnx g > 7TRnx End(V) of Lie algebroids is the 

differential of some homomorphism F:(Rnx G »IRnx GL{V) of principal bundles, where 

G is the connected and simply connected Lie group having g as its Lie algebra. 

To prove this, we can give some proposition (auxiliary in this place, but 
essential in itself). 

Proposition 5.3.2. If A' c A(P) is a transitive Lie subalgebroid of the Lie 

algebroid A{P) of a principal bundle Ρ ( = (Ρ,π,M,G, ·)), then there exists a réduction 

P' of Ρ having A' as its Lie algebroid. 

Proof. Via the canonical projection π :TP >A{P) [15], we pullback A' to some 
C°° right-invariant involutive distribution Δ on TP [ù_:=(nA ) 1[A/ ], z e P ] . Let P' 

Z I Z I 7Γ ζ 

be a connected maximal intégral manifold of Δ. Analogously to part (a) of the proof of 
Th. 1.1 in [12], we assert that η\Ρ':P' ->N is a coregular surjection. Take the 
subgroup G'={aeG;R [Ρ'] cP'}, Ra being the right translation by a. By the 
equalities 

G ' = j a € G ; P [ P ' ]cP' \ = [a e G; z · a € P1 \= h~\p' ], 
ν ο ο ) Ν ο J ο ο 

where A :G >P, ai >zn-a, (χηζΜ and ζ Λ € Ρ ' are arbitrarily taken éléments), 
v/e assert that G 7 is an immersed submanifold of G. According to the fact that P' is a 
weak submanifold of P, we easily notice that G' is an immersed Lie subgroup of G with a 
countable base, and that the induced action P'xG' > P' is C°°. Conséquent ly, 
(Ρ' ,π|Ρ 7 ,A/,G' , · ) is a réduction of P to G' whose Lie algebroid equals A' . • 

Proof of Th. 5.3.1. Let A = (7TRnx g) x (7TRnx EndiV) ) be the Whitney product of 
the Lie algebroids 7IR nxg and mnxEnd{V) [il] (see also [20; p.108]). A is the Lie 
algebroid of the Whitney product (IRnx G) θ (lRnx GL{V) ) ( = (Rnx (GxGL(V) )) of 
principal bundles (IRnx G) and (IRnx GL{V)). The subbundle 
c = {(u, T(v) ) € A; v e TRnx g } forms, of course, a Lie subalgebroid and, by 
Prop.5.5.2, détermines a réduction Q c (Rnx (GxGL(V) ).. There is no problem in seeing 4 

that the superposition 
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κ: Q < >(Rnx ÎGxGL(V) ) >IRnxG 

is a local diffeomorphism onto a simply connected manifold (R nxG; in conséquence, κ is 
a diffeomorphism. The mapping 

/ r : [ R n

x G J L _ > q c > | R n

x [GxGLiV)) -EL>RnxGL(V) 

is the required homomorphism of principal bundles. • 

6 . I N V A R I A N T C R O S S - S E C T I O N S OVER R * M 

Using the previous theorems, we prove that the space of global cross-sections of a 
vector bundle f over R x W , invariant with respect to the représentation of a regular 
Lie algebroid B over (IRx M, TRχ £ ) , is canonically isomorphic to the space of 
cross-sections of the vector bundle f , invariant with respect to the suitable 

I (t Q)XM 

"restricted" représentation. 

First, we recall the expression: "restricting" - and more precisely, the 

"inverse-image" - of a représentation [17]. Let A be any regular Lie algebroid over 

(A/,£) and f any vector bundle over M, whereas f\W , £') >(#,£) - any morphism of 

foliated manifolds. By the inverse-image of a représentation T:A >A{i) over f we 
* Λ * 

mean the représentation f T:f {A) >A{f f) defined as the superposition 

f * 7 : f A U ) - ^ - ^ f A U ( 0 ) ~^->A(f*f) 

where (a) fAT is a homomorphism of Lie algebroids defined by: fAT(u,v) = [u,T{v)), 

u é £ ' , v<=A (f^(a) =γ{ν)), 

(b) cf is the canonical strong isomorphism of Lie algebroids such that, for 
iu, 1 ) e f A ( i4(f ) ) , w: = c f(u,i) has u as its anchor and satisfies the relation: 

I x 1 

w{vof) = l{v) for veSecif). Obviously, cf appears as the canonical isomorphism of 
vector bundles f (End ( f ) ) = End ( f f ) , and, furthermore, we can write (f T ) + = 7 * 

ι χ ι r( x ) 
for x eM'. 

Λ Λ Λ * * * 
Identifying g (f A) with (f^g) A and g (f f ) . with (f°g) f we can write 

g (f η = if°g) t . 

In [17; 2.4.4] the following property of the inverse-image of a représentation is 
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given: 

— the linear mapping f*:Sec{ï) >Sec(f*f), v\ > i > o f , can be restricted to the 

space of cross-sections invariant under T and f T, respectively: 

< e : ( S e c ( f ) ) / 0 ( T ) — * ( S e c ( f * f ) ) f e ( r . T ) . 

We shall use this notion to the représentation Γ of a regular Lie algebroid B over 
(Rx Af,7TRx£) and the mapping f :M >IRx Ai, xi >(t o,x). In this situation, the 
mapping (f ) 0 turns out to be an isomorphism, however, its monomorphy has a more 

t ο 1 

gênerai nature: 

Lemma 6.1. If the saturâting of f[M'] equals M, then f 0 is a monomorphism. [The 

saturâting is taken with respect to the foliation of M determined by £]. 

Proof. Assume that f o(v)=0 for an invariant cross-section v. This means that, 

for an arbitrary point x e W , we have y(f(x))=0. Let L be the leaf of the foliation 

of Ν passing through f(x), and let i:L c >M be the inclusion. According to Th. 2.4.4 
from [17] mentioned above, we have that y|L(=i i>) is invariant with respect to the 

* Λ * Λ ι "restricted" représentation i T: i A >A{i f). Since i A is transitive, y | L ξ 0 on 
account of 5.2 above. Our assumption ccncerning the saturation of f[M'] implies now the 

equality v = 0, u 

Here is the aim of this section: 

Theorem 6.2. Let B be any regular Lie algebroid over (IRxM,nRx £) and 
T:B >A(f) any représentation of B on a vector bundle f (over IRxW). Take an 
arbitrary point tQe\R and the mapping f :M >IRxA7, xi > U o , x ) . Then {f ) 0 is 

* ο * ο ' 
an isomorphism of vector spaces. 

Proof. On account of Lemma 6.1, it is sufficient to show the surjectivity of 
# # 

(f ) 0 . Let <reSec{f f) be an invariant cross-section. Then, for each xeMt the t n 1° f ο ο 
vector (r(x)ef is invariant with respect to the représentation 

K t 0 , x ) 

Γ : g >£nd(f ). Consider the embedding ^ x
: l R >(RxM, 

ο ' ο 1 ο 1 

t\ >(t,x). Since Imif ) = IR x {x} is contained in some leaf of TIRx£, therefore 
Λ · * K 

fx (B) is a transitive and, by Cor.4.4, trivial Lie algebroid. Th.5.1 yields that the 
vector (r(x) can be uniquely extended to some C°° cross-section σ χ of the vector bundle 
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fx f, invariant with respect to the représentation ίχ Τ:ίχ (£) > A{f χ f) (σ(χ) is 
invariant under (f 7) because (f 7) = 7 ). The family {cr ; x € M > détermines 

* \ x * ι χ ι r( x) x 

a global cross-section σ :RxW »f by the formula: σ ( ί , χ) = σ χ ( ί ). It is évident 
* ι 

that f (cr ) = ( T . To end the proof, ail we need is to show 
t ο 

(a) the smoothness of σ 1, 
(5) the T-invariance of σ 1. 
First, we check (a). For the purpose, take arbitrarily a point xo^M and a simple 

distinguished open neighbourhood U c M of x o [the domain of some distinguished chart of 
the foliation ? having Ε as its tangent bundle]. The foliation <3t

v has a global 
connected transversal manifold, say N9 and its leaves are diffeomorphic to a Euclidean 
^pace. Then N':={tQ}xN is a transversal manifold of the distribution TIRxE, see 
Figure 1 below. 

Figure 1. 

The cross-section 
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is C œ and invariant with respect to the représentation j Γ, 
c_ >μ' : = RXU cRxM being the inclusion, moreover, σ / : = ( Γ 1 | Μ / is some 

extension of <ro. 
Let B': = B\M'. B' is a regular Lie algebroid over (IRxi/,71Rx ( £ ) ) . ' Leaves of 

the foliation having TRxiE^) as its tangent bundle are of the form RxL where L is 
a leaf of 3^. They are diffeomorphic to a Euclidean space and proper; N' is a global 
transversal manifold of TRx(E^) which cuts each leaf at exactly one point. 

It is obvious that, without loss of generality, we may assume that 

(1°) M' = R px(R q, 
(2°) £' is over (lRpx (Rq, 7TRpx 0 ) . 

( In the context considered above, ρ is equal to the dimension of the foliation TIRxE). 
By the proof of Th.3.1, we assert the existence of global cross-sections 

Y ,...,V eSeciB') such that γοΥ = and [Y , Y ] = 0, i, j < p. Moreover, in the 
1 p 1 a y

l 1 j 

sequel of the proof of our theorem, we can assume that //'=0xlRq, f = ((RpxlRq) χ V and 
A(f ) = T((Rpx(Rq) χ End(V). In our context, a C°° cross-section σ :0xlR q >f c , 

° Ι Ο Χ Γ 

such that cro(0yy) is invariant with respect to the représentation 

7* :q >£nd(l/), is given, and we know that there exists a cross-section 

K O , y ) 3 l ( 0 , y ) 
σ':(Ηρχ[Ης >f (whose smoothness we are proving) extending σ ο and such that σ' \Rpx{y°} 

is, for each y°elRq, of the class C œ and invariant with respect to the représentation 

Τ η Λ of the transitive Lie algebroid B' D Λ on f D Λ f the cutting 
... |(Rpx{y°> is understood as the inverse-image by the suitable inclusion). 

Let T°Y = ( _ f L > c

l ) for some cl:(Rpx(Rq >£nd(lf), i < p. The fact that Γ is a 
1 3y l 

représentation means, particularly, that 

0= 7ΈΥ ,Y 3= ITY ,ΓΥ 1= Œ ( — , c * ) , (—,c j)3 

se V 1 J
 ^ *y} 

= ( 0 , - 4 - — 4 + [c ,c.l), 
dy1 ay J 1 J 

i.e. that 

ac ac 
[ c . , c ] = — — 7 , i,j<p. (11) 

1 j a y

j ay1 

n k ρ q Let w , . . . ,w be a basis of V; write c (x)(w ) = 7 c (x)-w , χ 6IR xR . It 
l n i s s i k 

follows immediately that (11) is équivalent to the-following conditions: . 
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k k 
de de 

r i r s £ u k (?, u k . . r ι ο ^ 
= Yc -c - Yc -c , i,s<p, k, r< n. C12 ) 

5 y

s

 d y * u = l r l u s u = l r s u l 

The invariance of a cross-section xeSecif) ( = Ω° ((Rpx!Rq, V) ) with respect to the 
représentation Γ:Β' >7(IRpxlRq) xEnd{V) means that £ (τ) = 0 for ail XeSectB'), 
in particular, that ^ T o y (τ)=0, i < p. According to (6) above, the last condition 
says that 

+ c (τ) =0, ι < p, 
ay1 1 

or, equivalently, 

ax k (l k r f Λ 

ay1
 r = i r i 

System (13) of differential équations is of the first order with the parameters 
( y p + 1 , . . . ,yP+q). It is easy to notice that (12) forms conditions of the local 
integrability of (13). From Th.2.1 it follows that there exists exactly one (globally 
defined) 0°° cross-section a*:(RpxRq >f being a solution of (13) and satisfying the 
given initial condition cr(0,y ) = σ ο (0 ,y), ye(Rq. Of course, σ = σ', which confirms the 
smoothness of σ' . 

(b) follows now trivially. • 
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P A R T II 

C H A R A C T E R I S T I C C L A S S E S OF F L A T R E G U L A R L I E A L G E B R O I D S 

1 . C O H O M O L O G Y W I T H C O E F F I C I E N T S 

Let A and f be a Lie algebroid and a vector bundle, both over the same manifold, 
say M. Each élément of 

Ω (M;f) = qeV(A/;f), 
A A 

where Qq {M; f ) = Sec (Λ ςΛ ® f ) , will be called a (C°°) form on the Lie algebroid A, with 
A 

values in f; while, for the trivial vector bundle f = MxlR, briefly: a (C ) form on 

the Lie algebroid A. A O-form on A is simply a cross-section of f. In the case A = TM, 

the space of forms with values in f (analogously, of the space of reai forms) will be 
denoted traditionally by Ω(Μ;Π (Ω(Α/), respectively) . For an involutive C°° constant 
dimensional distribution Ε on M, Ω^(Μ;f) consists of the so-called tangent ial 

differential forms on {M,E) [17], [25]. 
Ω (M;f) is a graded module over Ω°{M) and a module over the algebra Ω {M) 
A A 

(: = Ω (W;WxlR)) of forms on A. The structure of the Ω (M)-module in Ω (M;f) is 
K A A A 
conventionally given under the skew-product 0 Λ Φ of forms, ψ e Ω (A/), ψ € Ω (M;f), 

A A 
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defined (for the degrees ρ and q, respectively) by 

^ S l * p+q ^ S < r ( p ) \ τ ( ρ + 1 ) ' ^ < r ( p + q ) 
<r ( 1 ) < . . . < σ (ρ ) 

<r (p + 1 ) < . . . « r (p+q ) 

ξ eSeCi4. 
1 k 

Let f , . . . , f , f be vector bundles over M. An arbitrary k-linear homomorphism of 
1 k 

vector bundles <p:f x...xf >f détermines the mapping 
» :Ω (Wjf 1) χ.,.χΩ (M;fk) >Ω (M;f) 

defined by the standard formula 

*„(*....,*)(€,....€ )= *. , ^ η ^ Ι Μ ξ ,...) *(...,{ )) (2) 
* 1 k l m q ! * . . . ' q ! 1 σ ( 1 ) k σ (m) 

1 k <r 

in which ιη = Σ(3ϊ> q^ = the degree of g Ω^ (Ai; f1 ). 

Définition 1.1. For a given représentation Γ:Λ >A[f) of a Lie algebroid A on a 
vector bundle f, we define three operators 

L , Θ Τ , ά Τ : Ω (M;f) > Ω (M;f), ÇsSecd, 

called the substitution operator, the Lie derivative (with respect to ξ ) , and the 
exierior derivative, respectively, by the formulae 

( i ° ) (t *)(?.....ς ) = ^ ( ς , ς ι , . . . , ς ) , 

ξ 1 q - l 1 q - 1 

ξ ι q ι q ι J q 

(3°) (d T*)(Ç ,.,.,ξ )= Σ (-1)J£ c (*(Ç )) + 
ο q j = 0 T o Ç j ο q 

.+ ί ι-ΐ)ι**ηΐξ.ξΧξ t J ζ ) 
i<J q 

where Ψ<=Ω ς(Μ;Π and ξ eSecA. 
A i 

If r ( : = î):i1 >A{MxR) is the trivial représentation, i.e. the one for which 

£ (f ) = (?<>£) (f) for f^Q°(M) and £ «= Sec Λ iunder the canonical identification 
Λ(Μ χ (R) = ΓΜ χ End(IR) this means that T(v) = (y{ν), 0) ), then the operators of the Lie 

A A 
derivative and the exterior derivative, denoted by and d , are given by 

(4°) (θΛ/ο(ς,...,ς ) = (r«ç) ξ ))- Σ ̂ (ί€, ις,ςι ς ), 
€ 1 q 1 q j = 1 1 j q 
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(5°) ΐάΛψ)ΐξ ς )= Σ (-D J(y»ç,)(fA(ç ))+ 

+ Σ (-i) l +V(irç,,çJ.ç ί € > . 
k j ° q 

Remark 1.2. Définitions (1°), (4°) and (5°) were first given by L.Maxim-Raileanu 
in 1976 [22]. Formulae (1°)*(3°) were obtained by the author [13] in some natural 
manner for Lie algebroids of Pradines-type groupoids. Independently, they were given 
(as axioms) by K.Mackenzie [20]. 

τ τ 

The fundamental properties of the operators t , Θ , and d are given underneath. 
We first recall that a single représentation 7 détermines a number of new ones, for 

k k r τ 

example, Hom (7) of A on the space of k-linear homomorphisms Hom (f;IR) [17; 2.2.2]. 
This représentation can be generalized as follows: 

1 k 1 k 

Let 7 ,...J ,7 dénote fixed représentations of A on vector bundles f , . . . , f ,f, 

respectively. They define a représentation HonfiT1, . . . , 7 k; 7) (briefly, Hom) of A on 
k l k 

Hom (f x...xf ; f ) as the one for which 
1 k 1 i 

for any k-linear homomorphism <p:f x...xf >f and for ν €Sec(f ), ξ € Sec il. 

Theorem 1.3. (cf. [20]) (i) c =0 T°t -c <>qt 

v J ΐ ξ ι η ΐ £ η η ξ 

(ii) θ7" = θ Τ ο θ Τ - θ Τ ο θ Τ , 

(iii) = t ç o d T + d T o t ç , 

(iv) d T o d T = 0 , 

(ν) d ο θ ^ = O^od . 

1 k 

For arbitrarily taken vector bundles f , . . . , f ,f over M and a k-linear 
nomomorphism φ: f1 x.. .x fk >f and forms Ψ €fi q j(M;f j), we have 

j Λ 

( v i ) ^ ( ^ ( ^ * k ) ) = E ( - i ) q i + ' " q j - 1 ^ ( * 1 t ç * j , . . . , * k ) . 

1 k 1 k 

Let now Γ ,...,7 ,7 dénote fixed représentations of A on f , . . . , f ,f, 

respectively, and assume that φ is Hom-invariant. 7hen 
(vii) θ Γ ( ^ ( Φ ....,*))= Σ V J * θ ^ * * ) , 

S 1 k j = 1 
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(viii) άτ{ψΛ<ϋΛ Φ ) ) = I (-l)qi + "- + qJ - i » > „ ( * , d T Φ ). 

J n particular, (taking φ = · ; {M x IR) x f > f, the multiplication of vectors by 

reals, being Homir;T)-invariant) , we havet for ipeQq(M) and VeQ ( Ai ; f ) , the following 
' A A . 

formulae: 

(vi' ) ^ ( ^ Λ Φ ) = Ι ^ Λ Φ + (-l ) Q ^A t ^ Y , 

(vii'J Θ ^ ( 0 Λ * ) = Θ ^ Λ Φ + 0 Λ θ ^ Φ β 

(viii') d T ( ^ A ^ ) = ^ 0 Λ Ψ + (-l)>Ad T*. 

Remark 1.4. Thèse properties were proved by the author [13] for Lie algebroids of 
Pradines-type groupoids (not ail Lie algebroids being taken into account, of course). 

In ail generality, properties (ii)-s-(iv) can be found in K.Mackenzie [20, p.200] with 

the proof "Standard". Now, we give a full proof of this important theorem. 

1.5. Proof of Theorem 1.3. For arbitrary IR-vector spaces 9 and g, by Ω ς(9;δ) we 
dénote hère the IR-vector space of q-linear (over IR) skew-symmetric mappings 

3 x. . .x 9 >g. 

q t i mes 

Take a séquence 9, g,... ,g , g of vector spaces and a k-linear mapping 

•:g x...xg >g. By the formula analogous to (2), we define the skew-symmetric 

1 k 

product Λ . . . Λ € Ω Ο ; g) of mappings Φ € Ω ς ι ( 9 ; 3 ) 
Φ Λ . , . Λ Φ (ξ ...,ξ )= 1

 m Zsgn<r-9 (ζ ̂ . . . . ) - . . . - Φ (...,ζ )). 
1 k l m q ! * . . . · σ *. 1 < r ( l ) k <τ (m) 

1 k σ 

Let 6:3 χ.. .x 9 >9 be a fixed /n-linear mapping, m>0. For an arbitrary vector v v 
m t i m e s 

space g and φ € Ω ς ( 9 ; 3 ) , q > l , we define the q+772-l-linear mapping 6·Φ:9χ...χ9- »g 
by the formula 

1 q + m - l 1 m m+1 q + m - 1 

and next, 6 * Φ e Q q + M " 1 ( S ; g) as its "skewing" 

1 q + m - 1 ο * ( 1 ) < r ( q + m - l ) 
Μ σ ( 1 ) < . . . « τ (m) 

<r (m+1 Χ . . . « r ( q + m - 1 ) 

Of course, for m = 0 and 6 = Ç e 9 , ξ*(·) is the substitution operator c^. By 
arduous, but classical, combinatorial calculations we prove the following lemma (cf. 
R.Sikorski [31]). 
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Lemma 1.5.1. (1) Ifm>\, then 6* (6*Ψ) = (6*6) *Ψ. 

(2) If m>0, then, for ^ e n , J ( 3 ; δ ) , 

6 * ( * λ . . . Λ * ) = Σ (-l) qi +--- qJ-i* Λ . . . Λ ( 6 * * , ) λ . . . λ Φ . 
1 k j t ' j 1 J k 

(3) If m = Z, then, for ζ€3, 

(6* ( ζ * Φ ) + ξ * (6**))(ζ . . . . . ξ ) = Σ Φ(ξ, 6(Ç,Ç) ξ ) . • 

Fix now /π = 2 and assume that 

(Al) 6:3 x S >9 is skew-symmetric. 

Take two vector spaces δ. 3' » a 2-linear mapping ·:δ'><3 >3 and 

For Ç e 9 , we define three operators 

t , Θ , d:n(3;g) >Ω(9;δ) 

by the formulae 

(.) L ψ = ξ*φ, 

( · · ) θ ξΨ = ΰ(ξ) λ Φ - (6* (ξ* Φ) + ξ* (6* Φ)), 

(···) dΦ = 3 Λ Φ - 6 * Φ . 

Lemma 1.5.2. (1) θ ©ι -t ©θ = ι η , 

(2) = d©t ç + c^ o d . 

Proof. (1) follows immediately from the définitions. 

(2): By 1.5.1(2) [for λ = 2, 6 = ξ, Φ = 3 and Φ = Φ ] , we have 
( d o t ç + t <>(1)(Φ) = d U Φ) + t (cM) 

= 3 λ (ς * φ ) - g * (ς* φ ) + ς * ο λ φ ) - ς * (6 * φ ) 

= - G * (ς* φ ) + (ς * 3 ) λ φ ) - ς * (6 * φ ) = θ ? φ . • 

Assume additionally that a 2-linear mapping ·:δ' χδ' >δ' such that 

(A2) (ν'·ν')·ιι = ν'·(ν'·ιι), ν',ν'Ξδ', 

is given. Then it is easy to see that 

3 λ ( 3 λ Φ ) = ( 3 λ 3 ) λ * . (3) 
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Lemma 1.5.3. If 

(A3) 6 * Θ = 0 , 

(A4) 3 Λ 3 = 6 * 3 , 
then 

( 1 ) d 2 = 0 , ( 2 ) θ od = d o 9 . ( 3 ) θ οθ - θ οθ = θ ^ _ . 
ζ ζ ξ η η ξ ϋ(ξ,77) 

Proof. ( 1 ) : By 1 . 5 . 1 ( 2 ) , ( 2 ) and 1 . 5 . 1 ( 1 ) , we have 

d 2* = d ( î 5 A * - 6 * * ) = 3 A ( 3 A * - 6 * * ) - 6 * ( 3 A * - 6 * * ) 

= ( 3 Λ 3 ) Λ Φ - ( 6 * 3 ) Λ Φ + ( 6 * 6 ) * Ψ = 0 . 

( 2 ) : Simple by ( 1 ) above and 1 . 5 . 2 ( 2 ) . 

( 3 ) : Trivial calculations after using 1 . 5 . 1 ( 3 ) , ( 3 ) and the fact that the 
condition 6 * 6 = 0 is équivalent to the fulfilling of the Jacobi identity for 6 . • 

In the end, we assume additionally that k Systems of vector spaces and mappings 

δ δ:, 3. e ^ o s g ; ) , · : δ ; χ δ , — > δ , . ·:δ;χδ;—>g;, ι<*. 
i ι ι 1 i i i i i i 

are given, and that, for each i < k, the mapping S^xSj^ >5j fulfils ( A 2 ) , and, for 
a given mapping · : g x...xg >g, (v ) ι >v -...·ν , the following axiom 

1 k 1 k 1 k 
is satisfied: 

(A5) 3(ζ)·(ν ·,..·ν ) = Σ ν -...-(3§(ξ)·ν,)·.-.·ν , ξ € 9 , u 6'δ . 
1 κ j=l 1 J J k j j 

Then we have 

3(Ç) A (Ψ Λ...Λ Ψ ) = f Ψ Λ. . .A (3 (ζ) Λ Ψ ) Λ...Λ Ψ , } 
1 k jl^ 1 j j k 

k f ^ 
3 A ( Φ Λ...Λ Ψ ) = Γ (-l)ql + > * - + Q J " l ^ A... A (3 Λ Φ ) Λ... Λ Ψ . 

1 k j=l 1 J J k 

Dénote by 9 ^ , d J the operators in Ω(9;δ^) built via 3̂ · Then, thanks to ( 4 ) and 
1 . 5 . 1 ( 2 ) , we notice the following 

k * 
Lemma 1.5.4. ( 1 ) θ (Ψ Λ...ΛΨ ) = Π Λ.,.Λθ'Φ Λ . . . Λ Ψ , 

ζ ι k j=i 1 ^ J k 

( 2 ) d(* Λ...ΛΨ )= f (-l) ql +'" + qJ-l^ A...Ad J* Α...ΑΦ . • 
1 k j=l 1 J k 
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To prove Theorem 1.3, we must put Q = SecA, 6(ξ,η) = ΙΕξ,ηΙ for ξ, η e Sec il, 
g = Sec(f), g' <=Hom^ δ' x δ >δ, (u,(r) ι »u(<r) - the natural substitute 
operator, 3(ξ) (σ) = 2 (<r) for σ ε δ Then définitions (·)*(···) agrée with (l°)-5-(3°) 
from 1.1. Next, put g = S e c ( f ) , j < k, g' = tfom(g ;3 ), 3'x3 >δ as above, 

J J J * J J J J J 
and take the mappings x...x5 >3 a n d 3. defined by 

1 K J 
σ - . . . · Σ : = φ ο ( Σ χ.,.χσ ) and 3 (ξ)((τ)=£ , (<r), <Γ€=3 . Then ail assumptions Α1+Α5 

1 k l k J T J ° ç j 

are satisfied. Assertions (i)*(viii) of our theorem follow successively from 
1.5.2(1), 1.5.3(3), 1.5.2(2), 1.5.3(1), 1.5.3(2), 1.5.1(2) for m = 0, 1.5.4(1) and 
1.5.4(2). • 

τ 1.6. According to 1.3(iv), (Ω (M;f),d ) is a complex; its cohomology spaces will 
A 

be denoted by // n(M,7\f), n > 0 . They generalize the Chevalley-Eilenberg cohomology 
A 

spaces of a f inite-dimensional real Lie algebra g (for A = q) [also those with 
coefficients, see, for example, [9] and the de Rham cohomology spaces of a manifold 
(for A = TM). 

1.7. fl°(M,7\f ) = K e r d T , ° = {σ c= Sec (f ) ; d ^ = 0> 
A 

= LeSec{{); V W ( σ ) - θ Η =(Secf) 0 

1 Ç 6 S e c ^ Τ θ ξ J / 7 

and, by 1.5.2, this space, in the case of a transitive Lie algebroid, is 
finite-dimensional [see also Mackenzie [20, pp.195 and 210]]. 

For the trivial vector bundle f=Mx!R, the cohomology spaces of the complex 
(Ω {M), dA ) will be briefly denoted by Hn {M), n = 0, 1, ... It is a standard calculation 

A A 
to obtain that H ΑΜ,Τ,ϊ) is a module over the algebra H (M) under the multiplication 

A A 
[ψ] Λ [Ψ] = [ 0 Λ Ψ ] . 

Définition 1.8. A form Ψ <= Ω (Af ; f ) will be called a horizontal form if t Φ = 0 for 
A ν 

ail y e Sec g. The space of horizontal forms will be denoted by Ω .(M;f). Each C* 
A , Ι 

cross-section tf€Sec(f) is a horizontal 0-form on A. By Ω .(M) we dénote the space of 
A 9 i 

horizontal forms on the Lie algebroid A, with real values. According to Th.l.3(vi'), 
Ω (W;f) is a module over the algebra Ω (M). 
A , j A f i 

Lemma 1.9. (1) θ ^ = 0 for * € Ω (M), ν e Sec g. 
ν Ati * 

(2) Ω .(M) is stable under dA. m 
A , j 
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1 . 1 0 . For an arbitrary vector bundle f, we set 

Ω ( / / ; Π = { Ψ € Ω (tf;f); ϋ Γ φ = 0 for v e Sec g}. 
Λ , J , β Λ , / ^ 

By 1 . 7 , we see that Ω {M) = Ω (M) . 

2 . H 0 M 0 M 0 R P H I S M S ω Α , Ω ν , A N D ( ^ ) ν . 

Let A = (AtŒ·,·I,γ) be an arbitrary regular Lie algebroid over a foliated manifold 
(M>E), and λ:Ε >A any connection in A, i.e. any splitting of its Atiyah séquence 
[ 1 7 ; 3 . 1 . 1 ] : 

0 >g < >Λ^—?π>Ε >0. 
λ 

Since r | g = 0 , the linear homomorphism of graded vector spaces 

y :Ω (M;f) >Ω (M;f) 
* Ε A 

defined by the formula Ti^iB) (x;...ν ... ) = θ(χ;.. .γν ... ), ν € Α , maps 
* i i 1 I χ 

isomorphically Ω (M;f) onto the space of horizontal forms Ω .(M;f). The inverse 
Ε A , i 

r.apping is 

λ ·Ω .(tf;f) >Ω (M;f) 

defined by λ f*)(x;...fw ,...)= Ψ ( χ ; X w ,...)» ν e £ 
* i i i ι χ 

For the trivial vector bundle f = MxR, one can easily obtain the equality 
Ε A 

d =X^°d <>γ^ which is équivalent to the commutativity of the diagram: 

Ω (M) > Ω (M) 
Ε Ε 

l A l 
Ω (M) -5—> Ω (M) 

( 5 ) 

Let ω: A » g be the connection form of λ (i.e. a>|g=id and ω\Ιιηλ = θ). ω is 
also treated as a 1-form on the Lie algebroid A, with values at g , ω 6 Ω 1 (fi; g). The 

A 
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mapping //=id -ω: A >A is to be the horizontal projection of vectors from A. It 
A 

détermines the horizontal projection of forms 

H -.il (A/;f) > Ω (M;f) 
* A A 

by ff Γ Ψ Μ χ ; . . . , v . . . . ) = Φ ί χ ; . . . , Ην ... ), ν € A . 
1 1 2 

In [17; 3.1.1] there is defined the curvature tensor Ω € Ω (M;g) of λ by 
b Ε 

Ω (Χ ,Χ ) = - ω( | [λοΧ , λ ο Χ Ι ) , Χ eSec£. Now, we define - needed in the sequel - the 
b 1 2 1 2 i 

so-called curvature foryn of λ as a horizontal 2-form on the Lie algebroid A, with 
2 

values in g , Ω Ξ Ω .(A/;g), by the formula 
n ( € 1 . Ç 2 ) =-ω(Ε//οξ ι,//οξ 2]Ι), ξ. eSec,4. 

Below, the exterior derivative of forms on the Lie algebroid A, with values in g , 

[also in the associated vector bundles Λ g , J with respect to the adjoint 
représentation ad : A > A(g), fi£ (y) = IÇ, y j ) [17; 2.1.2] [or induced ones] will 

A v a d ^ ©ξ y 

be shortly denoted by d 9. 

Proposition 2.1 (The Maurer-Cartan equation). 

Ω = d9(j - | [ω, ω]. 

(The form [ω,ω] is defined via formula (2) for the 2-linear homomorphism 

l · , · ] ; g x g > g ) . 

(Remark: The différence here, in comparison with the classical formula for 
principal bundles- see, for example, [8] - [the sign " - " before the second 
component], has its roots in the fact that the Lie algebra of the structure Lie group 
in the principal bundle considered there is taken left, not right). 

Proof. Without difficulties we can easily prove (in analogy to [8]) that two forms 
2 

t efi (A / ; f ) , i = l,2, are equal to each other if and only if (a) i Φ = ί Ψ , ν € Sec g 
ι A ν 1 ν 2 

(b) H (Ψ ) = / / ( * ). 
* 1 * 2 

(a) ι^Ω = 0 for ν € Sec g by the horizontality of Ω ; on the other hand, for 
ν g Sec g and η e Sec A, 

(d9cu - |[ω,ω]) (η) =ό?ω(ν,τ)) - |[ω,ω](ν,η) 

= Ιν,ω(-η)*Ά-1-η,ω(ν)1-ω(Ιν,-η1) - [ω(ν) ,ω(η)]1 = 0 . · 

(b) For ξ zSec Α, 
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Η(ά*ω-1[ω,ω)){ξ ζ ) = {ά9ω) (//°ξ ff.ÇJ - |[ω,ω](#·ζ ) 
* 1 2 1 2 1 2 

= Œ^oÇ ,ω ( / / οξ )3-[[//oÇ ,ω( / /οξ )|-odffoÇ , / / ο ξ J ) - ΙωΟ / ο ξ ),ω(//οζ ) J 
1 2 2 1 1 2 1 2 

= -« (ŒffoÇ floç 1) =Ω(/ /οξ j / . ς ) = ( / / ο ) ( ξ ξ ) . • 
1 2 1 2 1 2 

A) Homomorphism ω Α 

For each point χ 6 A/, the mapping 
# # ι # # 

p:q >A = l\ A c f\A 
r 3 l x I χ \χ I x 

# # 
W I > W oo) 

I x 
is linear and keeps the property 

p ( w ) A p ( w )=0 for w eg 
I x 

M is an associative algebra with unit élément, therefore, by the universal property 
, X * of the exterior algebra , see |_ 7 ; p. 103J, we obtain the existence and the 

uniqueness of a homomorphism of algebras of degree 0 

Λ * * ω :ΛΛ >ΛΛ 
χ I χ I χ 

extending ρ and such that ω Α(1)=1. Using the canonical duality between the exterior 
X 

algebra over a vector space and over its dual l[7; p. 104] we have that 

< ω Α ( 0 ) , w Λ.,.Λν > = <ψ,ϋ(χ;ν ) Λ. . . Λ ω(χ; w )> 
χ 1 k 1 k 

k * k * 
for ii/eA g and w e A . We notice that if VeSech g , then ι χ i ι χ 

ω Λ(Ψ):Μ >Ak>4*, x ι >ω Λ(Ψ(χ)), 
X 

oo k * Λ k is a C cross-section of Λ A , i.e. ω ( Ψ ) Ε Ω ( M ) . 
A 

Of course, 

ωΑ:**° (Sectfg*) > Ω (M). *« >ω Α(Ψ), 
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k>0 k # 
is a homomorphism of algebras where the space θ (SecA g ) is equipped with the 
structure (Φ ,Ψ ) ι >Φ Λ Ψ for which Φ Λ Φ is defined point by point. 

1 2 1 2 1 2 
00 

Define a C 2-linear homomorphism of vector bundles 
k * k 

< · , ·>:Λ g χ Λ g——>(R 

(being, in fact, a duality) via the family of the canonical dualities 

<-,->:A kg* xA kg, >R. 
I χ I x 

Looking at définition (2) above and treating Φ as a 0-form on At with values in 
Λ g , we can easily assert: 

A l k * 2.2. ω (Φ) = — · <Φ, ω Λ „ . Λ ω> if Φ € SecA g where ωΛ.,.Λω is defined by formula 
k t i m e s 

(2) for the k-linear homomorphism A:gx...xg >A g, whereas (Φ,ωΛ,.,Λω) - for the 
duality <·,·>. • 

Lemma 2.3. c (ω Λφ)=ω Λ(ο Ψ) if y <= Sec g. 

Proof. In view of the obvious equality l ω = vt of Th.l.3(vi) and of 2.2 above, we 
k * 

have, for Φ € SecA g , 

c (ω Λφ) = t f — ·<Φ,ωΛ. . .Λω>) = — ·<Φ, c (ωΛ...Λω)> 

ι k j-l ι = —·<Φ, (-1) ωΛ. . . Λ ι^Λ. . .Λω> = — ·<Ψ,k - L ^ U A U A . . .Λω> 

= 77 LT7.*< C Ψ, ωΛ. . . .Λω> = ωΛ(<. Φ ) . • 
k - 1 t i m e s 

Β) Homomorphism Q V 

2 

Let Q€Q^(W;g) be the curvature form of the connection λ under considération. For 
each point xeM, the mapping 

* 2 * 6V * 
μ : 9 . > A Λ c A Λ 

I χ I χ I x 
# # 

w ι >w oQ 
I x 

is linear and keeps the property 
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χ χ χ χ χ χ χ 
μ{u ) Λμ(ν )=μ(ν )Λμ(ιι ) for u , w eg^ 

e ν ^ 
Λ Λ is an associative algebra with unit élément, therefore, by the universal 

1 x x symmetric algebra property of Vg^ [7; p.192], there exists a unique homomorphism of 
algebras of degree 0 

Ω : V g , > Λ Aï 

χ I χ I x 
V 

extending μ and such that Ω^(1)=1. 

Lemma 2.4. Via the canonical dualities [7; pp. 104, 193], the homomorphism Ω Ν is 

defined by the formula 

V 1 1 <Ω ( D , w A . . . A W > = — · — -Y sgn<r-<Γ tQ[x;w AW )ν...νΩ(χ;ν A W ) > 
x 1 2 k k ! k U b < r ( l ) < r ( 2 ) < r ( 2 k - l ) a ( 2 k ) 

2 σ 
k * 

for Γ g V g and w e A 

Proof. In view of the linearity with respect to Γ of both sides of the above 
x χ χ x 

equality, it is sufficient to check it on the simple tensors T = w ν.,.νν , w € g . 
1 k i I x 

ν * χ 
<Ω ( W V . . . V W ) , W Λ.,.Λν > 

x 1 k l 2 k 
v # ν * 

= <Ω (w ) Λ . . . Λ Ω ( W ) , W A . . . A W > 
x 1 x k 1 2 k 

ι χ x 
= —-Ysgnvw {Q{x\w AW ))-...-w (Q{x\w A W ) ) 

k u b 1 < r ( l ) σ ( 2 ) k ' < r ( 2 k - l ) < r ( 2 k ) 
2 <r 

\ \ X X 
= — · — -YsgnŒ-Yw {Q{x;w AW ) ) - . . . - W {Q[X\W AW )) 

k! k u ^ 1 σ ( 2 · Τ ( 1 ) - 1 ) σ ( 2 · Τ ( 1 ) ) k ' < r ( 2 - T ( k ) - l ) σ ( 2 · Τ ^ ) ) 
2 <r T 

β ί Γ · ν Σ ^ η ο " Ρ β Γ Λ [ < 1 ' Γ · Η ( Χ : , ' Σ , 2 > 1 , Λ ' ' Β . ( 2 3 )

, > ! j - J ' < k J 

2 <r 
1 1 # # 

= —· — -Ysgn(r-<w v...vw ,Ω(χ;ν A W )V...vfi(x;w A W ) > . • 
k! k u 1 k < r ( l ) < r ( 2 ) < r ( 2 k - l ) cr ( 2 k ) 

2 <r 

vik * 
Applying the above lemma, we see that, for Γ € Secv g , the cross-section 

Ω ν(Γ):Μ > A 2 V , χ ι >Ω Υ(Γ(χ)), 
X 

is C°°, i.e. Ω Ν ( Γ ) € Ω 2 " ( Μ ) . 
A 

k > 0 k * 
The space θ (SecV g ) forms an algebra in a standard way, and the mapping 
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V k> Ο k # e ν 
Ω : Φ (SecV g ) > Ω (M) 

Γ ι > Ω ν(Γ) 

is a homomorphism of algebras. 
By standard calculations, we obtain 

2.5. Ω Υ(Γ) =ί-·<Γ,Ω ν. . . νΩ> for Γ € SecV kg* (the forms Ων.,.νΩ and 
k î 

<Γ,Ων...νΩ> are defined by (2) for suitable multilinear homomorphisms). • 

# 
2.6. It is well known that, in the vector space Ag , the classical 

ι x 

Chevalley-Eilenberg differential works, see, for example, [9; p.107]. For our purpose, 
we must slightly modify it by multiplying it by -1 (cf. Remark next to Prop.2.l), i.e. 
we adopt the following differential: 

δ :Ag, > Ag, 
χ I χ I x 

<δ (ψ) ,W A...AW> = - Y (-l)l + J<l//,[w ,W ] A . . . t . . . A . . . A W > 
x 0 k 1 j k 

1 < J 

for *pef\kg* (k>l), w eg , and δ ψ = 0 for \pef\°g* . δ is an antiderivation 
I χ v J i I χ χ I χ x 

of degree +1 and, for an arbitrary k > 0 , the induced homomorphism of vector bundles 

δ :A g >A g 

is, obviously, of the C°° class. 

Proposition 2.7. Ω Υ(w*) = <w*, d9<j> - ω Λ(δ {w*) ) for w*€Secg*. 

Proof. Applying the Maurer-Cartan équation, we get 

Ω ν (w* ) = <w*, Ω> = <w*, d 9 ω> - ̂  · <w*, [ω, ω]>. 

On the other hand, for ξ , ζ eSecA, 

Λ # # <ω (δν ),ξ λ ξ > = <δν ,ωξ Λωξ > η 2 ^ 1 ^ 2 

= <ν*, Ιωξ ι, ωξ2]]> = ̂  · <<w*, [ω, ω]>, Ç j λ Ç 2>. • 

Définition 2.8. Define the mapping 

k>o k * 
Κ: θ (SecA g ) >Ω (M) 

A 

by the formula 
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= ί_.<ψ^ 9 ( ω Λ . . .Λ ω)> -ω Λ(δΨ) 
k ! ν ν ' 

k t i m es 
k * for Ψ e SecA g . 

Of course, by Prop.2.7, 

Kiw )=IÎ (v ) (6) 

if w eS e c g . 

Proposition 2.9. The fundamental formulae for K: 

( 1 ) K ( W * A . . . A W * ) = Y ( - 1 ) S " V ( W V U A ( / A . . . s . . . A / ) 
1 k s = l s i k 

for w e Sec g , 

(2) Κ(Ψ) =dA(u)A(V)) -ω Α(δΦ) - — ·<ό 9Ψ,ω Λ . . . Λ ω)> 
k ! ν ν ' 

k t i m es 

k * 
for Ψ €SecA g . 

Proof. ( 1 ) : Applying Th.1 . 3(viii), we get 

K(w A . . . A W ) = — - < w A . . . A W , d 9 (ω Λ. . . Λ ω)> - ω {ô(w A . . . A W ) ) 

1 k k ! x 1 k ' 1 k 

1 * * k s 1 Λ k s 1 * * * 

= —-<w A . . . A W , f (-l)s~ ω A . . . A ω Λ ό 9 ω A . . . A ω> - ω f f ( - 1 ) w A . . . A Ô W A . . . A W ) 
k! N 1 ι

 s
 v ' c i 1 s k 

s = 1 s - 1 t 1 mes s = 1 

1 * * q k s - 1 A * * A #v = —-<w A . . . . A W , k-(d3u>) Λ ω Λ. . . Λ ω> - V ( - 1 ) ω (δν/ A W A . . . s . . . A W ) 
k! N 1 k β ι s i k 

s = ι 
1 * * q k s - 1 A * A * Λ * Λ = *<w A . . . A W , (d ω) Λ ω A . . . Λ ω> - y ( - 1 ) ω [ôw ) Αω [w A . . . A s . . . A W ) . 

( k - l ) ! 1 k ' s 1 k 

On the other hand, 

k s - 1 * A * A # k s - 1 / * α Λ, **\ A , * A * N Σ ( - 1 ) K ( V ) Λ ϋ ( W A . . . S . . . A W ) = Σ ( - 1 ) ( < W ,d9CJ>-(J (ÔW ) A W ( V A . . . S . . . A W ) . 
s = l s i k s = 1 s s i k 

Therefore, it is sufficient to prove the equality 

-<w A . . . A w , (d9<j) Λ ω Λ. . .Λω> = Y (-l)s~ <W ,(1 9ϋ)Λω (w A . . . s . . . A w ). 
( k - D ! x 1 k s = l s ' i k 

For this purpose, take xeM and w^eA^ , i<k+l. We have-
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<W* A . . . A / , ( d 9 u ) A ( i ) A . . . A O ) ) ( x ; W Λ.,.Λν ) 
( k - 1 ) ! N . 1 k * ' 1 k + l 

1 Χ X n = -- -<(v a . . . a w ) (x), ( {cru)) ΛωΛ. . .Λω) (x;w a . . . a w ) > 
( k - 1 ) ! 1 k 1 k + 1 

= <(w* A . . . a w * ) ( X ) , Σ (-1 J 1 * - 1 " 1 (d9u>) (x;w A w . ) Λ ω(χ ; w ) A . . . ί. . . j . . Λω (χ ; ) > 
1 k i < j J 

w*(x;(d9u>) (x; w AW )) w*(x;o)(x;w ) ) . . . * . . . * . . . 

- ς 1 i 1 ι I I 
KJ * ^ : A A 

w (x;(d9a>)(x;w a v )) ν (x;a>(x;w )) ... ι ... j ... 
k l J 1 1 

= Σ (-D l + J _ 1 - Σ (-l) S + 1-w*U; (d 9w)(x;w Λ w ))· 
i < j ==i s J 

•<(w* Λ. . . s . . .Λw*)(χ),ω(χ;w ) A . . . Î . . . j., . Λ ω ( χ ; ν ) > 

1 k l k + l 

^ S + l ^ Q Λ ^ Λ ^ 
= Y (-1) -<w ,d ω > Λ ω (ν a . . . s . . . a w ) ( X ; w a . . . a v ) . 

N s ' 1 k l k + l 
s = 1 

(2): By Th.l.3(viii) (treating Φ as a O-form on the Lie algebroid Λ, with values 
k 

in Λ g J, we have 

ό \ ψ , ω Λ . . . Αω> = < d 9 * , < J A . . .Λω> + <$,d 9 (ω A . . .Λω)>. 

Therefore, by 2.2, 

Κ ( ψ ) =L..<^,d g (ω Λ . . .Αω)>-ω Λ(δΦ) 
k ! 

^ • [ k . d ^ t c / ô * ) - < d 9 * , ( J A . . .Λω>] -ω Λ(δΨ) 

= di4(t<)Aô#) -ω Λ(δΨ) - — - < d 9 $ , ( J A . . .Λω>. • 
k ! 

k * 
Because of the fact that each cross-section Ψ € SecA g is locally a sum of 

χ χ χ χ 
cross-sections of the form W^A...AW^ for w €Secg , we get 

Corollary 2.10. If the connection λ considérée is flat (i.e. Ω = θ ) , theny 

according to (6) and Prop.2.9(l), we see that Κ ξ Ο , which me ans, by définition 2.8 
and Prop.2.9(2), that 
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ω
Α ( δ Φ ) =i-.<*,d 9 (ω Λ. . .Λω)> = ( ί > , ( Λ ) - — ·<ό 9Φ,ωΛ. . .Λω>. • 

k ! k ! 

Remarks 2.11. Keep the assumption Ω = 0 . 
k * 

(1). If φ € S e c Λ g is invariant with respect to the représentation ad of A on g 
k * 9 

[i.e. if $ € ( S e c A g ) / 0» o r > équivalently, if ό 9Φ = 0, see 1.7], then 
dA(u)\) =0. 

Indeed, by Cor.2. 10, we have dA (ω Λφ) = ω Λ(δΦ) ; but, for each point xeM, the 
tensor Φ ( χ ) € Λ ^ * is invariant under the canonical représentation of the Lie 

I x 
k * x 

algebra g^ on A g! ( induced by the adjoint onej and such a tensor is a cycle 
[9; p.186], so (δΦ)(χ)=δ (Φ )=0. Therefore, there exists a homomorphism of algebras 

W
A : k e ° ( S e c A k g * ) 0 >Z (M) cQ (M), Φι >ω Λ(Φ), 
ο I A A 

and, next, 

ω ^ k θ 0 ( S e c Λ k g * ) 0 > Z {M) > // (M) 
I A A 

ψ ι > [ω (Φ)] 
ο 

(2). If A is a transitive Lie algebroid, then, in view of Th.1.5.2, each invariant 
k * 

cross-section Φ e ( S e c Λ g ) 0 is determined by the value at an arbitrarily taken point 
1 # * 

x e M. Thus, the domain of ω is isomorphic to some subalgebra B c Ag . If, 
ο I χ Λ 

ο 

additionally, A = A{P) for some connected principal bundle [P,n9M9G,·), then, 
according to 5.5.2 from 117], B is isomorphic to the vector space (Λα ) of invariant 
[with respect to the adjoint représentation] vectors. Let ω^ζΩ1 (Ρ; g) be the form of 
the connection on Ρ corresponding to λ. Then, the real-valued form on A{P) Θ: = ω (σ ) 
for v€(Aô ) ; (for , see [17; 5.5.2]) is precisely the one for which the 
corresponding right-invariant form Θ on Ρ is equal to <v, Λ . . . Λ ω^>. Recall that ? 
Θ(ζ;ν Λ. . . A U ) =Θ(πζ;π > 4 (ν ) Λ. . . \ κ* [ν ) ), z e P , ν<=ΤΡ (πΑ:ΤΡ > Α{Ρ) is the 

1 k I ζ 1 I î; k 1 ζ v 

classical projection [15]). 
(2'). In particular, for an arbitrary Lie algebra g (treated as a trivial Lie 

algebroid over a point) and for the only connection λ = 0, 
r 

0 > û = q > 0 > 0 

° < ° < 
cj=id λ=0 

Λ * * 
we have ω :(Λα ) c >Λά is an inclusion and 
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ω*: (Λά*) ; >H(q). 

Φι > [Φ] 

We realize that, for a reductive Lie algebra q, ω is an isomorphism [9; p.189]. 
(3). Consider the case of the foliation (G, {aH ; aeH}) of left cosets of a 

connected Lie group G by a connected nonclosed Lie subgroup H c G and let A be the Lie 
algebroid A{G;H) of this foliation, see [17], [16]. The homomorphism ω # has the 
following form: there exist isomorphisms of algebras α and β such that 

k>o k # 
θ (SecA g ) , o > HAG/H) 

I A 

a s β = 

Λ ( Ϊ ) Α ) * > HAG/H)»Ml)/h)* 
Q R 

Φ I > 1 <8> Φ 
(î) is the Lie algebra of the closure H of //) . 

The isomorphism α is built in the following way: via the global trivialization 
<p:G///xI)/b ~ > g , see [17; 8.2.4] and [16; 3.2], any cross-section Φ of A k g * 

détermines some b/b-valued function $:G/// >A k(b/b)^. Analogously as in the proof of 
Prop.8.4.1 from [17], we assert that Φ is invariant if and only if Φ is constant. The 
isomorphism α is defined as follows: Φι >Φ(χ), x being an arbitrary point of G/H. 

The isomorphism β looks as follows: according to [16; Th.3.3], the Lie algebroid A 
is trivial and an isomorphism of Lie algebroids ρ: Τ {G/H) x ï)/f) >A is given by the 

formula p(v, [w] ) =λΑν) +φ(πν, [w]). Therefore, the superposition 

β:Η AG/H) -^->H(T[G/H) x f)/ÏÏ) H AG/H) xA(ÏÏ/ï))* 

A dR 

is an isomorphism of algebras. The commutativity of our diagram follows now in a simple 

way. 

C) Homomorphism ( D T C ) ) V 

This section will not be needed till Part III. 

d9o> at a point xzM is a 2-linear skew-symmetric tensor (d 9u) : A xA » g 
^ I χ I χ I χ I x 

understood sometimes equivalently as an élément of A A ® g . (d9u>) defines a linear 
I χ I χ I x 

mapping · . 1 ' 
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2 * * (du) :gt >Λ Λ, c AAt 
χ I χ I χ \ x 

w ι >w*o(d 9u) 
I x 

having the property 

x x x x x x 
(dω) (w ) Λ [du)) {w ) = (du) (w ) Λ (du) (w ) , w 

x 1 x 2 x 2 x l I I x 

X r 

Therefore, by the universal property of the symmetric algebra Vg , see [7; p. J, we 
obtain the existence and the uniqueness of a homomorphism of algebras 

v # # 
[du) : V G > M 

χ I χ I x 

V extending (du) and such that (du) (1) = 1. 
X X 

ι * Lemma 2.12. Let R E V G , then for v ,,..,w <= Λ 
3 l x 1 2 1 I x 

<(du) V(T),w A . . . A W > = — - — T sgncr-<Γ, (d 9u) (w A W )v. . . 
x 1 2 1 1

 U
 a I x σ ( 1 ) σ ( 2 ) 

1 ! · 2 σ 

. . .v(d 9u) (w Λ ¥ )>. 
I x < r ( 2 1 - l ) σ ( 2 1 ) 

Proof. It is sufficient to prove this for a simple tensor R = w ^ A . . . AW^ : 

V # x 
<{dw) (W A . . . A W ) , W A . . . A W > 

x 1 1 1 2 1 
X X 

=<(du) (w ) A . . . A ( d u ) ( W ) , W A . . . A W > 
χ 1 x 1 1 21 

\ x X 
= — 'Σ sgncr-(du) {w ){w AW )·...·(dω) (w )(w A W ) 

1 ^ 6 x 1 σ ( 1 ) < r ( 2 ) x 1 σ ( 2 1 - 1 ) σ ( 2 1 ) 
2 <r 

= — -Γ sgncr-<w , (d 9u) (w A W )>·...-<w , (d 9u) (w A W ) > 
1 L j b Γ I x σ ( 1 ) < r ( 2 ) Γ I x σ ( 2 1 - 1 ) <r ( 2 1 ) 

2 σ 

= Γ sgrur-Y <w , (d 9u) (w A w )>·... 
^ r

 & ^ Γ I x σ ( 2 · τ ( 1 ) - 1 ) < τ ( 2 · τ ( 1 ) ) 

... -<w*, (d 9u) (w A W ) > 

1 I x σ ( 2 · τ ( 1 ) - 1 ) σ ( 2 · Τ ( 1 ) ) 

where / is the set of ail permutations of the séquence ( 1,2, . . . , ZI ), such that 
(1)<σ(2) cr(2J-l)<(r(2i), σ(1)<σ(3)<. . . <cr(2i-l)) 

= — - — Τ 5£Π ( Γ·<ν%,..ν/,(οΙ 9ω) (w Λ w )v...v(d 9u) (w AW )>, • 
1 U 6 1 1 I x σ ( 1 ) < r ( 2 ) I x σ ( 2 1 - 1 ) σ ( 2 1 ) 

i ! · 2 <r 

1 * 1 * 
According to this lemma and the fact that the canonical duality V g xV g & 

defined point by point by: ( (w* v. . . v w* ), (w^ ν. , . v w^ ) ) ι > perm[<w* tw >] ] i s a 

-linear homomorphism of vector bundles, we assert the following 
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1 * 2.13. For ΓeSecV g , the cross-section 

{du)V{D:M > A 2 V , xi >(da>)V(r ), 
X X 

oo V 2 1 
is a C real 21-fOrm on A, i.e. (da>) (Défi (M), as well as it is defined by 

A 

(dw) V(D =| 7·<Γ,(ί 9ων. . .vd9tj>. • 

3 . A C O N S T R U C T I O N O F T H E C H A R A C T E R I S T I C C L A S S E S O F F L A T R E G U L A R 

L I E A L G E B R O I D S 

Hère we construct characteristic classes having the following property: 

— the existence of nontr ivial classes among them is a measure of the 

incompatibility of the flat structure of a given regular Lie algebroid A [over (M,E)) 

with a given subalgebroid B of A [also over (M,£)). 

In the case of an integrable transitive Lie algebroid Λ = Λ(Ρ), Ρ being any 
principal bundle, thèse classes agrée with the so-called characteristic classes of the 

flat principal bundle F [lO]. 

Consider in a given regular Lie algebroid {A, II · , · 1, γ ) over (M,£) two géométrie 
A 

structures: 

(1) a flat connection λ:£ >Λ, 

(2) a subalgebroid BcA over (M,£), see the following diagram 
*A 0 > g < > A ^ £ > 0 3 < < 

/ s ω Τ λ Τ (7) 
j id 

1 L γ 
0 > h c > β £ > 0 . 

Notice that h = gnfî (h: = Kerr^). 

The system (Λ,λ,Β) will then be called an FS-regular Lie algebroid [over (Μ,£))..4 1 

Examples 3.1. (1) A triad (Ρ,Ρ',ω) consisting of a principal bundle P, of an 
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//-réduction ?' and a flat connection in P with a connection form ω détermines an 
FS-transitive Lie algebroid [A{P),λ,Α(Ρ' )) (λ corresponds to ω ) . For the theory of flat 
principal bundles with given réductions, see [10], 

(2) We recall that both a transitive Lie algebroid A = (A, I · , · 1, γ) on M and an 
involutive distribution FcTM give rise to the regular Lie algebroid over (Ai,F) of the 
form A = r [F]cA, see [ 17; s. 1. 1.3]. Consider now a triple (Λ,β,λ) consisting of a 
transitive Lie algebroid A on M, a transitive Lie subalgebroid Β of A and a partially 
flat connection λ in A, namely, flat over a given involutive distribution FcTM. The 
triple 

(/,BF,A|F) 

is an FS-regular Lie algebroid. 

(3) Let now the System (Ρ,Ρ',ω) be given as in Ex.(l) with the différence that ω 
is assumed to be partially flat, say, over an involutive distribution FcTM. Such a 
system (named a foliated bundle) is investigated, for example, in [lO]. It détermines 

F F 
the (nontransitive) FS-regular Lie algebroid [A{P) >Α{Ρ') ,A|F) written above. 

Examples on the ground of the theory of nonclosed Lie subgroups will be given in 

Ch.7 below. 

We construct some characteristic classes of an FS-regular Lie algebroid (Λ,λ,Β), 
measuring the independence of λ and B, i.e. how far ImX is not contained in B. The 
construction has a number of steps. 

3 . 2 . Let s : g > g / h be the canonical projection. The form φ(Ψ) : = ω Λ ( Λ ^ * © Ψ ) , 
k * 

where Φ e SecA ( g / h ) , is h-hor izontal, i.e., equivalently, its restriction to the 
* Λ k * 

subalgebroid B - j (ω (A s °Ψ)) - is horizontal. Indeed, for v e S e c h , applying Lemma 
2.3, we get 

L ( Ϋ Λ ( Λ Ν Ο Φ ) ) = ω
Α ( ι ( A k s * o * ) ) = O 

V V 

because the fact that [ y ] : = s©y = 0 yields 
k # k * <(, ( A s οφ),ι; Λ . . . A V > = <A S οψ,νΛΐ; Λ . , . Λ Ι ; > 

ν 1 k -1 1 k-1 

= <Φ, [ν] Λ [ V ] Λ . . . Λ [V ]> = 0. 
1 k-1 

for ν eSecg. 

Therefore (see the previous section) there exists a form Δ Ψ e Q k { M ) such that 
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/ (ω Λ(Λν ·Ψ)) = («r ) ίΔΨ). 
Β * 

Notice that if λ is a connection in B (i.e. ImXcB), then ΔΦ = 0. In fact, f 
X €Sec£, 

i 

<ΔΦ , Χ Λ . . . Λ Χ > = <(? ) (ΔΨ) ,λοΧ Λ . . . Λ λ°Χ > = < J * ( ω Λ ( Α 1^*©^) ) , λ°Χ Λ . . . Λ λ < > Χ > 
1 k Β * 1 k 1 k 

k * 
= <Λ s ο ψ , ω ο λ < > χ Λ . . . Λ ωολοΧ > = 0. 

1 k 

3 . 3 . Put 

k > 0 k # 
Δ: θ (SecA ( g / h ) ) >Ω (M). 

φ ι >ΔΨ 

Δ being a superposition of homomorphisms of algebras, see the following diagram 

(where Ω^ h ( M ) dénotes the space of h-horizontal forms on A) , is itself such a 
homomorphism. 

Directly, Δ is defined by the formula 

(ΔΦ)(χ;ν A , . . A W )=<Ψ ; [ω(χ;ϊ/ ) ] Λ . . . Λ [ω(χ; w )]> (8) 
1 k χ 1 k 

for w € β such that y (w )=w , w e £ , xeM. 
i l x σ£? i i ' i ! χ 

3 . 4 . Define a représentation 

a d

A

 : B >>KA k(g / h ) " ) 
B > 9 

by the formula 

< £ ~ [t> ] Λ . . . Λ lv )> 
a d ο ζ 1 k 

k 
= ( y °ξ)<Φ, [ l> ] Λ . . . Λ [ l> ]>- f <Φ, [ l> ] A . . . A [ [ [ Ç , l ^ ] I ] A . . . A [ y ] > 

B 1 k j _ ^ l . j k l * 

for Ψ 6 S e c A k ( g / h ) * f Ç € S e c B , and y.eSecg. 
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The correctness of this définition follows from the fact that if one of v^s lies 

in h . then Ι ξ , ι ^ Ι lies in h , too. 

Notice that 

Λ k 
adn = Λ (ad ) , 

H , g Β,g 

where (a) 

ad :B >A(g/h) 
B » g 

is a représentation given by 

£ Alv]) = [£ „ tf (i/)] ( = [ŒÇ.1/1]) 
a d ©ξ a d . o Ç v ' 

P , g 

for ξ € Sec B and y € Sec g (ad is the adjoint représentation of A, see [17; -2.1.2]), 
(b) (·) is the contragredient représentation [17; 2.1.3], 

(c) Λ Γ, for an arbitrary représentation T:A > Λ ( Π , dénotes the skew-symmetric 

product of Τ defined analogously to the symmetric product [17: 2.2.1]. 

k > 0 k / * 
3.5. In the space φ (SecA ( g / h ) ) ^ 0 of cross-sections invariant with respect to 

ad A , we introduce a differential δ of degree +1 defined as follows: for 
B ' 9 k , * 

Ψ e (SecA ( g / h ) ) ^ c and i^eSecg, we put 

<<5Φ, [V ] Λ . . . Λ [V ]> = - Σ (-l)i + J<*, [lv ,ν 3] Λ [V ] Λ . . Λ. . .1 . . Λ [ν ]>. 
0 k *-· i j 0 k 

i<J 

(a). The correctness of this définit ion. If ν eSec h for some index J o , then 

Σ (-l) i + J<*. [0> ,v 1] Λ [V ) A. . Λ. . . j . . . Λ [ v ] > 
i J 0 k 

1<J 
= (-Ι) 3 0" 1· Γ <Φ, [ 1 ^ ] Λ . . . J . . . Λ [[V ,V 1) Λ . . . Λ [V ]> 

0 0 J „ j k 

= 0 

by the invariance of Φ and the equality y =0. 
fî Jo 

(b). <5Φ is invariant. Indeed, for £ e S e c £ and y eSecg, we have, by the 
j 

invariance of Φ, 

{γ οξ)<δΦ,[ν ] Λ . . . Λ [ν ]> 
Β 0 k 

= ( V € > ( - Σ ( - 1 ) i + J ° i ' ' [IVj.vJlAlv ] A . . . î . . . j . . . A [ V K ] > ) 

1<J 
= Σ (-D 1 + J(<*, ,ν 1 1 ] Λ [ Ρ Ο ] Λ . . . λ . . . j . . . A [ y k ] > + 

i<J 
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+ £ <*, IIV ,V 1] Λ [V ] Λ . . . Λ Ιίξ,νΊ] Λ . . Λ . . . J . . . Λ [ ^ ] > ) 
J 1 J ° 

= "Σί Σ (-1) , + J<*. IIV .V J ] Λ [V ] Λ . . . Λ [Ιξ,νΐ] Λ . . Λ. . . J. . . Λ [V }> + 
ν 1 1 0 1 k 

1 l*i<j*l 
+ Σ (-1) 1 + 1(<Φ, IŒv1. ŒÇ, ν 1ΙΙ3 Λ lvQ] Α.. Λ... ι...Λ 1^1 > + 

i < 1 

+ Σ ( - l ) 1 + J I < * . ΙΙξΛν ,ν 11] Λ [ν } Λ . .Λ. . . J . . . Λ lv)>) 
^ ν 1 j 0 k J 

= Σ<δψ, ] Λ . . . Λ [ΐς,ν 1] Λ . . . Λ [vki>. 
1 

(c). It remains to notice that 

(i) δ 2 = 0, 
(ii) δ is an antiderivation of degree +1. 

For this purpose, firstly, for an arbitrary point x€M, we can define a space of 
k * 

tensors (Λ ( g /. ) ) « invariant with respect to the représentation of the Lie 
ι χ J h / 

1 X k * * λ * algebra h , induced on Λ ( g /. ) by the représentation ad of h on ( g , / u ) 
i x i x / h χ i x i x / n 

' \ x 1 ι χ 
defined as follows: 

<ad*(i> ) ( 0 ) , [μ]> = -<φ, [[ν,μ]]> 
χ 

# 
for v e h , <pe ( g , , ) and μ € g . ι x ι χ η ι χ 

' I x 

Secondly, we define an antiderivation 

V ( A ( 9 , , / h — ( A ( 3 , , / h >V 

' I x 7 I x 

uf degree +1 as the one which on éléments φ of degree +1 equals 
<δ {φ), [V]A[U]> = < 0 , [ [y,μ] ]>, i>,u€g . It can easily be seen that if 

χ I x 

( S e c A k ( g / h ) * ) / e l then 

( D * , « ( Λ ( 9 , Χ / | Ι ) * ) , . . 

' ι χ 
(2) (δ*) = δ (Φ ). 

Χ X X 

In conséquence, δ fulfils (i) and (ii) in an évident manner. Of course, thèse 

properties of δ can also be checked directly. 
Définition 3.6· The relative cohomology algebra of g with respect to B is defined 

k>o k· # . ̂  
as the cohomology algebra of the complex ( θ (SecA ( g / h ) )^ 0,δ): 
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# Ο \, χ 
tf(g;B):=tf ( θ (SecA ( g / h ) ) / β , δ ) . 

Proposition 3.7. The mapping Δ restricted to the invariant cross-sections 

Δ * ( = Δ , , , „, : φ (SecA (g/h) ) »n r («), Φι >ΔΦ, 

— £ 
commutes with the differentials δ and d . 

Proof. We need to prove the equality 

Δ(δΦ) =d £ :(A^) (9) 

for invariant cross-sections Ψ. 
The fact that {γ ) is a monomorphism implies that this equality is équivalent to 

B * 

( * ) - ( Δ ( δ * ) ) = (γ ) (^(ΔΦ)). But, by définition, see 3.2, (r )*(Δ(δΦ)) 
£j Β B 

= j*(a> A(A k + 1s*o (δψ) ) ). On the other hand, applying ( 5 ) and the obvious fact 

dB(j**) = j*id AV), we get 

(r a)^(d E(A*)) = d B((r f î)*(A*)) = d B ( / ( / ( A V o ^ ) ) ) =/(d^(u A(A ks*o*))). 

Therefore, to prove (9), it remains to check that the forms u A ( A k + 1 s ο(δΨ)) and 
A Λ k * 

d (ω (A s ο ψ ) ) agrée on the cross-sections of B . 

Let Ç q , . . . ,£ k€ Sec B ; then (see 2 . 6 and 3 . 5 ) 
< u A ( A k + 1 s * o ( £ * ) ) , Ç Λ . . .Λξ > = <A k + 1s*o(ô*),u(Ç ) Λ. . .Λω(ξ )> 

0 k 0 k 
= <δΦ. [ω(ξ )] Λ . . . Λ [ω(ξ )]> = .- Σ (-Dl + J<*. ΙΙίωίς ).ω(ξ )11 λ. . .î. . . j. . . > 

0 K K J 

= - Σ (-1) 1*^Λ"8*·Φ,Ιω(ς ),ω(ξ ) I Λ . . . ?. . . j. . . > = <Ô°Aks*<>*, ω(ξ ) Λ . . . Λ ω ( ξ )> 
i<j 1 J ο k 

= « A ô < > A k s ^ ) , Ç O A . . . A ? K > . 

On the other hand, by Prop.2.9(2) and the flatness of λ, we have 

dA(u>A(hks*o<%)) = o A ( ô o A k s * o * ) + i r - < d 9 ( Λ ^ ο φ ) ,ω Λ. . .Λ ω > . 
k t i m e s 

So, it remains to show that 

j*<d 9 ( A k s ^ o ^ ) ,ωΛ. . .Λω> = 0. 

For as above, by the invariance of Ψ, we get 
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< < d 9(A ks * o*), WA. . .Λω>,ξ οΛ. . .A? k> 

= l ( - l) J<d 9(A k S * o*)(Ç ) ι ( Β Λ . . . Α Β ) ( ξ Λ . . . 1 . . Λ ξ ) > 
J = 0 ° 

= k!- Σ (-1)J<£, A k » tf (A ks* o*),w(C) Λ. . .j\ . .Λω(ξ )> 

= k!- Σ ( - D J ( ( y o Ç X A V o î - . W C Ç ) Λ . . . j...AW(Ç ) > -
J=0 -> 0 * 

- Χ < Λ ^ ο φ , ω ( ξ ) Λ . . ,Λ[ξ ω ( ξ ) ] Λ . . . J. . .>) 

= k! · Σ (-l)J((r«Ç )<Φ,[ω(ξ )] A. . . j. · ·Λ [ω(ξ )]>-
J=0 J 0 k 

- Σ <*.[ω(ξ ο)] Λ . . . Λ [IÇ ,ω(ζ )1] Λ . . . J . . . > ) 

= 0. • 

The above Proposition yields as a corollary 

Theorem 3 . 8 . The mapping 

Δ :H(q,B) > H (M) 

[Ψ] ι > [Δ^Ψ] 

is a correctiy defined homomorphism of algebras. u 

Δ is called the characteristic homomorphism of the FS-regular Lie algebroid 

(Λ,λ,Β). Its image ΙπιΔ cH {M) is a subalgebra of H (M), called the character ist ic 
# Ε Ε 

algebra of the FS-regular Lie algebroid (Λ, λ, Β ) , whereas its elesments - the 
characteristic classes of that algebroid. 

According to 3.2, the compatibi 1 ity of λ with B implies the vanishing of Δ [of 

course, already on the level of forms]. Δ^ is then a measure of the incompatibility of 

λ with B. 

4 . F U N C T O R I A L I T Y 

Définition 4.1. Let (Λ',λ',Β') ard {Α,λ,Β) be* two FS-regular Lie algebroids ovér 
(Μ',Ε') and (M,£), respectively. By a nowomorphism 
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H: W ,λ' ,β' ) > (Λ,λ,Β) 

between them we mean a homomorphism H:A' >A of regular Lie algebroids, say, over 

f:(M',E') >IM,E), such that 
(1) / / ο λ ' = A o f ^ , 

(2) H[B' ] cB. 

Notice that H' =H\B' \B' -»B is then a homomorphism of regular Lie algebroids, 
too, see the diagram: 

By the pullback of an FS-regular Lie algebroid [Α,λ,Β) over (M,E) via a mapping 

ίΆΜ',Ε') >{MtE) we mean the FS-regular Lie algebroid ifAAtX,fAB) where λ is the 
pullback of the connection λ, see définition 3 . 2.1 from [17]. 

Notice that pr : fA>4 = £'x A >A is a homomorphism of FS-regular Lie 

2 ( f*,r) _ _ 

algebroids, called canonical. In view of the equality / / ο λ / = λ , any homomorphism 
H: (Α' ,λ' ,Β' ) > ÎAtXtB) of FS-regular Lie algebroids can be represented in the form 
of a superposition of a strong homomorphism with the canonical one: 

{Α' ,λ' ,Β' ) —£-» (f AfXtf' B) U ίΑ,λ,Β). 
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4.2 Let H: U ' ,λ' ,£' ) >(Α,λ,Β) be a homomorphism of FS-regular Lie algebroids, 

see diagram (10). We define the pullback 

tf+*:SecAk(g/h)* >SecA k(g'/V ) * 

by the formula 

< / / + * ( Φ ) , [w* ] Λ . . . Λ [ν' ]> = <* , lH*(w')] Λ . . . Λ [H*lw* )]> 
χ 1 k f ( χ ) 1 k 

where Φ e SecA k(g/h)*, xeM, w'eg' 
i I x 

Proposition 4.2.1. (1). // maps the invariant cross-sections into the invariant 

ones. 

(2). H restricted to the invariant cross-sect ions commutes with the 

differentials δ' and δ. 

Proof. It is enough to prove the proposition in two cases of H: of a strong 
homomorphism and of the canonical one. 

(a). Assume that H is a strong homomorphism of FS-regular Lie algebroids over 

(tf.E). 

(1). Let ξ' zSecB' and v'^eSecg' . Seeing diagram (10), we have 

) < / / + * Φ , [ Ι > ' ] Λ . . . Λ [ Ι / ] > 

B 1 k 

= (r^o/ToÇ' ) < Φ , [//+ol/ ] Λ . . . A [tf +ol^]> 
= Σ < Φ , [// +ο^' ] Λ . . . Λ [ Ο / ' ο ξ ' , / / + o y ' ] ] ] Λ . . . Λ [Η*ον' 1 > 

J = l 1 J k 

= Σ < / / + * Φ , [ΐ/' ] Λ . . . Λ [ Ι ξ ' Λ . . . Λ [ΐ>' ]>. 
J=l 1 J k 

(2) A very easy proof of the equality δ' °H**(Φ) = H**oë(Φ) for an invariant Φ will 
be omitted. 

(b). Consider now the canonical homomorphism pr^: (f ΑΑ, λ, f AB) »(Λ,λ,£) of 
FS-regular Lie algebroids over f: W ,£' ) >(/7,£). Identify the vector bundles 
f (g/h)sf g ^ ^ , Then, of course, # * * Φ = ί * Φ , and, by the standard calculations, we 

assert the following equality (cf. [17; 2.3.2]): 

f*(ad n ) =ad * * (11) β,g r B,r g 
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(11) and the fact that f*(A kT) = A k(f*T) for any représentation Τ (cf. [17; 2.3.3]) 
yield 

f (ad* ) = f (A (ad D ) ) = A (ad ~ * ) = acT~ o » . 
B , g B , g Γ B,r g f B,f g 

Proposition (1) follows now from [17; 2.4.4]. 
To prove proposition (2), it is sufficient to show that 

<δ{ί*Ψ) , [V o f ] Λ . . . Λ [ l> o f ] > = <f*(<5*) t[v o f ] Λ . . . Λ [ l> o f ] > 
0 k 0 k 

for an invariant cross-section Ψ and v^eSecg. 

<Ô(f*Y) , [ ^ o f ] Λ . . . Λ [ V o f ] > 
0 k 

= - Σ ( - D l * J < f * * , I0> o f f V o f ] ] ] Λ [ν o f ] Λ . . Λ. . . j . . . > 
i < J i j 0 

= - Σ (-l)i + J < * , [lv ,ν 1]A[VQ] A . . . t . . . A . . . > o f 

i < J i j 0 

= <<5Ψ, [ y ] A . . . A [v ] > o f = < f * ( £ * ) , [V o f ] Λ . . . Λ [V o f ] > . • 
0 k 0 k 

4.2.2. As a corollary we obtain that H détermines a homomorphism of algebras 

H**:HigtB) >J / (g ' , β ' ) . 

Proposition 4.3 (The functoriality of Δ ^ ) . 
Let (Α' ,λ',Β' ) and (Λ,λ,Β) be two FS-regular Lie algebroids over (M',£' ) and 

(M,E), respectively, and let H: (Α' ,λ' ,Β' ) >(Λ,λ,Β) be a homomorphism between them 

over f:[M' , £ ' ) - »(M,E). Then the foiJowing diagram 

commutes. 

Proof. It is sufficient to show the commutativity of the diagram on the level of 

forms; this means - the equality: 

( V Κ { ί * { ά χ * ) ] = J ' * ^ ' A ( A k s ' * o / / + * * ) ) 

for an invariant Ψ. 
Let xeM' and w e B' . By (7) and seeing diagram (10), we have: 

J ι * 
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( V ν ^ Δ ^ Η χ , ι ^ Λ . · · Λ \ ) = (^(A^))(x , r B , Λ . ..Ar f l, (w k)) 
= (Δ JO(f(x);f ( r , (ν ) ) Λ. . .Af ( » , (w ) ) ) = (Δ Ψ) (f (χ) ; {γ {Η' (w ) ) Λ. . . Λ ( y (//' (ν ))) 

* ~*~ Β 1 * Β κ σ 1 σ k 

= <*-, >; Iw(f(x);ff'(w ))] Λ . . . Λ [u)(f (χ) ; H' {w ))]> 
Ι [χ ) 1 k 

= <*,., ,; [//+(ω' (x;w ) ) ] Λ . . . Λ [Η* (ω' (χ; w ))]> 
Γ l x J 1 k 

= <(// +*Ψ)(χ); [ω' (x;w ) ] Λ. . . Λ [ω7 (χ ; w ) ] > = <A*V * ο [ / * * ψ ( χ ) ; ω' (χ; w ) A . . . A U ' ( X ; W ) > 

1 k 1 k 

Λ k * + * # Λ k * + * 
= ω' ( A s 7 ο// φ ) ( χ ; ν Λ . . . Λ w ) = Γ (ω' (As' ο// ψ ) ) ( x ; W Λ . . . Λ W ). • 

1 k 1 k 

5 . T H E D E P E N D E N C E O F \ O N A S U B A L G E B R O I D 

Let (A,Œ·,·1,γ) be a given regular Lie algebroid with the Atiyah séquence 
0- >g c >A >E >0 and consider the algebroid (T(R χ A, I ·,· 1' , id χ γ) - the 
product of the trivial Lie algebroid TIR with A [2l]. Its Atiyah séquence is 

0 > O x g < > T\RxA i d x y ) TRxE > 0. 

For the mapping f:N >[RxM, xi >(£,x), take the pullback fA{mxA). 
Λ ^ ^ 

Notice that f (7TRx A) = {(r (w), 0, w) € Ε x (TIR x A) ; w e Λ}, and that the homomorphism 

F :Λ > 7IRxi4, w ι > (Θ 
t t 

(θ^ being the null tangent vector at t e\R) of regular Lie algebroids (see the proof of 
Th.4.3.1 in [17]) is represented in the form of the canonical superposition 

F pr 
F :A—UfA(mxA) ^TRxA (12) 

t t 

(see [17; s.l.l]). It is not difficult to see that 

5.1. ^ t
: A >fA{T\RxA), w\ >(y(w),0,w) f is an isomorphism of regular Lie 

algebroids. m 

Définition 5.2. Two Lie algebroids B^B^cA (both over (M,£)) are said to be 1 

homotopic if there exists a Lie subalgebroid BcTRxA over (IRx M,TRx E) such that 
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the isomorphism F maps B ^ onto f^(B) for t = 0 , 1 (equivalently, if, for V € J 4 , we 
have: veB ο (θ ,v) eB). 

B is called joining B q to B . 

Remarks 5.3. (1). The Lie algebra bundles adjoint of homotopic Lie subalgebroids 
need not be identical, see the example below. 

(2). Let a Lie subalgebroid BcTRxA join B q to B^ and let B ^ = Fj1 [f * ( B ) ] c A 
for t eR. It turns out that B is not uniquely determined by the family {B^;t€lR}, see 
the following example. 

Example 5.4. Consider a trivial principal bundle P = M x G , a C°° curve a:M »G 

and a closed nontrivial Lie subgroup of G, H*G. Let f) and 3 be the Lie algebras of 

H and G, respectively. Then, for each t e\R, Ρ^: = Μ χ (a^H) c W x G is an //-réduction 

of P whose Lie algebroid - which is easy to obtain - equals B = TMxAd [f)] cTMx Q. 

t at 

Consequently, A [and also its Lie algebra bundle g = MxAd [ï)]] dépends on t in 
t. t a ̂  

gênerai. Define a vector subbundle B c TIR χ [TM x g) as follows: 

1 ( t, χ) v a" 1 *t a t t * ' 

B is a transitive Lie subalgebroid (of the product of Lie algebroids TRXÎTMXQ)) 

joining the family { B ;t€R}. 

If, additionally, G is abelian, then B^ = constt but B dépends on the curve a; 

therefore B is not uniquely determined by the family {B^\te\R}. 

5.5. We Compare the relation of homotopic subbundles of a principal bundle P with 
the relation of homotopic subalgebroids of A(P). 

Let P = (P,ir,M,G, · ) be a G-principal bundle over a manifold M. It détermines a new 
G-principal bundle IR χ P = (IR χ P, idx π, IR x M, G, · ' ) with the action 
( t, z) · 7 a = ( t,z-a). For an arbitrary £e(R, the mapping 

F :P > f*((R χ P) (=.M (IRxP)) 

ζ 1 > (πζ,(t,z)) 

is an isomorphism of G-principal bundles. 
Take a Lie subgroup H c G (nonclosed and disconnected in gênerai). Two 

//-réductions P cP, t = 0 , 1, are said to be homotopic [ 10] if there exists an 
- 1 * -

//-réduction PclRxP such that F^ maps P^ onto f^(P) for t = 0 , 1. P is called joining 

P to P . 
0 1 
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5.5.1. Notice that P is determined uniquely by the family of //-réductions 
Ρ^ = Γ ^ [ ^ ( Ρ ) ] , t e R [which follows from the observation: ζ € Ρ ̂  (t ,z) € P] . 

5.5.2. If // is closed and Ρ are defined by C°° cross-sections <τ̂ :Μ >P/H for 
t = 0 , 1, of the associated bundle P/ff >Nt then, P q and Ρ are homotopic if and 
only if and cr are homotopic in the usual sensé (via cross-sections, of course). 

Proposition 5.5.3. If P^( 1 1 ) P, t=0,l, are homotopic H-reductions of P, then 
the Lie subalgebroids B : = di U ( P )] and B : = di [AÎP )] of Λ(Ρ) are homotopic. The 

0 0 0 1 1 1 
conv/erse theorem is not true unless P^ and G are connected. 

Proof. Let PQ,P^CP be two //-réductions of P. Assume that they are homotopic, 
and that P c R x P is a joining //-réduction. Then Β: = <p[A{P) ] c fRx A{P), 

<p:/l(RxP) = 7(RxP)/C s ι > (v, [w] ) eTRxTP/G =T\RxA{P) 

being the canonical isomorphism, is a Lie algebroid joining B q to B^. Indeed, one can 
easily see that F^:A{P) >f A(TRx A{P) ) equals the superposition 

dF ^ 
A{P) î-> Atf {RxP)) £ f * U ( R x P ) ) = f \ m x A ( P ) ) 

and then maps B onto f A(B) for t = 0 , 1. 

Conversely, assume that the Lie subalgebroids B q and B^ are homotoj>ic, say, via a 

joining Lie subalgebroid B of TRx/UP). This means that F ^ maps B^ onto f t(B) for 

ί = 0 , 1. Let P c R x P be the arbitrarily taken connected //-réduction corresponding to 
the Lie subalgebroid φ"1 [B] c Λ(Κχ Ρ ) , see 1.5.3.2. Put P : = F " 1 [f *(P) ] , t<=R. By its 
construction, {Ρ^,ί€Κ} is a family of homotopic //-réductions. Of course, P and Ρ ̂ 

are, for t = 0 , 1, two //-réductions corresponding to the same Lie subalgebroid B^. 
If P^ is connected, then, according to the fact that P^ and P̂  are intégral 

manifolds of the same G-right invariant distribution on P (see 1.5.3.2), we notice that 
Ρ = P [P ] for a point g € G . If, additionally, G is connected, g can be joined to the 
unit e e G , say, by a C°° family g , seR. The family Ρ : = P [P ], seR, détermines 

s s g„ t 
a homotopy between P̂_ and P^, t = 0 , 1. Therefore P q and P are homotopic. • 

5.6. For the further investigations, we fix 
• a regular Lie algebroid A = {A,l·,·1,γ) over (M,'£), 
• a flat connection λ:£ >Λ in it, 
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• two Lie subalgebroids J B Q , B^CA, both over ( M , £ ) , homotopic to each other via a 
joining Lie algebroid BcTRxA. 

λ détermines a flat connection in TIRx/1 of the form idxXiTRxE >T\RxA. 

This implies that the triad 

(7TRx A, idx\,B) ( 1 3 ) 

is an FS-regular Lie algebroid. Besides, we have that 

F t:U,A,B t) > ÎT\RxA,idx\,B) 

is a homomorphism of FS-regular Lie algebroids. 

Proposition 5.7. The characteristic homomorphisms Δ^, t = 0, 1, of ES-regular Lie 

algebroids (Λ,λ,Β^) are related to each other by the commutâtivity of the following 

diagram: 

Proof. By the functoriality of the characteristic homomorphisms of FS-regular Lie 
algebroids, we get the commutâtive diagram 

v.'here Δ is the characteristic homomorphism of ( 1 3 ) . 

Since i
0
 = ^ 1 ( s e e the proof of Th. 4 . 3 . 1 from [ 1 7 ] ) and f* is an isomorphism 
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(because f Q and are homotopic in the category of foliated manifolds and each of them 
is a homotopic équivalence in this category) therefore so f*=(/*) \ which implies 
our proposition. • 

+# Notice that if F , t = 0, 1, are isomorphisms, then Δ and Δ can be t r o# i# 
interpreted as équivalence homomorphisms in the sensé of the following définition. 

Définition 5.8. Let B 9B cA be two Lie subalgebroids of a flat regular Lie 

algebroid A (ail the three over (M,£)). We say that the characteristic homomorphisms 

Δ :H{g9B ) »//(£), t = 0 , 1, corresponding to B and Β , respectively, are 
t# t 0 1 ^ 

équivalent if there exists an isomorphism of algebras a : / / ( g , £ Q ) — ^ H ( g t B ^ ) such that 

Δ = Δ ο α . o# ι# 

Theorem 5.9. If B and B are homotopic, then Δ and Δ are équivalent. 
o i r o# i# ^ 

Proof. Recall that ^ t

 = P r

2 ° ^ t *
 s e e (12). Ê is an isomorphism of FS-regular Lie 

algebroids, therefore 

F^//(f*(0xg),f A£) -JL>H{g9B ) 

is an isomorphism of algebras. It remains to consider the homomorphism 

pr :HÎ0xg9B) > Hif (0 x g), f B). Identifying (via the canonical isomorphism) the 

vector bundles f ̂ (0 x g) . * h s f (0 x g/h), we get (cf. the proof of Prop.5.2.l) 
' t 

(i) f A ( a d A ) = a d \ 
t B , 0 X g f tB tf ti0Xg) 

(ii) pr^: k0°(SecA k(Oxg/h)") > k®° (SecA kf*(0 x g/h)*) 0 is the usual 

p u l l b a c k Φι >f^V. 

Theorem 5.9 follows now from Th.1.6.2. • 

6 . C O M P A R I S O N W I T H T H E C H A R A C T E R I S T I C C L A S S E S 

O F A F L A T P R I N C I P A L F I B R E B U N D L E 

Given: 

(a) a G-principal fibre bunile F = (P,n,N,G,·), 
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(b) a flat connection in P with a connection form ω, 
(c) a closed Lie subgroup H c G and an //-réduction P'cP, 

let g and f) dénote the Lie algebras of G and //, respectively. Of course, i:P' c >P 

is an (//c—» G) -homomorphism of principal bundles and its differential 
ii:A(P') >A{P)t see [14], [15], [20; p. 289], is a monomorphism of the corresponding 
transitive Lie algebroids, see the diagram: 

Identify A{P' ) with Imidi) and h with Imidi)*. Then, for each zeP' , the 
ι x 

isomorphism z:o >σ , v\ > [A A ] (A :G >P, ai >za), see [17; s.5.1], 
maps f) onto h and détermines an isomorphism [z]:û/b — — > ( g / h ) . It is worth ι χ \ x 
recalling that 

(**) ζ is an isomorphism of Lie algebras provided that Q is the right Lie algebra 

of G, 

see [15], [17]. 

According to 3.4 above, we have a représentation ad , :A{P' ) > i 4 ( g / h ) such 
Ai P ) , g 

that J£ . , ^ ( [ι>] ) = [Ιξ,ι>]]], ÇeSeCi4(P'), ν e Sec g , and a représentation induced 
aaA( P ) , g oç 

by it a d A , :Λ(Ρ') > 4 ( A k ( g / h ) * ) . Consider auxiliarily the représentation Ai , 
Ai P ) , g f , g 

Df the principal bundle P' on the s/f)-vector bundle g / h , defined by 
Ad , :P' > L ( g / h ) , ζι > [ζ] , and the représentation j4dA, :P' > L ( A k ( g / h ) * ) 

induced by it (cf. [17; 5.3.2]). By the same argument as in the proof of Th.5.4.3 in 

17], to see that ad , is the differential of Ad , , we must only notice an 

A{ P ) , g F , g 

analogous fact concerning the représentations of Lie algebras and of Lie groups: 

1 >£nd(a/f)), v\ > [ad (v)], and H »GL ( a / f ) ) , h >[AdAh)]. By this, 
ad , is the differential of Ad , 

Ai p') , g p' , g 
Therefore, according to [l7;Props 5.5.2-3], we have a monomorphism 

# α k>o k , * k>0 k , # 
ic:(A ( f l /b) ) 7 — ^ ® (SecA ( g / h ) ) ;c θ (SecA ( g / h ) ) / C 

iefined by the formula κ(ψ) (x) = i4dA, ( z ) ( 0 ) , z e P ' , and being an isomorphism when 
D / is connected. 
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H ~ 
It is needful to verify that κ commutes with the dif f erentials d and δ acting on 

# * k > 0 k , * R the spaces (A(g/b) ) ; and θ (SecA (g/h) ) / 0 , respectively (notice that the spaces of 
cohomology of thèse are domains of the characteristic homomorphisms). The differential 

k>o k # H 
δ in θ (SecA (g/h) ) 0 is defined in 3.5 above, whereas, the differential d in 
(A(g/f)) ) I must be defined by the formula 

<d " ( 0),[w ] A . . . A [ W ] > = Σ (-Dl + J < 0 , [[^ ,w ]]A [ W ] Λ , . . ί . , , j...> 
1 k I J 1 

1<J 
WI9 ' * * FWK€ ^ ; ^ e r e ί ν

4»^1 * s the ^racket in the left Lie algebra of G [we get it 
following the fact that this differential must be the one for which the canonical 
isomorphism G * x = ((A(ô/b) ) (also (Afl ) = (A(â/b) ) ) should be an isomorphism 

Ω ( C / H) I I ' 

of DG-algebras, see [10]]. 
— |ς k+1 H 

Taking account of remark (**) above, the equality δ<>κ = κ <>d may now be 
obtained immédiately. 

Theorem 6.1. The characteristic homomorphisms Δ :H(q,H) >H (N) of the triad 
# dR 

(Ρ,Ρ' ,ω) (see [10]) and Δ ://(g, Λ(Ρ' ) ) >H (M) of the FS-transitive Lie algebroid 
(A(P),λ,Λ(Ρ')) (λ corresponds ίο ω) are related by the following commutâtive diagram: 

Proof. We prove the commutâtivity of this diagram on the level of forms. For the 
purpose, consider the diagram 
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in which 

,ω Λ.,.Λω >) , ω :Λ(Ρ) »g being the 
connection form corresponding to λ, 

(b) Ω (M) dénotes the space of h-horizontal forms on A(P), 

A ( Ρ ) , ïi 

(c) p maps real forms on A(P' ) into right-invariant forms on P' , θ ι >θ, see 

remark 2.11(2) above. 

k ^ k 
We recall that, for ψ e (Λ (fl/b) ) , the form Δ(ψ) eQ (M) is defined uniquely in 

* ι * * k * such a way that π' (Δ0) = — -i <A s (0), ω Λ . . . Λ ω> where i:P' c »P, whereas 
k! 

S:Q >ô/b and π'ιΡ' >N are the canonical projections. On the other hand, Δ(Ψ) 
k ^ X 

for Φ € (SecA (g/h) ) 0 is given as one for which ?'(Δ(Ψ) ) = (di ) (φ(Φ)). 

Therefore, to end the proof, we need to assert the equality 
* k * * k * Λ A 

i <Λ s ( 0 ) ,ωΛ. . .Λω> =po (di ) (<Λ s (κι//),ω Λ . . . Λ ω > ) only. Thanks to the relation 
ωλ onA =ζοω [15; Ch.4], [15], we get, for w € T P 7 c l P, 

* / k * A A \ 
po (di ) ( <Λ s (κ0), ω Λ . . . Λ ω >) (ζ; w Λ . . . Λ W ) 

ν ' 1 k 

k * A A A A 
= (A s (κψ),ω Λ...Λω>(πζ;π (w ) A . . . A Ï Ï ( W ) ) 

I z 1 I z k 
= /c! * (Aks*(fa/0 ) (πζίω^ίπζίτι"4 (w ) ) Λ . . . Λ ω Α ( π ζ ; π Α (w )) 

I ζ 1 I ζ k 
= k! ·(A ks * ( K 0 ))(πζ;ζ(ω(ζ;w ) ) Λ. . . Λ ζ(ω(ζ;w ))) 

1 k 
= k\-^"[ζ]"1*^), [ζ(ω(ζ;ν ) ) ] Λ. . . Λ [ζ(ω(ζ; w ))]> 

1 k 
= k! ·<ψ, [ω(ζ;ν ) ] Λ . . . Λ [ω(ζ; w )]> 

1 k 
k ^ = <Α S (ψ),ϋΛ. . .Λϋ>(ζ;ν Λ...ΛW ) 

1 k 
* k * 

= i <Α s (ψ) ,ω Λ. . . ALO>(Z;W A . . . A W ) . • 
1 k 

6.2. The tangential characteristic classes of a partially flat principal bundle. 

Consider now Ex.3.1(2), i.e. a triple {Α,Β,λ) consisting of a transitive Lie 
algebroid A on M, a transitive Lie subalgebroid B of A and a partially flat connection 
λ in Af namely, flat over a given involutive distribution FcTN. The characteristic 

F F F F 
homomorphism à^:H(g,B ) >H^(M) of the FS-regular Lie algebroid {A tB ,A|F) will 
also be called the tangential characteristic homomorphism of the system (Α,Β,λ) and the 

cohomology classes from its image - the tangential characteristic classes of the system 
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(Λ,Β,λ). 
Let now the system (Ρ,Ρ',ω) be given as in Ex.3.1(3). It détermines the FS-regular 

F F 
Lie algebroid (Λ(Ρ) ,Λ(Ρ'} ,A|F), and via this a characteristic homomorphism 

àF:H{gtA(P' f) >ff (M), 
# F 

called the characteristic homomorphism of the system (Ρ,Ρ',ω). The cohomology classes 
from the image of Δ should be called the tangential characteristic classes of the 
system (Ρ,Ρ',ω). By construction, they measure the independence of ω and P' - exactly 
the same as the exotic characteristic classes of a partially flat principal bundle 
[10]. To investigate this more precisely, we shall dévote a separate work. 

7 . T H E C A S E OF A T C - F O U A T I O N 

This chapter is devoted to giving a class of the FS-regular Lie algebroids coming 
from TC-foliations (exactly on the ground of the theory of nonclosed Lie subgroups) 
whose characteristic homomorphisms are not trivial. 

Fix an arbitrary TC-foliation (Ai,^) with the basic fibration π :M >W and 
b 

dénote by A (M, ? ) = (A (W, 9 ), l · , · 3, ? ) its Lie algebroid; see [17; Ch.7] for notations and 
terminology. A{Mt$) is a transitive Lie algebroid on the basic manifold W. 

A) Interprétations of various objects 

In [18] there are given interprétations of a foliation of the basic manifold W and 
a partial connection in A{Hy^). Namely, any distribution F on the basic manifold U 

détermines a subbundle F: = α" 1 [β'1 [A {M, V ) F ) } ( = π ^[F]) of TM where A(Mt 3 )F = γ'1 [F] 

and 

7.1 [18; 6.1] The correspondence Fi >F establishes a bijection between 

involutive C°° distribution on W and distributions F on M such that (1) Ε cF, (2) the 
. b 

space Sec{F) nL(Mt&)) générâtes at each point xeM the entire tangent space F^ , (3) 
F is involutive. n • 1 
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Each distribution F on M satisfying conditions (1)*(3) above is called an 
involut ive ^-distribut ion. 

By a partial connection over F in a transitive Lie algebroid A = {A, [[ · , · 1, γ) over 
M, F being an involutive distribution on M, we mean [18; 4.1] any linear homomorphism 

r 

X:F >A such that γ<>Χ = id^ , i.e. any connection in the regular Lie algebroid A . 

Assume further that Λ = Λ(Μ,?) as above. Let F c TW be any involutive distribution and 

λ:F > i 4(M,^) r - any partial connection in AÎM,$) over F. Put G*: = α""1 [β" 1 [ImX] ]. 

7.2 [18; 6.2] The correspondence X\ establishes a bijection between partial 

connections in A(M,&) over F and distributions CcTM such that (1) E r\C = E, (2) 
b 

E + G = F [F = n~1[F], see [18; 6.1]), (3) L(M,$)r\SecC générâtes at each point 
b v b* ' 

xzM the entire vector space C . 
— 00 

In particular, such a distribution C exists and is C . A partial connection X is 

flat if and only if the corresponding distribut ion is involut ive. m 

Each distribution G on W satisfying (1)*(3) above is called a partial 

^-connection over involut ive ^-distribution F. 

Now, we give interprétations of Lie subalgebroids, of the Lie algebroid 

7(Rx A[M9&) and of the relation of homotopy between Lie subalgebroids. 

Consider a transitive Lie subalgebroid B c A(M,3). Via the family of canonical 

isomorphisms β :Q >A _, and epimorphisms α :T M >Q , xeMt χ = π (x), we 
χ ! χ I x x x I x b 

can define a family of vector subspaces 

Β. : =α" 1[β" 1 [B ]] c Γ M, xeMt 

I x x x I x x 

which constitûtes a vector subbundle B of TM. 

Lemma 7.3 (An interprétation of Lie subalgebroids of A(Mt&)). The correspondence 

Β ι >B establishes a bijection between transit ive Lie subalgebroids B of A{Mf3) and 

vector subbundles B of TM such that 

(1) F c B, 
(2) E +£=Ttf, 

b 
(3) the Lie algebra Sec(B) η L { M g é n é r â t e s , at each point xeMt the entire 

space B 
ι x 

The very easy proof will be omitted. • 

Each vector subbundle B of TM satisfying (1)^(3) above will be called an 

3-subalgebroid. 
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We now assert that the Lie algebroid TIR x A (1'1, "J) is isomorphic to the Lie 

algebroid A(lRxM,~) of the foliation (lRxM,~): = (IR,"J) x (M,"}) being the product of 

the discrete foliation"} of llR with the given foliation (M,"}). First of all, we notice 
d 

that the tangent bundle E of ~ equals E=OxEcTIRxTM (=TClRxM)) and the basic 

fibration 1i: of ~equals 1i: =idxrr :lRxM~lRxW. Of course, the leaves of ~ and 
b b b 

~ through (t ,x) e IR x 1'1 are equal to L = {t} x Land L = {t} xL. 
b (l.x) x b(l.x) bx 

respectively. Finally, we see that O=TClRxN)ri: "" TlRxQ. 

Theorem 7.4 (An interpretation of the Lie algebroid TlRxAU1,"})). If A(lRxH,~) 

(=Qj:J is the space of the Lie algebroid of the foliation (lRxM.~), then the mapping 

"':A(lRxM,~)~TlRxA(M,"J), [(v,w)] ~(v,[wJ), 

veTIR, weQ, is an isomorphism of Lie algebroids (for a definition of the equivalence 

relation:::i, see [17; s.7.2]), 

We start with the following 

Lemma 7.5. The canonical equivalence relation :::i in Q is given by 

(v, w) :::i (v' ,w') ~ v = v' and W:::i w' 

[or v, v' e TIR and W, w' E Q. 

Proof of the Lemma. A real number aelR and a transverse field (elCH,"J) 

determine a cross-section of 0 of the form 

(14) 

Clearly, to prove this lemma, it is sufficient to show that (14) is a transverse 

field for ~. 

vector field 

arbi trar i ly a 

Let (=X for a foliate vector field XeL(M,"}). We perceive that the 
a 

(a'at'X) on IRxH is an ~-foliate vector field. For the purpose, take 

field Ye I (~), Obviously, Y is tangent to the submanifold {t} x 1'1 for 

each telR, and YI{t}xM is tangent to the foliation ({t}xM,{{t}xL; Le"J}), Write 

a a 
[(a'at'X), yJ = [(O,X. ). YJ + [(a'at' 0). YJ. 

The field [(O,X,)'Y]I{t}xM=[(O,X)I{t}xM,Yj{t}xM] is tangent to ~ because X is 

foliate, To investigate the second component, take any simply distinguished open set 
1 p 1 q 

UcH equipped with distinguished local coordinates (x , ... ,X.y .... ,y) for "J. It is 

evident ( 1 P 1 q that x, ... ,x ,t,y , ...• y) are distinguished local coordinates for ~ 0D-. 
1 a 

Therefore YllRxU=[a (x,t,y)'-. a I I X 
and, by this equali ty, the field 
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[ ,Υ]\\RxU equals [ a - ^ ^ a ^ x , t ,y ) •-^-] = a--|f (x, t , y ) - — t , thus it is 
. a a x - a * a 

tangent to 3F . This gives that [(a- —,X),Y] is tangent to SF, and that (a-^^X) is R xi/ d t ol 

î£-foliate. The fact that (14) is a transverse field is implied now immediately. • 

The lemma above sets up that φ is an isomorphism of vector bundles. 

Proof of Th. 7.4. Since the anchor ï:A(RxM,3) >T(Rx7V is defined by 

y([(v,v)]) =(v,y([v])), veTR, weQt we see that the diagram 

commutes. To prove that Sec ψ: Sec A(RxNt§) > Sec (TIR χ ΑίΜ,ΪΡ) ) is a homomorphism of 
Lie algebras, it is sufficient to show that the following mapping 

KiLdRxM,?) >Sec{T\RxA{Mf$))> Χι >ψο€{Χ) , 

is such a homomorphism (c:i(DRxM,?) » Sec A (IR x M, §) is an isomorphism described in 
[ 17; Prop.7.2.2]). First of ail, we observe that a vector field X€Ï(IRxW) is 

^-foliate if and only if Χ = /*-^τ + Χ Λ for an ^-basic function f and X eï(IRxM) such 

β 

that X 0(t,-)€Ï(M) is 2-foliate. Let X = f - ^ + X o be an ^-foliate vector field. Then 

i//oC(X)(t,x) = f (ύ,χ)·^! t + c ( X 0 U , · ))(x) 

(where ί € Ω (IRxW) is a function such that f = f<>n ). Since, for X = f - -5T + X 0 and 
g bJ Ol 0 

Y = g-^r + yrt belonging to L(lRxW,5), we have, 
ot ° 
[x,Y] = [f.JÎ + xo,g.-JÎ + Yo] 

after taking account of the equalities 

[ X 0 > I | ] ( t , x ) = - ^ U 0 ( i , x ) ) , 

X7IgT= (y.0.c(x7))(D, 

we get 
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K([X.y]) =0o C(TxTT) = ( f - | f ( W ° c ( X 0 ) ( g ) - (γοψοα{Υ0){ΐ))·~ 

= lip°c(X) ,0«c(Y)l = Œ k ( X ) ,κΙΥΠ, 

according to the définition of the bracket in the Lie algebra Sec(7TRx A(.M,$) ) 

[21]. • 

Let B Q , cA{M,$) be two Lie subalgebroids of A{M,9). Dénote by B Q , B^CTH the 
vector subbundles of ΓΜ for ? corresponding to B q , Β , respectively (see Lemma 7.3). We 
recall (Def.5.2) that B q is homotopic to B^ if and only if there exists a transitive 
Lie subalgebroid B c TIRx M{Mf$) such that ν e B^ ο (θ^ ν) € B for c = 0 , 1. The 
following proposition is a simple conséquence of the définitions. 

Proposition 7.6 (An interprétation of the relation of homotopy between Lie 
subalgebroids). B Q and B^ are homotopic if and only if there exists an involutive 

subbundle BcTIRxTM such that 

(1) O x E c B , 

(2) B + (OxE ) = ΓΚχΓΜ, 
b 

(3) the Lie algebra SecBr\L{Rx M,?) générâtes at each point (t,x)€ÎRxM the 

entire space Β , 

(4) u e B ^ ο (θ for r = 0 , 1. • 

B) The characteristic homomorphism of a partially flat Lie algebroid of a 
TC-foliation 

In this section we describe in the language of a TC-foliation (W,?) the 
characteristic homomorphism of a flat regular [in particular, transitive] Lie algebroid 

F F 

of the form (Λ(Α/,?) ,B ,A|F), where, Bc/HM,?) is a transitive Lie subalgebroid of A, 
F is an involutive distribution on the basic manifold W9 and λ is a connection in 

F F 
A{Mt&) whose part lying over the distribution F is flat. Dénote by γ and γ the 

F F F * 
anchors in A{Mt3) and in Β , respectively, whereas by ω the connection form of 
A|F:F >A{Mt&)F

t being de facto the restriction of the connection form 
ω:Λ(Μ,5) >g of λ. 

By (SecA k(g/h) ) we dénote the space of cross-sections of A k ( g / h ) * invariant 
F F with respect to a suitatle représentation uf the reguiar Lie algebroid Β , see Ch. 3; 
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this means that Γ € ( S e c A k ( g / h ) * ) 0 if and only if Γ e S e c A k ( g / h ) * and 
1F 

( Κ Χ Γ , Ι ν ]Λ...Λ[ν]>= Σ <Γ,[ν ]Λ...Λ[[ζ , ι; |]]Λ...Λ [ ι ; ι ]> 
1 k 1 J k 

for Ç € S e c ( B f ) , v eSecg. 

Now, recall that the characteristic homomorphism of the flat regular Lie algebroid 
F F 

(i4(A/,?) ,B ,X\F) is - on the level of forms - given by the formula 

A ^ : k ® ° ( S e c A k ( g / h ) * ) / 0 >ap{W) 

<{àFr)(x\w A . . . A W ) > = <Γ(χ), [c/(x;w ) ] A . . . A [ ( / (x; w )]> 
* 1 k 1 k 

— ~ F F ~ where X € V and w e £ , while w e B are vectors such that y {w ) = w . Next, we 
i I x 1 I x 1 1 i 

f 
recall that commutes with differentials and gives rise to a homomorphism of algebras 
F F F F Δ :H(gtB ) >H {W). The homomorphism Δ vanishes if the Lie subalgebroid B can be 
# F # 

homotopically changed to one which contains Im[X\F). 

C) The case of a TC-foliation of left cosets of a Lie group 

Hère we give a more detailed description of the examined homomorphism Δ of the 

Lie algebroid A{G;H) of the TC-foliation (G,?) of a connected Lie group G by left 

cosets of a connected nonclosed Lie subgroup HcG. The Lie algebroid A{G\H) was 

precisely examined in the works by the author [17], [16]. In [18] there are given 

interprétations of conditions (3) from 7.1. and 7.2 above to that F and C are 

//-right- invariant. 

Proposition 7.7 (An interprétation of transitive Lie subalgebroids of A{G;H)). A 

necessary and suificient condition for an involutive G°° distribution B on G to be an 

^-subalgebroid is the realization of the conditions: (1) £ c B, (2) £ + B = TG, (3) B 
b 

is H-right-invariant [i.e. B =R [B ], gzGt Î6ÏÏ]. • 
ι gt t ι g 

The proof of this Proposition, being analogous to that for Prop.7.3.1 from [17], 
will be omitted. 

Example 7.8. Let ÏÏ» 9 dénote, as usual, the Lie algebras of //, H and G, 

respectively. Let bcQ be a Lie subalgebra such that (1) bcb, (2) ï) + b = Q, then, 

by the same argument as in example 7.4.7 from [17], we assert that the G-left-invariant i 

distribution B^cTG determined by b (i.e. the one tangent to the foliation 

{gF;geG}, F being the connected Lie subgroup with the Lie algebra equalling b) is a 
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transitive ^-subalgebroid. 
It seems to be interesting that b can be interpreted as a "connection", but in 

another Lie algebroid. Namely, let H be the connected Lie subgroup of G whose Lie 

algebra equals bnf). Of course, fycbnfycf), therefore HcH^cH, thereby H^=H. 

Then, it is clear (see [ 17; Ex. 8.4.7]) that B^ is an ^-connection where ^ is the 

foliation of left cosets of G by H . 

7.9 (An interprétation of the Lie algebroid TRxA(G;H)). Seeing that the foliation 
(Κχσ,3*):= (R,? ) x (G,5) is equal to the foliation of the Lie group (RxG (being the 
product of the additive Lie group of reals, with G) by left cosets of a Lie subgroup 
JxH, θ being the null Lie subgroup Θ = {0} of R, we assert that the Lie algebroid 
TRx A(G;H) is isomorphic - according to Th. 7. 4 - to the Lie algebroid A(Rx G;θ x H). 

7.10 (An interprétation of the relation of homotopy between transitive Lie 
subalgebroids of A[G;H)). Assume that fîQ, B^cTG are two transitive ^-subalgebroids 
and let B c 7TR x TG (=T((RxG)) be a transitive f-subalgebroid joining BQ to B^. 

Thanks to Prop. 7.7, we may équivalently change condition (3) from 7.6 above - assuming 
that fî is a c " subbundle - to 

(3') B is θxiï-right-invariant. 

Définition 7.11. Two Lie subalgebras C 9 , £ = 0 , 1 , fulfilling 

hcb^ and ï) + b^ =Q (15) 

for £ = 0 , 1 will be called homotopic if the corresponding transitive Lie subalgebroids 

B, and £, are homotopic. 

Exercise 7.12. We présent some sufficient conditions for two Lie subalgebras to be 

homotopic. Consider TRx 9 as a trivial Lie algebroid on (R. 

(1) Assume that two Lie subalgebras b^cQ, £ = 0 , 1 , fulfilling (15) for £ = 0 , 1 

are given. If there exists a transitive Lie subalgebroid B CTIRxû, such that 
ο 

(1) its isotropy Lie algebras b^ fulfil (15) for each £elR, 
(ii) iidxAd{h))[B ] = B forteRandheH, 

o l ί o l t 
then b and b are homotopic. 

0 1 y 

(2) Let two Lie subalgebras bQ and b^ of Q fulfilling (15) for £ = 0 , 1 be given. 

Then they are homotopic if there exists a d° vector subbundle b of the trivial vector 

bundle Rx Q over R, such that 
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(i) the fibre b^ is a Lie subalgebra of Q fulfilling (15) for each teIR, 

(ii) b t =bt for t = 0 , 1, 
(iii) there exists a C™ mapping v:\R >cj realizing the conditions: 

(1°) - [μ, i>] eSecb for each μeSecbt ο t 
(2°) Ad{h)ov - ν eSecb for each heH. 

In spite of thèse two propositions, the problem of the finding of two différent 

but homotopic Lie subalgebras is open. This is, however, a side problem. 

7.13 (The characteristic homomorphism for a transitive case). In this section we 

calculate the characteristic homomorphism of the FS-transitive Lie algebroid 

U(G;//),B,A) in which 

(i) B = B^ is the Lie subalgebroid of A{G\H) determined by a Lie subalgebra b c Q 

fulfilling (1) f)cb, (2) ï) + b = Q, see Ex.7.8 above, 

(ii) λ is the flat connection determined by a Lie subalgebra c c q fulfilling (1) 

c + i) = 9, (2) cnî) = f), see Example 7.4.7 from [17]. 
(According to [16] for such a Lie subalgebra c to exist, n^{G) must be infinité). 

Dénote by and γβ the anchors in A{G\H) and in B , respectively. 

7.13.A (The domain of the characteristic homomorphism ) . Recall that [17; 8.2.4] 

<p:G/i?xl)/f) >g , (g,[w])i > [ X (g)], g e n~ (g), is a global trivialization of 
ν b 

the Lie algebra bundle g of A{G;H)t and that the typical fibre î ) / f ) of this bundle is 

an abelian Lie algebra [ X stands for the left-invariant vector field on G generated by 

'jt vector w],. [17:8.1.3]. The equalities h = g n £ and dim(î) π b / f ) ) = rankh yield that 
φ induces a global trivialization φ1 : G/H x ï)/f) >h of the bundle h. Next, φ and φ1 

give a global trivialization φ :G/H X f)/ (i) nb) >g/h of the bundle g/h. Using φ , 

we can modify 

(a) any cross-section ν € Sec g/h to the b/ (ÏÏnb)-valued function 

v:G/H > ï ) / ( ï ) n b ) , 

(b) analogously, via the canonically induced global isomorphism 

A k ( g / h ) =G///xA k(î)/ (ÏÏnb) ) * - any cross-section Ψ e S e c A k ( g / h ) * to the function 
* : G/ff >Ak(ÏÏ/(î)nb))*. 

One can easily see that 

<*, [c(X ) ] A . . . A [ C ( X )]>(g) =<*(£), (w ] A . . . A [ W ] > 
vi v k ι k 
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for geG/H and w €Ï); hère [c(X )] dénotes the cross-section of g/h determined by 
_ 1 _ Σι 

c(X )€Secg, i.e. [c(X )]=soc(X ), see 3.1 above. 
Analogously to the proof of Prop.7.4.1 from [17] we assert that: 

— Let Ψ € Secf\K(ÇJ/H)*. Then Ψ is invariant [see 3.3-4 above] if and only if Ψ is 
constant. 

As a corollary we obtain that 

k ^ 0 \F Χ ~ _ X 
Χ: θ (SecA (g/h) ) / β A(ÏÏ/(bη b)) , (16) 

^ ι > Ψ (= the value of Ψ) 

is an isomorphism of algebras. 
Notice also that 

<Ψ, [w ) Λ . . . Λ [w ]> = <*(g), [<p f( [w ] ) ] Λ . . . Λ [<^( [w ] )] (17) 
1 k * 1 * k 

for an arbitrary geG/H. 

K>0 k , * -
In the space θ (SecA (g/h) ) ^ c , the differential Δ defined in 3.4 above works. 

# = 
Via Χ we can carry Δ over to the space A(f)/(br\b)) and obtain a differential δ. 

We can easily obtain that δ = 0 [hence δ = θ] . For the purpose, take 

* e A (Ç/iÇnb)) and let * = *(*) for Ψ € (SecA k(g/h) ) c. For w w eî), we 
have, by ( 1 7 ) , 

<δΦ, [W ] A. . .A [W ]> = <(δΨ) , [W ] A. . .A [W ]> = <ΟΦ, [c ( X ) ] Λ . . . Λ [ θ ( Χ )]>(g) 
O k 0 k v Q v k 

= - Σ (-l) l + J«i\ LIEIX ),c (X ) 1 ] A [ C ( X ] Λ . . . I . . .3. . . X g ) 
K J v i V J v o 

= - Σ (-D 1 + J<*. [c(xr , ) ] Λ . . Λ.. .j.. . x i ) 
i < j [ v i ' v J J 

= - Σ ( - 1 ) 1 + J < * . [ [ V V 1 ] A . . . J . . . J . . . > 

K J 

= 0 

because [w^, ] e b c b π b [b/b is abelian!]. As a corollary we obtain an isomorphism 
of algebras 
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//(g,Β) = tf(A(b/(ï)nb))*,0) = A(ïï/0) nb) ) * 

and the fact that the forms from /^Δ^ are closed. 

7.13.B (The characteristic homomorphism). Take into account the connection λ 

determined by the G-left-invariant distribution BcTG generated by c, see 7.13. Let ω 

be its connection form. The conditions c + h = g and c n h = f) détermine a 

décomposition g/F) = h/h ® c/b- Define ω :g >b/b as the linear mapping being the 
ο 

superposition 

ω :Q >g/b = ÏÏ/b® c/b >F)/f). 

ο 

Take also the canonical linear homomorphism p:b/b > ï ) / ( ï ) n b ) and put 

ω = ροω :g >î)/(î)nb). 
1 ο 

Let L :TG >TG dénote [as usual] the differential of the left translation by 
g 

the élément g€G. Since the left translation by g is an automorphism of the foliation 
={a//;a€G}, therefore L détermines an automorphism L of the vector bundle 

b _ b _ _ g 
T(G/H). Identify canonically T_{G/H) with g/b. In particular, we have a linear 

e 
isomorphism L :g/b >T {G/H). Without any substantial difficulties one can obtain 

g g 
the commutativity of the following diagram 

fjr an arbitrary élément geG. 

Recall that Δ ί Ψ ) = ΔΨ € Q{G/H) is, for Ψ e (SecA k(g/h)*) 0 , defined by formula 
(8) (see 3.2 above). 

Lemma 7.13.B.1. Δ^(Ψ) is, for Ψ as above, a G-lef t-invariant form on G/H [i.e. 

Δ (Ψ)«=Ω (G /S ) under the notation of [8]) such that its value Δ (Ψ) €A k(g/ÏÏ) at ê is 
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equal to 

<Δ (Ψ) , [w ] A . . . A [ W ]> = <Ψ,ω (w ) Λ . . . Λ ϋ (ν )> (18) * ê 1 k 1 1 1 k 

where w^eb are vector s such that [w ̂ ] - [w ̂ ] (eg/ïï). 

Proof. We prove the equality 

<Δ ί*) ,1 {[w ] ) Λ . . . Λ Ι ( [ W ])> = <*,ω iw )Λ...Λω (w )>, 
* g g ι g * ' i l ι k * 

g e G , which, in particular, implies (18) as well as the equality 
_ # 

( (L ) (Δ (Φ))) = Δ (Φ) . This last implies, of course, the G-lef t-invariance of 
g # ê * ê 

Δ^(Φ) eQÎG/H). 

At first, we notice (see the diagram above) that if v = L ( [w] ) (€T_(G///)) for 

w«=g, then, for ΐ>€β fulfilling (? )(v)=v, we can put v: =: [L (w)], i.e. 
ν: = β©α(ί. (w)) where w e b is a vector such that [w] = [w] (<=g/*lf)). Therefore, 
according to the diagram above and equality (17), we have 

<Δ (Φ) ,L ([w ]) Λ . . . Λ Γ ( [ W ] ) > 

= <Φ_ , [u)(g; [L (w ) ] ] Λ. . .Λ [ω (g; [L (w )]]> 

= <Φ,ω (w )Λ...Λω (w )>. • 
1 1 1 k 

Corollary 7.13.B.2. There exists a homomorphism of algebras Δ^ making the 
following diagram commutative: 

χ 
(A(â/b) ) dénotes here the DG-algebra of vectors invariant with respect to the adjoint 

représentation Adx:H >GL(A(â/ï)) ), see [8;PropXl]. The forms from are closed 

and Δ^ is defined by the equality 

<Δ (Φ),[ν ] A . . . A [ W ]> = <Φ,ω {w )Λ...Λω (w )> (19) * ι k ι ι ι k 
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for Φ e Ak(ÏÏ/ (ÏÏ nb) ) * and w eg, where w eb are vectors such that [w l^Iv^] 

( β β / ï ï ) . -

Put as the superposition 

Δ :A(ï)/(ÏÏnb))* >Z((A(fl/ÏÏ)*),) >//( (A(fl/ÏÏ)*) , ) ( = H(G/H)). 

From the above we obtain the fundamental (for the situation considered) diagram 

Δ 
//(g,β) - > (G/H) 

dR 

A(b/(bnb))* //(A(a/b)*);) s //^(G//7) . 

If G is compact, then the right arrow is an isomorphism [8]. 

Theorem 7.13.B.3. Δ is trivial if and only if ccb. 

Proof. (a) If ccb, then Δ is trivial. We prove the triviality of Δ^ provided 
that ccb. The epimorphy of b c >g >fl/ÏÏ» as well as (19), imply that it is 

sufficient to show the equality ω (w)=0 for web. For this purpose, take an 
arbitrary point w e b and write w = w^+w^ for w^eï) and w

2

e c ( c^)- Then 

w = w - w eb, so ω (w)=p(w )=0. 
1 2 1 1 

(b) If ctfb, then Δ is not trivial. Assume ctfb. Take w e c\b and let w e b be 

a vector such that [w] = [w] in g/f). Of course, w - w e ï)\(ï) n b) and 

w = (w - w) + w e î) + c. Take a covector Φ e (f)/(f) nb) )* such that Φ( [w - w] ) * 0. 
Then 

Δ (Φ) ( [w] ) = <Φ,ω (w)> = <Φ, [w-w]> * 0 . (20) * i 

Since Z((g/f)) ) ((A(g/b) ) ) is a monomorphism, (20) implies that 
Δ (Φ) * 0 . • 

Then, for compact G, each case c ci b is the source of the nontrivial 
characteristic homomorphism of a flat transitive Lie algebroid on the ground of 
TC-f ouations. 

Problem 7.13.B.4. The nontriviality of Δ means the impossibility of the homotopic 
changing of a Lie subalgebroid to contain the connection. Does the homomorphism Δ 
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possess this property ? 

7.14. The characteristic homomorphism for some nontransitive case 

If f c g is a Lie subalgebra such that Î)cf, then, [18; 7.5] the 

G-left-invariant distribution F(f)cTG determined by f is an involutive 

^-distribution, i.e. corresponds to some involutive distribution F(f) on the 

homogeneous space G/H and then to some foliation § of G/H. The leaves of § are of the 

form {a*//;a€L} where L is a leaf of §. F(f) is G-lef t-invariant and generated by 

f/f), besides, codimFif) = codimf. 

If c c <j is a Lie subalgebra such that ï)nc = f) and ï) + c = f (f as above), then 

[18; 7.6] the G-lef t-invariant distribution C(c) on G is a partial ^-connection over 

F(f) and, then, détermines some partial flat connection in A{G;H) over F(f). 

In this section we calculate the characteristic homomorphism of the FS-regular Lie 

algebroid (A{G;H)Fif}f>,λ ) in which 
(1) F(f) is the involutive distribution on G/H determined by a Lie subalgebra 

fcg such that ï)cf, described in [18; 7.5], 

(2) is the Lie subalgebroid of A(G\H) determined by a Lie subalgebra b c g such 

that f)cb, î) + b = g, see Example 7.8, 

(3) is a flat partial connection in A(G\H) over F(fd), determined by a Lie 

subalgebra c c g such that ï)nc = F) and ï) + c = f, see [18; 7.6]. 

It is simpler to give such examples in comparison with the transitive case. For 

example, f may be the Lie algebra of :.a maximal torus in G. 

Consider the following diagram: 

The FS-regular Lie algebroid considered has the characteristic homomorphism 

< ( f ) . - / / ( g ; B b

m ) ) — > HFinlc/H). 

7.14.A). The domain of Δ^. We are interested in the représentation 

S L Î p F ( f ) g

: f î b ( f ) >>4(A(g/h) ) defined in 2.3. Of course, this représentation is thè 
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restriction of a d A to the Lie subalgebroid B^lt) and will be denoted here (for 
Bb>9 b 

brevity) by ad\ Let ( S e c A ( g / h ) * ) ^ c ( ^ be the space of ad^-invariant cross-sections. By 
the définition, we have: 

* e ( S e c A ( g / h ) * ) / 0 ( r ) if and only if 

k 
( y ο ζ ) < ί , [ Η Λ . . . Λ [ ν ]>= £ <*p [V ] Λ. . .Λ [ Ι ζ,ν J ] Λ. . .Λ [V ]> 

1 1 k 1 j k 
ρ ( f ) 

for any ξ € SecB^ and , . . . , € Sec g . 

Consider analogously to 7.13A) the canonical isomorphism of vector bundles 
k * #— k - * ~ / — A (g/h) >G///xA ( w ^ n 5 ^ a n d dénote by Ψ the function on G/H with values in 

A k(î)/|^)* corresponding to a cross-section Y€SecA k ( g/h) . 

Proposition 7 . 1 4 . Α. Ψ«= (SecA k (g/h)*) ̂ e if and oniy if * = £ f l * for 
f l€Q°(N,?), and Ψ eSecA k(g/h)* such that Ψ are constant. 

b i i 

k * ~ 
Proof. A cross-section Φ g SecA (g/h) for which Ψ is constant is invariant with 

respect to a d A (by the same argument as in [17; 7.4.1]) so, thereby, with respect to 
ad^. A cross-section * = £ f , where f and Φ^ are as in the text of our proposition, 
is ad A-invariant because, for ν € β Γ ( Γ ) , we have 

F b\x 

adA

F{v){lfi^^)=lf{(x)'adA

F(v)^i) + ( ^ ( v J M f 1 ) - * (x) = 0 . 

Let Ψ , . . . ,Φ, € SecA (g/h) be cross-sections such that Φ are constant and their ι Λ * Λ ^ l k 
values i/^,...,^ form a basis of Atb/f^) . It is évident that each cross-section 
*€SecA ( g/h) is of the form Φ = } Ύ Φ for some f en {G/H) and Ψ as above. For 
ξ e SecBF

b< , 

r r 

Therefore, when Φ is invariant, we have (y<>ξ) (f1 )ψ = ο for each i; equivalently, 

X(f l)=0 for each X € Ï ( £ ) , this means that f{ eQ° (Mt$). • 
b 

The mapping 

K : ( S e c A ( g / h ) * ) / 0 ( n > n^w^î'AiVç^)* 
ι i · Λ 

Π ι > f -ψ 
i r i 

is a correctly defined isomorphism of vector spaces (identifying thèse spaces). 
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In the space (SecA k(g/h)*) j C ( ̂  the differential δ defined in 3.4 works. Via κ we 

can carry out δ to the space Ω° (M, & ) ·Λ (b/û *J obtaining a differential ô. An 

b t)C\0 

analogous reasoning as in 7.13A) yields that δ = 0 [hence δ = 0] . As a corollary we 

obtain the equality 
ma,Bf

b< ) = n ° ( w , ? ) - A ( i ) / ^ b ) ^ 

7.14.B). The characteristic homomorphism. Let ω be the connection form of the 

connection under considération. The conditions ï ) n b = b and b + b == f détermine a 

décomposition f/b = ï ) / f ) ® c / f ) . 

Define ω :f »b/f> a s the superposition 

ο 

f _ + f / b = b/bec/b L ^ / j , 

and put ω^=ροω^ where p : î)/b > ï ) / ï ) n b is the canonical linear homomorphism. 

Analogously to 7.13B we obtain 

r( f ) 

Proposition 7.14.B.1. The homomorphism Δ , on the level of forms, is defined by 

the formula 

M Z ^ V ) d î i [ ν Ι Λ . , . Λ Ζ [W ] ) = £ f l ( £ ) < i / / . ω (w ) Λ . . . Λ ω (w )> 
* v i y g 1 g k i l l l k 

for f l€n°(W,?), 0 €Ak(ï)/ï:^k)*» w , ...,w <=f, where w,...,w e b . ^ f are vectors 

b 1 ί ) Π θ 1 k 1 k 

such that [w^] = [w^] (<=f/b). The form Δ#(ψ) for ! M A ( l ) / ^ n b ) is G-left-invariant. m 

Define auxiliarily the homomorphism of algebras 

Δ ί ί Λ ( δ / Β η / — » " m , , , ^ · * ' ^ 

where r % is the cohomology algebra of the complex Ω {G/H) of the 
M l ) , / F(i ) , / ' 

G-left-invariant tangential forms. 
Between Δ^ and Δ* there is a relation shown in the following diagram 

Assume that G is compact. Does the canonical inclusion 
ΩΓ(ί) /

( G / ^ ) C >Çl

F{i)iG^) iniuce a monomorphism on cohomologies 
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H (G/H) > >H (G///)? (It is not known whether the assumptions of theorem [19; 
F(f ) , / ' π f ) 

Th. 3.8] are fulfilled, it means that: does the action GxF(f) >F(f) extend to an 
action 7GxF(f) >F(f)? 

Proposition 7.14.B.2. Δ* is trivial if and only if ccb. 

Proof, (a) If ccb, then Δ 1 is trivial. The epimorphy of bnf >f/ï) implies 

that it is sufficient to show the equality w j b n f = 0. We do it in the same way as in 

7.13.B.3. 

(b) If ctfb, then Δ 1 is not trivial. Analogously to 7.13.B.3 we prove the existence 

of (b/fy^ such that Δ ^ ( 0 ) * Ο . Since the action of G on G/// is transitive, 

Ω° (G/ÏÏ)s|R and £(Ω* (G///)=0, which yields the monomorphism 
F ( f ) , / F ( f ) , / 

Ζ ( Ω Γ ( η ; ( G/ S ) )> ^rcn j ( G / S î - Therefore Δ* (J) * 0 . • 
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P A R T III 

I I I . T H E C H A R A C T E R I S T I C C L A S S E S O F P A R T I A L L Y F L A T R E G U L A R L I E A L G E B R O I D S 

1 . T H E W E I L A L G E B R A O F g 

A) Preliminary définitions and properties 

We return to the gênerai considération of a regular Lie algebroid A over M with 

the Atiyah séquence Ο > g c > A >E »0, equipped with a connection λ 
having ω as its connection form. We have: 

g is a vector bundle of Lie algebras, 
* * xk k * Agf χ is an anticommutative graded algebra; (Ag( J '-^hg^ , x e W , 

V9lx is an (anti)commutative graded algebra over the graded vector space g with 
# # # 2 1 + 1 * 

éléments of degree two only, i.e. ( V g f ) = V g^ and (Vg^ ) = 0 , 

Wg^:= hg^eVg^ is the anticommutative (bi)graded tensor product of the 
anticommutative graded algebras. The bidegree [Wg ) k , 2 1=A k g * s ^ g * leads one, as 

v l x ; . I χ I x 
usual, to the total degree (Wg^ ) Γ = ̂  (l ĝ̂  ) k > 2 1 . Wg as an algebra is generated 
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by 1, w β> 1 and 1 ® w , for w e g 
ι χ ' 

Put 

( " g ) 1 " 2 1 := A k g % v V . 

(1fg)k'21 :- S e c ( V g ) k ' 2 \ 

(%)Γ :- Sec(W9y ( = k + f 1 = r ( ^ g ) k ' 2 1 ) , 

% == β ( % ) Γ . 

W g is a bigraded algebra with the multiplication defined point by point. It is 
called the Weil algebra of the bundle g of Lie algebras. Each élément of Wg is locally 
[even globally, which can be proved by using the paracompactness of W] a sum of 

# 
cross-sections of the form 0 Λ . . . Λ 0 ® Γ ν . . . ν Γ , φ , Γ e Sec g , k, 1 > 0. 

* 1 k ι ι i j 3 

In the above, k, i, r are nonnegative integers. 

v # * 

Remark 1.1. Under the gradation considered, the homomorphism (da>) : V g 

defined in Chapter 2C is of degree 0. Analogously, introducing the "point by point" 
structure of an algebra in l®°Sec\/lg* and the gradation as above, we see that 

(d<j)V: ^ S e c V V >Ω (Ai) 
A 

is a homomorphism of algebras of degree 0. 

Three fundamental operators i,d,6 in Wgt as weil as the mapping k :Wg >Ω^(Αί), 
will be introduced in two steps passing through some isomorphisms φ :Wg^ >Wg^ , 

xeti [i.e. some change of variables]. This method, due to G. Andrze jczak [2], enables 
us to define and prove the property of thèse objects in the clear and technically lucid 

manner. The main value is that the différential d is then defined by one simple 

formula. 

We begin with defining some auxiliary objects k, i, d, Θ. 

1.2. Without any difficulties we can show that, for each point xeM, there exists 
exactly one homomorphism 

k :Wg >AA* 
χ I x i x 

— — -Χ A ^ 

of algebras of degree 0 such that k (1) = 1, k (w ® 1 ) = ω (w ) and 
X X X 

k (l®w ) = (da>) {w ) when w € g . k is directly defined by the formula 
χ χ I χ x 
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k {ψ ® Γ ) =ωΑ(ψ ) Λ (<ίω)ν(Γ ) 
X X X X X X X 

X X — 
for φ €Λα and Γ <=Vg . The homomorphisms k , xeM, thanks to this formula, give 

χ I χ χ I χ x 
rise to the homomorphism 

k : % >Ω (M) 

A 

of algebras of degree 0 defined point by point: k ( Φ ® Γ ) ^ = k^ ( ® ) , 

Ψ e ke°SecA kg*, Γ el®°Sec\/lg*. It has the property 
Μ Ψ β Γ ) =ω Λ(Φ) Λ (do>)V(r) ( 1 ) 

for Ψ and Γ as above. 

Lemma 1 . 3 . For each point xeM and for ν e g , there exists exactly one 
χ ι χ 

antiderivation i :Wg >Wg of degree - 1 such that 
χ , ν I χ I χ 

— X X 
il) i ( w ® 1 ) = <w , y > , 
( 2 ) i (l®w )=-(w oad ) ® 1 , ν €g 

χ , ι > χ v x i x 

It has the properties 

(i) i |(l/g ) ° ' ° = 0, 

_ χ χ χ χ * χ 
(ii) i (l®w v...vv ) = ~ Γ w <>ad ® w v,..i...vw , i > 1 , 

χ , ν χ ι ι j ι νχ ι ι 
(iii) Ι (Φ <8>Γ )=i (Φ ) ® Γ + ( - l ) k * β 1 · ί ( 1 ® Γ ) v/hen Ψ € A kg* 

χ , ι / χ χ χ ν χ x x χ * χ 1 * 
and Γ <=Vg* , 

χ I χ 

(iv) L,v^3lf'zi^(w3if-^.{w9ixr^-i\ 

Proof. Uniqueness. The uniqueness of i is évident because every antiderivation 
is uniquely determined by the values on generators. Properties (i)*(iv) of each 
antiderivation i fulfilling ( 1 ) and ( 2 ) above are évident. 

Existence. First step. For i > l , there exists exactly one linear mapping 

w i * * w i - i * ι :V g >g ®V g 
χ , ι > χ

 3 l x 3 l x 3 l x 

1 ^ X X X A # 
such that ι (w v...vw ) = V w oad ® v v...i...vw . It has the property χ > ν χ ι ι γ ι ν χ ι ι ^ ^ ^ 

i m + n (Γ ν Γ ) = i m (Γ Μ · Γ + 1 · Γ ·Ί η (Γ ) 
χ , ν χ l x 2 χ x » v x 1 χ 2 χ 1 χ ^ ' ^ χ 2 χ 
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for Γ €V mg* and Γ <=Vng* . 
I x 3 l x 2x * l x 

Second step. For k > 0 and J > 1, there exists exactly one linear mapping 

7 k , 2 1 ,., \k,2\ >>k-l , 2 1 x k + 1 , 2 ( 1 - 1 ) 

X 

such that J k , 2 1 ( * ® Γ ) = i (Φ ) e Γ + (-1 ) k * 0 1 · 1 1 (Γ ) when Ψ € A kg* and 
# **vx * x v x x x x x * u x x x I x 

Γ eVg, . 
X \ X 

Third step. Accept, additionally, 

i 0 , 0 = 0 and i k ' ° :fl/g )k'° > f Wg ) k ~ 1 , 0
f * β ΐ ι >i Ψ ® 1, for l o i . 

χ , ν χ I x ' v l x y χ ν χ x 

— k 2 1 
Ail the linear mappings i * , Je, 1 > 0, together define the operator 

x > v x 

I = Γ i k , 2 1:tfg >Wg . 
χ , ν * » »> „ I x \ x 

k , 1 > 0 * 

Of course, i satisfies (1) and (2). 
x >vx 

It remains to show that i is an antiderivation of degree -1, i.e. that 
x * v X 

i (Θ -8 ) = i (Θ )·θ +(-1) ΓΘ - i (Θ ) for Θ e [Wg ) Γ , Θ eWg , which is 
χ ,ν χ 1 2 χ , ν χ 1 2 1 χ , ν χ 2 1 * * \ xJ 2 3 l x 

easy to obtain by considering éléments homogeneous with respect to the bigradation 
unly. • 

For a cross-section i>€Secg and for SeWg, the formula 

M Β χ 1 > i (Θ ) 
χ,νχ X 

defines an élément i (Θ) of Wg and 

I :Wg >Wg9 θι >i (Θ), 
V V 

i'j an antiderivation of degree -1. The smoothness of i (Θ), according to properties 
v 

(i)-s-(iii) from Lemma 1.3, follows from the smoothness in the cases Θ = Ψ ® 1 where 
Y€SecA kg*, and Θ=1β>Γ where Γ € Sec g*, which is easy to investigate. i has the 
property 

i (Ψ«>Γ)=ΐ Ψ ® Γ + (-l)k*®l-i (ΙβΓ) (2) 
ν ν ν 

for *eSecA kg* and TeSecV^g*. 

Lemma 1.4. For each point xeMt there exists exactly one antiderivation 

8 9 



d :Wg^ _ — ^ ^ 9 [ of degree + 1 such that 

— χ χ 
(1 ) d (w e l ) = U w , 

( 2 ) d ( U w ) = 0 , w €q . 
χ I x 

It has the propertles 

(i) d x | ( V g ( j f ) ° * O = 0 , 

(ii) d (w A . . . A W e>l)=V(-l) w Λ . , . ί . , . Λ ν «>w , k > 1 , χ ι k γ 1 k i 
— — X X 

(iii) d (Φ ® Γ ) = d (Φ ® l ) « u r w/ien Ψ e Λα and Γ € Vg ; in 
χ χ χ χ x x x l x x l x 

particular, d ( 1 ® Γ ) = 0 , 
X X 

(iv) d x l { V g i x ) * - 2 l ] c { V g i f _ 

(v) d is a differential, i.e. d od = 0 . 
X X X 

Proof. The uniqueness of d and properties (i)*(v) are évident. 
X 

Existence. First step. For k > l , there exists exactly one linear mapping 
~k k * k -1 * * 

d :Λ g » (Λ g ) ® g such that 
χ I χ I χ I x ^k , * * - , , . 1 + 1 * - * * d (w Λ.,,Λν )=;(-l) V A . . . 1 . , . A W ® W . 

x 1 k ^ 1 k i 
1 

It has the property d m + n ( Y Λ Ψ ) = (d m* )·Φ ®l + (-l) m* β 1 · 3 η Ψ when 
χ 1 χ 2 χ x l x 2 x l x x 2 x 

Ψ € A mg* and Ψ € A ng* . 
l x 3 l x 2 x a l x 

Second step. For k > l and i > l , there exists exactly one linear mapping 
dk'2l:(Wg ) k > 2 1 >(Wg Λ*-1*2"*1* s u c h that d k , 2 1 ( * ® Γ ) = (d k* ) · 1 Θ Γ for 

x v l x ' v l x ; x x x x x x 

k * 1 # 
Φ €Λ g and Γ €V g 

χ I χ χ I x 
Third step. Add d°'° = 0 and put d = Y dkf2l:Wg >Wg . Of course, d 

x x x I x l x X k, 1 > 0 
satisfies ( 1 ) and ( 2 ) . It remains to show that d is an antiderivation of degree +1 

X 

which is easy to obtain by considering éléments homogeneous with respect to the 
bigradation. • 

Ail homomorphisms d , xeM, define point by point a homomorphism 

d:Wg >Wg 

being an antiderivation of degree +1 and a differential. It has the property 
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d(*eT) =d(*e 1)·1βΓ\ #eSecA kg*, reSecV^*. (3) 

Lemma 1.5. For each point xeM and for v e g , there exists exactly one 

Χ I X 
dérivation θ : ^ 9 , * ^ 9 ( °f degree 0 such that 

— # # 
( 1 ) θ (ν β 1 ) = - w <>ad <8> 1, 

x > v x v x 

(2) θ ( 1 ® w* ) = 1 ® ( - w* © ad ). 
*>vx vx 

It has the property 

(i) θ (Ψ β> Γ ) = (Θ ΛΨ ) ® Γ + φ ® (θ νΓ ) when Ψ €Ag* and Γ €=Vg* , 
χ χ χ χ χχ χ χ χχ χ I χ χ I χ 

Λ V * * 
where θ and θ dénote the only dérivât ions in the algebras Ag and Γ € Vg , 

* * * i x χ l x 
respectively, induced by -ad :g^ >g^ 

X 

Proof. The uniqueness and property (i) are évident. Formula (i) gives the 
sought-for operator. • 

For v € Sec g and BeWgt the formula MBX i >θ (Θ ) defines an élément 
χ,νχ x 

of Wg and 

θ :Wg >Wg, Θ ι >θ (Θ), 

is a dérivation of degree 0. 

The adjoint représentation ad -.A > A{g), according to 2.1.3 and 2.2.1 from 
A 

[17], détermines a représentation of A on each associated vector bundle such as A g, 
ι k * ι * 

ψ g, A g ®V g , etc. It will be denoted - for brevity - by ad. 

Lemma 1.6. (1). The linear operator 

?eSecAt is a dif f erent iat ion of the Weil algebra Wg, 

(2). ϋ = θ for y«=Secg. 
a d °v v 

Proof. Trivial calculations on simple tensors. • 

The relationships between the operators i , d, θ , j£ are the following: 

1.7. (1) £ °d = d°£ 

a d o Ç a d o Ç 
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(2) i °d + d°i = θ . 

Indeed, & : = £ o d - d o j g is an antiderivation, whereas g : = i od + d°i i S a 

1 a d o Ç ad<>£ 2 ν ι / 

dérivation, of the Weil algebra Wgt therefore to prove (1) and (2) it is sufficient to 
show that & = 0 and S = θ on the cross-sections Ψ ® 1 and 1®Ψ, Ψ € Sec g , which 

1 2 ν 
is trivial. 

Proposition 1.8. For BeSec/\ g e>V g , 

d*k(8) = kd(8) + - -<d 90, (ωΛ. . .Λω) <s> (d 9wv. . . v d ^ ) ) . 

k! · 1 ! 

k * 

Lemma 1.8.1. (1) For Ψ € SecA g , 
k d ( * ® 1) = — ·<Ψ,(ί9(ωΛ. . .Λω)>. 

k ! 

(2) For » € S e c A k g * and r e S e c V V » 

<d 9 (Ψ ® Γ ) , ω Λ . . . Λ ω® d9a> ν. . .vd 9u) 
= <ό 9Ψ,ωΛ. ..Ait)>A<r,d9(i)V..,vd9(i)) + (-1)*<Ψ,ωΛ. . .Au)A<d 9 r,d 9£()V. ..vd 9u>. 

Proof. (1): Thanks to the linearity of both sides with respect to Φ, it is 
sufficient to show this on the simple tensor Φ of the form Ψ = 0 Λ . . . Λ 0 where 
ψ € Sec g*. 

k d ( ^ Λ . . . Λ ^ ® 1) = k ( Ç (-l) 1* 1^ Λ. . . i...Λ φ^ ® Ψ^ 

= Γ (-1) 1 + 1ω Α ( 0 A . Α φ )Λ(dω) V(^A ). 
j 1 k 1 

On the other hand, for x e W and ^ ^ Λ ( by II. 1.3 and II. 2.2 above), 

— · < 0 Λ . . . Λ 0 ,ό 9(ω Λ . . .Λ ω)>(χ; ν Λ . . . A U ) 
k ! 1 k 1 k + l 

= —·<(// Α. . .Αφ , Γ ( - 1 ) 1 + 1 ω Λ . . . Λ ω Λ ό 9 ω Λ . . . Λ ω ) > ( χ ; ν Λ . , . Α Ι / ) 
k ! X Y 1 r k ^ » ν ' ' \ k + l 

i i - 1 t i m e s 

= , 1
 t · <<ft Α...Αφ ,d 9WA ( i ) Λ. . . Λ ω>(χ; V A...AV ) 

( k - 1 ) ! Ν Ύ 1 * V » ν ·' 9 1 k + l 
k - 1 t i mes 

= ^ ... •Ysgntr^ Α...Αφ tdsu){x;v AV ) AW{X\V )Λ...Λω(χ;ν )> 2 - ( k - D » u ° *ΐχ ^ k x σ(ΐ) σ(2) σ(3) σ^+ΐ) 
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<φ ,ά9ω{χ;ν Αν )> ... <ψ ,d9a>(x;v / 4 Ι Λ ν )> 
ψΐχ' σ(ΐ) σ ( 2 ) * k x σ(ΐ) σ ( 2 ) 

= 'Ysgno" <ψ ,ω(χ;ν t )> ... <ώ »ω(χ;ν )> 
2-(k-D! ^ 1 * σ(3) k x σ(3) 

! ! 

(Γ 1 

. < 0 ι Α . . . Ϊ . . . Λ ^ , ω Α . . . Λ ω > ( χ ; ν ( 3 ) Λ . . . Λ ν σ ( ^ ι ) ) 

= Ç (-1)1+1((ίω)ν(ι//ι) Λ Ι Α ^ Λ . . . λ . , Λ ^ Μ χ ^ Λ . . . Λ ν ^ ) 

= (£ (-1) 1 + 1ω Α ( 0 Λ. . . i. . .Λ 0 ) Λ (do> ) V ( 0 ))(χ;ν Λ . . . Λ ν + ). 
1 

(2): For xeM and ν € Λ , we have 
i I χ 

<(1 9 (Ψ®Γ) ,(ί)Λ. . .Au®d 9(jv. . .vd 9u)(x;v A...AV ) 
x ' 1 k + 2 1 + 1 

N ' 1 k + 2 1 + 1 

= —- Ysgn<r-<dsV{x;ν ) <8> Γ +Ψ ®d gT(x;v ), 
k! · ( 2 1 ) ! u & <r ( 1 ) χ χ <r ( 1 ) 

(ωΛ...Λω)(χ;ν Λ. . . ) ® (d9o)V. . .vd9(j)(x; . . ,Λν )> 
σ ( 2 ) ( r ( k + 2 1 + l ) 

= — - ·Γsgnσ<d 9Ψ(x; ν ), (ω Λ . . . Λ ω) (χ; ν A...AV )>· 
k! · ( 2 1 ) !' U 6 σ ( 1 ) σ ( 2 ) < r ( k + l ) 

·<Γ ,(d 9uV...vd 9w)(x;v Λ . . . A U ) > 

χ σ ^ + 2 ) < r ( k + 2 1 + l ) 

+ — - · Γ 5 # η σ · < Ψ , (ω Λ . . . Λ ω) (χ; ν Λ . . . A U ) > · 
k! · ( 2 1 ) ! L a 6 χ σ ( 2 ) < r ( k + l ) 

σ 

•<d9r(x;i/ f ),<Γ , (d9cjv. . ,vd 9u)(x;v ο χ Λ. . . Λ ν )> 
< τ ( 1 ) χ σ ^ + 2 ) < r ( k + 2 1 + l ) 

= (<d 9$,u>A. . .Au><r,d9wv. . .vd 9u> 

+ (-1)\φ,ϋΛ. . .Au>A<d 9 r,d 9uv. ..vd 9u))(x;v iA.. , A U k + 2 i + i ) 4 ° 

le # 

Proof of Prop.1.8. It is sufficient to consider Θ = Ψ e Γ for Ψ € SecA g and* 
TeSecV^*. According to (1), Th. II. 1.3, II.2.2, II.2. 13, the lemma above and (3), 
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d * k ( * e * . ) =CÎA(U\A ( d c j ) v D 

= d^(--<*,wA. . . Λ « » Λ (dcj)Vr) + ( - D V i A d ^ - ^ r . d ^ v . . . v d 9 w » 
k ! 1 ! 

= [<d 9*,wA. . . Λω> + <#,d 9 (ωΛ. . . Λω)>] Λ (do>)Vr + 

+ (-l) k.-L—.<*, WA. . .Aw>A<d 9r,d 9uV. . .vd 9u> 

= kd(Ψ® 1) A k ( 1 ® Γ ) +^ Tj T-[<d 9*,a>A. . .Αω)Λ(Γ^ 9αιν. . . v d 9 w ) + 

+ (-l) k-<*,G>A. . .Aw>A<d 9r,d 3uV. . .Vd 9 (J>] 

= îcd(^® Γ) + — -d 9 (ty«>r),(JA...A(j<8>d9(jv...vd9cu>. • 
k ! • 1 ! 

Let ( W g ) k o 2 1 dénote the space of cross-sections invariant with respect to the 
' / \k 21 / k ^ 1 ^\ 

"adjoint" représentation of A on [Wg) ' [ =Λ g ®V g J. Put 

( % ) ° o ° is equal to £2 ° (M , y ) , of course. 

The following follows easily from 1.6.(1). 

1.9. ( W g ) / 0 is a subalgebra of the Weil algebra Wg. • 

1.7.1 implies 

1.10. d maps invariant éléments of Wg into invariant ones, defining an 

antiderivation of algebras 

Whereas 1.8 and II.1.7 yield 

1.11. k restricted to the invariant cross-sections 

— A 
commutes with the differentials d and d , giving - on cohomologies - a homomorphism 

ο 

of algebras. u 
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However, k is unimportant because the space //( (Wg) ̂ 0 ,d ) is trivial: 

This follows from the fact that some chain homotopy joining id to 0 is defined by the 
family of invariant linear homomorphisms of vector bundles 

c = 0:Λ g > Λ g , k> 0, 

and 
k, ι A k * wi * A k +1 * w i - i * , v n c :Λ g ® V g > Λ g β V g , i > 0, 

* * ( - 1 ) Λ * * Λ W Λ,,.Λν ® Γ V. . .V Γ I > · Τ W Λ . . . Λ ν Λ Γ ® Γ ν . . . 5 . . . ν Γ . 
1 k l 1 k+1 e % 1 k s i 1 

s = 1 

B) The change of variables in Wg^ 

Proposition 1 . 1 2 . There exists exactly one isomorphism 

φ :Wg > Wg 
x 3 l x 3 l x 

„f algebras of degree 0 such that 

(1) φ (1) = 1, 
x * * 

(2) φ (w β 1 ) = w Θ 1, 
χ 

(3) φ ) = ΐ Θ ν - ô w ® 1 , ν eg 
χ χ I χ 

where δ dénotes the différent ial in the algebra Λα , defined in II. 2.6. 
χ ι χ 

Proof. The uniqueness is évident. To prove the existence, take two linear mappings 

<p , φ :Vg >tfg satisfying the conditions 
χ + χ - I χ I χ 

(i) φ Al) = 1, 
χ ζ 

{Ζ) φ ΛΓ ν.,.νΓ ) = rffl®r ±ό (Γ Γ «=g* , Ι > 1 . 
χ ± l x 1 χ JJ^ i x χ i x ' i x 3 l x 

Such mappings exist and are exact ly the only ones. They are homomorphisms of 
Γ * Ί 

algebras of degree 0 [the degree Γχ = 2 for R

X

€ 9 | x J a n d fulfil 

- r \ / 1 * ι 1 / A 2 ( 1 ~ m ) * ^ \ ' / m * ï 

Clearly, there exist two linear mappings φ , φ :Wg >Wg such that 
x + χ - ι χ ι χ 
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(4J φ .(Φ ® Γ ) = Φ β1·$ .(Γ ), Φ sAg* , Γ <=Vg* . 
± χ± χ χ χ χ± χ χ I χ χ Ι χ 

They are of degree 0, are homomorphisms of algebras (which can be easy to prove by 

considering tensors bihomogeneous only), and fulfil the property 

X X X X X 
(3_,_) φ ) = 1 ® w ± δ w e l , w €σ 

Ζ χ ί χ 1 x 

To end the proof, put φ : = φ . To see that φ is an isomorphism, we check the 
X X - X equalities φ °φ =id, φ °φ = id. Both sides of thèse are homomorphisms of 

x - x + x + x -

algebras, therefore it is sufficient to notice them on the generators, which is 

trivial. • 

Ail the isomorphisms φ , X€M, establish an isomorphism of algebras 
X 

<p:Wg >îfg, 

'?(®){χ)=φ (Θ ), X € # . By the proof above, 
X X 

< / ) " 1 ( Φ ® 1) = Φ ® 1 and (/>~1(1®Φ) = 1 Θ Φ + Ο Φ ® 1 

χ 

hold for Φ e Sec g . 

Besides, φ establish linear homomorphisms of vector bundles 
X 

<p :Ag ®V g > Ag ®V g , 

k , 2 1 A k * . , 1 * 1 r A k + 2 ( l - m ) * w m * x 
<p :A g ®V g » e (A g ®V g ) . 

The following equality holds 

^ k , 2 1 o ( v î / ( » r ) = Φ ® 1 - (< /Λ 2 1 ο ( ΐ » r ) ) , * € S e c A k g * , r e S e c V g * . (1) 

k 2 1 
Proposition 1.13. φ ' is an invariant homomorphism. 

Proof. It is needed (see Il.Ch.l) to prove only that 

£ ( φ Κ , 2 1 ο Θ ) = ( ^ k , 2 1 o £ Θ (5) 
a d o Ç a d o Ç 

for ξ € Sec Λ and Θ e SecAkg ®Vlg . As usual, it is sufficient to consider 

0 = ι/ΐ ιΛ...Λ^Γ ιν...νΓ ι, ι/̂, Γ ̂ € Sec g*. By (4) and 1.6(1), 

2 J * > k , 2 I ° 0 A. . .Λΐ/f ® Γ V. . . V Γ ) 
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= J£ (ψ Λ . . . Λ 0 0 1 · ( < ρ ° , 2 1 ο ( 1 « Γ ν.,.νΓ ))) 

= £ ( 0 Λ . . . Λ 0 ® 1 ) · ( φ 0 , 2 1 ο ( 1 ® Γ V . . . V T ) ) + 

a d o ç τ 1 r k 1 1 
+ 0 Λ . . . Λ 0 0 1 - J E ( φ ° , 2 ο ( ΐ 0 Γ )·...·1®Γ )) 

= £ 0 Λ . . . Λ JE J Λφ ) Λ . . . Λ 0 ® 1 · φ 0 , 2 1 ο ( 1 ® Γ V . . . V T ) 
I 1 a d © Ç i k 1 1 

+ 0 Λ . . . Λ 0 0 1 · ^ 0 , 2 ο ( 1 ® Γ )·...·£ ( < ρ ° , 2 ο ( 1 θ Γ ) ) · . . . · Φ ° , 2 ο ( 1 ® Γ ). 
1 k V 1 a d ο ξ ν 1 ' 1 

On the other hand, 

k , 2 1 Q ^ , Λ . . . Λ 0 0 Γ V . . . V T 1 

= ¥ > k , 2 1 o f £ ( 0 Λ . . . Λ 0 )®Γ V . . . V T + 0 Λ . . . Λ 0 0 # (Γ V . . . V T ) ) 
v a d o ç * l * k 1 1 ψ\ * k a d ° Ç ι ι J 

= <Ρ* , 2 1°(Σ^ A . . . A J E ( 0 ) Λ . . . Λ 0 0 Γ ν.,.νΓ + νγ 1 ad<>£ * i * k 1 1 

+ 0 Λ . . . Λ 0 ® Γ Γ ν. . . ν JE (Γ ) ν.,.νΓ ) 
* 1 * k ^ 1 a d o ç 1 1 ' 

i 

= Γ 0 Λ . . . Λ JE ( 0 ) Λ . . . Λ 0 0 1 · φ ° ' 2 1 ο ( 1 ® Γ ν.,.νΓ ) + 
I 1 a d © £ i k 1 1 

+ 0 Λ . . . Λ 0 , β l - J > 0 , 2 o U 0 Γ ) · . . . ·φ°'2ο{\ ®!Ε (Γ ))·... ·φ°'2ο ( 1 ® Γ ). 
1 k γ 1 a d o Ç i Ύ 1 

What lacks here to prove the veracity of ( 5 ) is the equality 

JE Λ J * > ° ' 2 o ( l * r ) ) = ^ ° , 2 o ( l 0 j g Γ) for TeSecg*. ( 6 ) 
a d ° £ v J a d ° £ 3 

However, 

2 , Λ ? ° , 2 « ( 1 β Γ ) ) = ΐ Θ 2 Γ - 2 (δΓ)®1, 
a d ° Ç v ' a d ° Ç a d ° Ç 

whereas 

^ O , 2 o ( l 0 j E Γ) = 1 β 2 Γ-δ(2 Γ ) ® 1 , 
a d o Ç a d o Ç a d o Ç 

therefore ( 6 ) follows from the following lemma. • 

Lemma 1 . 1 4 . £ (δΓ)=δ(£ Γ) for r<=Secg*. 

a d o ç a d o Ç 3 

Proof. For ι; , v^eSecg and the Jacobi identity, 

< J E a d o Ç ( ô D ,ι^ ι Λΐ ' 2 > = (τ°ξ)<δΓ , ^ ι Λ ^ 2 > - <δΓ, Ι ξ , ι ^ ΐ Λ ΐ ^ - <δΓ, ^ A I E Ç , ι̂ 2]|> 
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= ΊΓΟΞ)<Γ,ΙΝ ,Ν 1> - < Γ . Ι Ι Ξ , Ν Ι , Ν 1> - < Γ , Ι ν , Ι ξ . ν Ι1> 
1 2 1 2 1 ^ 

= ( Y Ç X R . Œ v . ν ] | > - < Γ , | [ ξ , Ι [ ι / , ν 1 = <JC „ Τ,ΙΝ,,0> 
1 2 1 2 a α ° ξ 1 2 

= < δ ( £ Γ ) , ν Λ Ι ; > . Β 

ad<>£ 1 2 

Corollaries 1 . 1 5 . ( 1 ) . Φ :Ag ®V g >Ag ®V g is an invariant isomorphism of 

\ 3 c t o r bundles, therefore (Φ1) 1 is invariant, too. 
( 2 ) . φ(Θ) is an invariant élément of Wg whenever Θ € If g is invariant. 

( 3 ) . Φ :{Wg) j 0 > ( W g ) ^ 0 , the restriction of Φ to invariant cross-sections, is 

an isomorphism of algebras. 

C ) . Operators i , d, θ and their properties 
V V 

We define the fundamental operators i , d, θ in Wg in such a way that the 
V V 

following three diagrams commute 

Of course, one can exécute this procédure on each level of xeM to obtain the 

operators i , d , θ on Ι/σ , with the relations i (Θ ) = i (Θ)(χ), etc. 
x ,ν χ X X y v χ \x X yV X V 

Proposition 1 . 1 6 . The fundamental properties of the operators i , d, θ are as 
follows: 

(1) θ = θ , 
ν ν 

( 2 ) Χ od = do£ 
a d o Ç a d o ç 

(3) 2 od + d o j = θ . 

Proof. (1): θ and θ are dérivations, therefore it is sufficient to show the 
- v v * 

equality θ (Θ)=θ (Θ) for the cross-sections Θ = Ψ®1 and Θ = 1 ® Ψ , Ψ € Sec q : 
V V 

θ (Ψ® 1) =Φ~1ΟΒ ο(ρ(ψ® 1) = θ Λ ( Φ ) β 1 = θ ( Ψ β ΐ ) , 
ν ν ν ν 

θ (1 ®Ψ) =Φ"1ΟΘ ΟΦ{1 ®Ψ) = ^ - 1 ο θ (1® Ψ - δ Ψ®1) 
ν ι> ι> 

= ̂ )"1(1®θ Φ - θ Λ ( δ Φ ) β 1) = 1 ® θ ν ψ + δ ( θ Φ ) Θ ΐ - θ Λ ( δ Φ ) ® 1 ) 
ν ν ν ν ν 
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= ι ® θ νψ = θ (1«>Ψ). 

(2): Evident because £ commutes with φ, φ 1 and d. 
a d ©ξ 

(3): i od + d©i = φ *<>i od°<p + φ *©d<>i οφ = φ ^ o f i ©d + d<>i ) 

= ψ 1 ο θ otf) = θ . • 
ν ν 

Proposition 1.17. (1). i is an antiderivation of degree -1 defined uniquely by 

the conditions 

" (1°) i (Ψ® 1) = i * , 
V V 

(2°) i (1 β φ ) =0, *<=Secg*. 

ft has the property 

( i ) i (Ψ®Γ) = ι (Ψ)βΓ for *€SecA kg*, TeSecV1**. 

(2). d is an antiderivation of degree +1 defined uniquely by the conditions 

(1°) d ( * ® 1) = 1 ®Ψ + δΨ® 1, 
(2°) d ( l ® ¥ ) is an élément of (Wg) ' ( = Secg ®g) such that 

i o d(l®Y)=e Φ for veSecg. 
V V 

Proof. (1) and (2) follow from 1.16(3). The rest is trivial. • 

The families of operators i , d , θ , indexed by xetf, give rise, for 
χ tvχ X χ yvχ 

k, 1 > 0, the linear homomorphisms of vector bundles 

.k,21 Ak * wl * Ak-1 * wl * 
ι :Λ g « V g > Λ g « V g , 

^k,21 Ak * wl * Ak * wl * 
:Λ g ®V g > Λ g ®V g , 

,k,21 Ak * wl * Ak+1 * wl * Ak-1 * x/l + l * 
d ' -.A g ®V g » Λ g ®V g e Λ g ®V g . 

1.16(2) implies 

1.18. d maps invariant éléments of Wg into invariant ones, defining an 

antiderivation 
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φ :[Wg) © >(^g) f o commuting with d^ and d^ gives an isomorphism 

therefore //((lfg)^0,d ) is trivial according to 1.12. 

1 . 1 9 . The cross-sections BzWg, for which i Θ = 0 for each y € Sec g, are called 
horizontal (or more precisely, g-horizontal) . Since is an antiderivation, ail 
horizontal cross-sections form a subalgebra of Wg denoted by [Wg) , . This construction 
can be executed on each level of xeM to obtain the algebra (Wg ) . Of course, 

v I x J i 
Be{Wg) i « Θ € ( ^ 9 | X ) Y

 f o r e a c h x^M-

Lemma 1 . 1 9 . 1 . [Wg) . = l®°[Wg)°'21 (s 1 l°Sec\/1 g* ) ; équivalent ly, ( ^ g ) . = R®Vg* 
for each xeM. In conséquence, each nontrivial homogeneous élément of [Wg) has an 

even degree. 

Proof. Let ψ = V > J ® H € (If g ) , i//J € Ag* and H e V g * ; the linear 
x j χ χ v l x y i χ I χ χ I x 

independence of H can be assumed [7; p.7]. Since 0 = i {φ ) = T i ( 0 J ) « > H , 

therefore [7; p.7], i (i//J)=0 for each v e g . But Π /Cer i =IR 
χ , ι> x x l x 1 1 * > ^ v 

v € q * 
y I x 

[7; p. 117], then we obtain ψ = r e IR c Ag . • 
χ I x 

1.6.2, 1.16(l)-(3) yield 

1 . 2 0 . d maps invariant and (simultaneously) horizontal éléments of Wg into such 

éléments, defining the antiderivation 

jί , o V 3 I x J i , / ° V 3 | χ J i f t ° 

D) The mapping k 

Put 

k = k o < p : % - >Ω (W). 

It is a homomorphism of algebras. 
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1.21. k :(Wg) 0 > Ω (M), the restriction of k to the invariant cross-sections 
ο / A 

commutes with the differentials d and d . 
ο 

Proof. For 0 € ( î f g ) / O we have, by 1 . 1 5 ( 2 ) , 

dAok (Θ) =dAok οφ{Θ) =kodo<p(9) =k°(pod{B) =k od (Θ) . • 
ο ο ο ο 

Proposition 1.22. k (Ψ β> Ψ) = ω Λ (Ψ) Λ Ω ν (Γ) f or Ψ € ke°SecA k g * , Γ 6 1è°SecV 1 g ^ . 

Proof. k ( > i ' ® Ψ ) = k ( Ψ Θ l · l® Γ ) = k ( Ψ ® l ) Λ k ( l® Γ ) = ω Λ ( Ψ ) Λ k ( l® Γ ) . It 
ν 

remains to verify that k ( U D = f i (Γ). But the mappings Γι » k ( l ® D and 
ν 

Γι >Ω (Γ) are homomorphisms of algebras such that 1 ι »1, therefore it is 
# 

uufficient to check the equality for r = }ifeSecg . 1 . 6 yields 

k ( l β ψ ) =£οφ(1 β Ψ ) = k ( l ® Ψ - δ Ψ β 1) 

= (dcj)V(*) -ω Α(δΨ) = <Ψ,ό 9ω>-ω Λ (δΨ) = Ω ν(Φ). • 

1.23. i °k = k°i for i; e Sec g. 
V V 

Proof. By the horizontal i ty of the form from ImQV [which easily follows from the 
horizontality of Ω ] , the property Th.II.1.3(vi') of the substitution operator 
i :Ω (M) >Ω (M), Lemma II. 2. 3 and 1 . 1 7 ( 1} ( i ) above, we get, for Φ € SecA k g * and 
ν A A * 

_ 1 > 0 _ w l * Γ € e Secv g , 

i o k ( * ® * ) = i (ω Λ(Φ) Λ Ω ν(Γ)) = i (ω Α(Ψ) ) Λ Ω ν(Γ) + (-l)kuA(>^) Λ i (Ω ν(Γ) ) 

= ω Α(ΐ (Ψ)) Λ Ω ν ( Γ ) =k(i (Φ)®Γ)= k(i (ΦβΓ)). 

Our proposition now follows from the linearity of k and i . • 

Remark 1.24 [The Chern-Weil homomorphism of A, revisited}. A conséquence of 1.22 
is that k maps horizontal éléments of Wg into horizontal real forms on A, giving a 
homomorphism of algebras 

k :(Wg) > Ω (N). 
/ v 1 i A t i 

This mapping is defined by the formula 

k (1*Γ) = Ω ν(Γ), Te l®°Sec\/lg*. 

Consider the further restriction of k, 
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d\(W9) .=0. (7) 

Let 0*Be[Wg) 0 . . By 1.20, dBe(Wg) 0 .. But Θ has an even degree (see 
/ , 2 I t 1 

1.19.1), whereas d is an antiderivation of degree +1, therefore dB has an odd degree. 
Using 1.19.1 once again, we assert that d 6 = 0 . 

According to 1.21 and (7), the forms from Imk are d -closed. Take into account 
O , J 

λ E the isomorphism λ^:Ω^ .(A/) >Ω^(Μ) II. s. 2. It maps d -closed forms into d -closed 
forms, see 11.(5). By the above, there exists a homomorphism of algebras 

1 è 0 ( S e c V 1 g * ) / O > HE(M) . (8) 

Γ ι > [λ^(Ω ν(Γ)] 

However, 

λ (Ω ν(Γ)) = λ (±--·<Γ,Ων. . .νΩ>) =1-.<Γ,λ Ων. . .νλ Ω> = — ·<Γ,Ω ν.,.νΩ >, 
* * 1 ! 1 ! * * 1 ! b b 

therefore [λ (Ω ν(Γ) ) ] = [ — ·<Γ,Ω ν.,.νΩ >]=h (Γ) according to [17; Ch.4], which 
* 1 ! b b A 

means that (8) is the Chern-Weil homomorphism of the regular Lie algebroid A. 

2 . R E G U L A R L I E A L G E B R O I D S A N D I D E A L S 

Take two vector bundles F' and F on a (paracompact, for recalling) manifold M, 
such that F' cF, and define (see [18; s.2]), for p ^ l , 

x€M I x 
» 

J . , is a vector subbundle of AF and the space of global cross-sections Sec(J p , ) 
sets up an idéal in the algebra Sec(AF); besides, Sec(J . , ) = (Sec I ,) , k> 1. 

Λ K r r 
00 

Let E cEcTN be two C constant dimensional distributions on M, and suppose £ 
to be integrable. Dénote by £ / J- the vector subbundle of F* consisting of ail covectors 

vanishing on E' . Using the above (for F = £*, F'=£ / J", p.= l) , we obtain an idéal ί in 
the algebra Ω^(ΑΠ (=SecA£*) of tangential differential forms, generated by 1-forms 
vanishing on £'. Standard calculations give the following 

102 



2.1 (The Frobenius Theorem for subdistributions). £' is involutive if and only if 

the idéal I is differential, i.e. d [I]cl. U 

Consider a regular Lie algebroid (Λ, \L · , · 1, γ) over a foliated manifold (A/,£) and an 
involutive subdistribution £'c£. This produces a new regular Lie algebroid 
(Λ',!·,·ϊ,7|4') in which Λ 7 = r " 1 [ £ / ] . 

In the sequel, the symbols A'* and £' x are understood with respect to the 
canonical dualities A xA >\R and £ x £ >(R (see [18]). Consider the idéal 

S e c ( I , ) e n (N) ( = S e c M * ) 
Λ κ ( Λ ) Λ v y 

being the k-power of the idéal of real forms on the Lie algebroid A, vanishing on A' . 
Since Ψ € Sec A'± if and only if Ψ = γ Θ for some θ € Sec £ 7 -1-, we obtain that each form 
Ψ eSecil .f / J L ) is globally of the form 

Λ K ( A ) 

Σ ^ ( θ 1 Λ . . . A 0 k ) Λ Ψ 
i = l 1 1 1 

for an integer J, 6 J€Sec(£ 7 J-) and Ψ <=Ω (Ai). This fact, 2.1, and the equalities 
Α Ε 1 A 1 A 

d y #=3r*d (11.(5)), ΐΎ*=Γ„ΐ . θ ύ*=3-*Θ ^ for ZeSecA' , make the following 
proposition obvious 

2.2. The idéal Sec{I . / ± ) is ciosed with respect to the operators d , i , θ 
Λ κ ( Λ ) ξ ξ 

for ξ € Sec A' . • 

The monomorphy of Λ? :Λ£ >ΛΑ , the equality 

i a λ (?*0)=r*i θ 

v i A vh-k+ι rv 2 λ . . . A y v h _ k + 1 

for θ€Ω^(ΑΟ and w^eSecA, and theorem 1.1.1 from [18] (see also [l]) imply 
2.3. eeSecil . A ) « y * 8 € Sec(i A k l , x ). • 

Λ K ( F ) Λ K ( Λ ) 

Recall that [18; 4.1] by a partial connection in Λ over £'we mean any connection 
λ 7 : £ 7 >Λ 7 in the regular Lie algebroid Α'=γ 1[£/]. 

If λ 7 is flat, then the pair (Λ,λ7 ) is called a partially flat regular Lie 

algebroid. Any foliated principal bundle [10, p.20], gives in a natural manner, a 
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partially flat regular Lie algebroid. 
A connection λ : £ >A in A is said to be adapted to λ ' when λ ' = λ | £ ' (an 

adapted connection always exists). 

Assume that A is equipped with a connection λ and a partial connection λ ' over £'. 
Let Ω and Ω' (Ω^ and Ω^) be the curvature forms (the curvature tensors) of thèse 

connections [see II.Sec.2 and [17; 3.1.1]]. According to the equality Ω = ?*Ω^, 
Prop.1.2.3 from [18] and 2.3 above, we assert 

2 . 4 . If X is adapted to λ ' , then 

(a) λ ' is flat if and only if <ν*,Ω > ζ l[V, f o r anY X^M and v* € α* , 
I χ Λ 1 ( A ) l x 

I x 
( 2 ) (b) λ is basic if and only if <ν*,Ω >eIkZ>t , . for any xeM and v* e g* . • 

ι χ (A ) l x 
ι x 

Pass to the Weil algebras Wg and Wg. Wg has a standard even decreasing 
I χ I x 

filtration by ideals 

J l x R ® V * g v l x * \ x ' 
I x 

Thèse, for ail xeM, define an even decreasing filtration by ideals of the Weil 

algebra Wg 

F 2 p ( W g ) : = J0 € Wg; Vx e M t θχ e F2p{Wg ( χ )| 

l > P r r A * w l * 
= φ Sec (Ag e V g ). 

The algebras ΑΛ and A£ possess decreasing filtrations by ideals 
ι x ι x 

I χ I x 

which détermine decreasing filtrations by ideals of the algebras Ω (M) and Ω (W) 
A E 

Fp(fi (M)) = 1* € Ω (M); VxeAf, Φ e F P ( M *)i 
A \ A χ I JF I 

Γ Ρ(Ω (Μ))=|θ e Ω (W); VxeW, θ eF P(A£* )1 

" S e c W " > · 

Proposition 2.5. Let Μ , λ ' ) be a partially flat regular Lie algebroid and X an 

adapted connection. Then the homomorphism k:Wg >Ω {M) [defined for λ ) is 
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filtration-preserving in the sensé that 

k[F 2 p(fg)]cfi p(H), p > 0 . 
A 

Moreover, if λ is basic, then 

k [ F 2 p ( W g ) ] c Q 2 p ( M ) , p > 0 . 
A 

X 
Proof. Of course, it is sufficient to verify that k :Wg >f\A préserves the 

x ι χ ι x 
filtrations. Since I % / P * =(7 * ) p , therefore F2p(tfg ) = (F2(tfg ) ) p . On the 

R ®V g R ®g I x I x 
3 I x 3 I x 

other hand, k is a homomorphism of algebras, thus we need only to check that 
X 

(a) k [F^Vg, ) ] c F 1 ( A ^ ), 
χ I χ I x 

whereas, in the case of a basic connection, that 

(b) k [ F 2(Vg ) ] C F 2 ( A / ). 
χ I χ I x 

F 2(Vg ), F*(Ai4* ) and F2(A>4* ) are ideals and F 2(Wg ) equals I * , so it 
I x I x I x I x R ®g 

* I x 
suffices to check that 

* ( 2) χ x (a' ) k (1 ® w ) € I . , x , w eg , 
χ Λ 1 ( Λ ) I χ 

I χ 

* ( 2) * * (b') for a basic connection λ, that k (l$w )eJ - , w e g 
χ ( A ) ι χ 

However, k (l®w ) = <w ,Ω >, thereby (a') and (b7 ) follow from 2.4(a)-(b). • 
χ I x 

Corollary 2.6. Let the situation be as in the previous proposition. If 

q = rank£/£' [i.e. q eguais the codimension of with respect to 3; and 3e being 
the foliations determined by Ε and E' , respectively], then 

k [ F 2 p ( % ) ] = 0 for p>q+l. 

Jf λ is, in addition, basic, then 

k [ F 2 p ( W g ) ] = 0 for p> [q/2] + l. 

Proof. Clearly, q = rank Λ/Λ' = di /nUJ M for each x e M , which gives A P M { M = 0 

for p>q+l and, in conséquence, F p(Q(/U)=0 for p>q+l; then 2.5 implies 

k [ F 2 p ( W g ) ] = 0 for such a p. Under the additional assumption concerning λ, 

k [ F 2 p ( % ) ] = 0 for 2p>q+l, i.e. for p > [q/2] + l. • 

The filtration of Wg in the intersection with the subalgebra Ie°Sec(V lg ) / 0» 
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gives a filtration of this last: 

F2p{l>®°Sec{Vlg*) i0) : = ( ll°Sec(Vl g*)/C ) nF2p{Wg) 

= llpSec{Vlg*)j0 . 

Notice also, see 2.3, that the isomorphism y ·Ω [M) >Ω . (M) préserves the 
* Ε A , ι 

filtrations. As a corollary we obtain the so-called "Vanishing Bott's Phenomenon" [18] 
because, keeping the assumptions from the previous corollary, we have that the 
homomorphism of algebras 

1è°(SecV 1g*) ο i > Q ) Ω .(M) — ^ Ω (M), 
/ Λ , ι Ε 

and further, passing to the cohomology, the Chern-Weil homomorphism [17] 

h : 1è°(SecV 1g") 0 > H (M) 

of the Lie algebroid A préserve the filtrations and, then, Pontp{A)=0 for 

p>2-(q+l), whereas if λ' extends to a basic connection, then Pontp(A)=0 for 
p > q + 1. 

3 . T H E T R U N C A T E D W E I L A L G E B R A 

Définition 3.1. By the symmetric truncated algebra over a vector space g we shall 
mean the space V^fl* with the canonical even gradation, and with the structure of an 
(anti)commutative graded algebra such that 

X Χ X X 
f u v...vu vv ν.,.νι/ when k + s < i, 

* X X * [ 1 k l s 
( U V . . . V U ) · ( V V . . . V V ) = < 

s V> 0 when k + s > i. 
This algebra can be constructed isornorphically as a quotient algebra (VQ )/L >\ « of 

X 1 +1 ^ » 3 
Ihe symmetric algebra V 9 by the idéal generated by V 9 . The mapping 

V 9 > (V9 )/i w >i * » w 1 >L W J» 
V â 

^stablishes the canonical isomorphism of algebras. The canonical projection 
X < 1 * 

î^Vg >V 9 is, of course, a homomorphism of algebras. 
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Dénote by 

the anticommutative graded tensor product of the anticommutative graded algebras. It is 
called the truncated Weil algebra of the vector space 9 . 

Return to the considération of a regular Lie algebroid A over (Αί,Ε), with the 
Atiyah séquence 0 >g c >A——*E >0. Notice that y for each x e W > 

( t / g , ) , s ( V g l ) / F 2 ( 1 + 1 ) ( i / g ) 

I x l I χ I x 

(θ ι >[θ ] establishes the canonical isomorphism) and, by the relation 

d [ (Wg )k'2s]c{Wg ) k + 1 , 2 s e ( W g j*""1»2*841* d defines a new differential 
χ I χ I χ I χ x 

[d ] : (Wg ) > (Va ) . Writing d = d ' + d " where d'[ l/' 2 s] c ' 2 s and 
L x J l 3 I x 1 3 I x 1 & x x x x L J 

d-'[l/ <' 2 s]cl/- 1 , 2 ( s + 1 )
i we assert that 

/ d (φ βΓ ) when Γ e V ^ g * , 
[d ] ( V « Γ ) = { * * * * " 

^ d'(φ βΓ ) whem Γ eV g 
X X X X I X 

Put 

(Wg)^: = A g * e V < 1 g Î ' and (%) : = Sec(ï/g) . 

Of course 

( V g ) ^ ( V g ) / F 2 ( 1 + 1 ) ( V g ) 

(0 1 establishes the canonical isomorphism). 

(Wg) l will be called the truncated Weil algebra of the vector bundle g . 

The family [d x e M , détermines an endomorphism [d]^:(Wg)^ > (Wg)^ and, 

denoted by the same letter, a differential 

[d] i:(îfg) i > ( l f g ) 1 . 

For s<l, the projection (Wg) > (Wg) is a homomorphism of algebras commuting with 
1 s 

uhe differentials [d]^ and [d] . 

Take the canonical adjoint représentation ad of A on (Wg) and dénote by (Wg) 0 

1 1, / 
the space (de facto, the subalgebra of (Wg) ) of invariant cross-sections. 

(Wg) 0 is stable under the operator [d] . Indeed, let Θ be a bihomogeneous 

élément of (Wg) c. Then dS is invariant, in particular, d'0 is invariant; [d] Θ, 1, / 1 
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being equal to dB or d'B, is invariant, too. 
Let λ be any connection in A and let k:Wg >Ω(Α) be the homomorphism of 

algebras determined by λ. 

Proposition 3.2. Assume that k [ F 2 ( 1 + 1 ) (Wg) ] = 0. Then 

(1) there exists a homomorphism of algebras [ k ] : [Wg) >Ω (M) such that the 
1 1 A 

following diagram 

commutes (π being the canonical projection), 

(2) [ k ] i is equal to the restriction k\(Wg)^t 

(3) [ k ] restricted to the invariant cross-sections {Wg) 0 commutes with the 
r τ A 9 

differentials L ci J ̂  and d , defining a homomorphism of algebras 

[ k ] 1 . : » ( c ^ s ) l > / . . [ d ] 1 ) — 

The class [ k ] [θ] for Θ e (Sec/fg* ® V ' g * ) 0 , s î J , has the form 
^y-j- · <Θ, ω λ . ^ . λ ω ® Ω ν. . .ν Ω> as its représentative. 

k t l m e s s t i m e s 

Proof. (1) and (2) are évident. 
(3): Let Ge(Wg) 0 (c {Wg) 0 ) . By 1.21, i, / / 

dAo[k]i{9) =d / ,ok(6) = k o d ( 9 ) = [ k ] i o 7 i o d ( e ) = [ k ] ̂  o[ d] ̂  071 (Θ) = [ k ] j o[ d] j ( Θ ) . 

The last sentence is a conséquence of II.2.2, II.2.5 and 1.22. • 

Example 3.3. Assume that A is equipped with a flat partial connection λ' over 
£'c£ (as in 2.5) and let q = rank(E/E' ). According to Corollary 2.6, 
k [ F q {Wg)] = 0 for an adapted connection λ, and k [ F 2 ( i q / 2 ] + 1 ) W g ) ] = 0 for a basic 
connection λ. Prop.3.2 produces in thèse situations the homomorphisms of algebras 

r k ] , : (Wg) , >Ω (M) for q' > q and q' > [q/2], respectively, and next, the 
q q A 

corresponding homomorphisms on cohomologies. The homomorphism 
:H((Wg) ,[d] ) >H (M) generalizes the ω described in II.2. 11: in the case 

q# v q qJ A # 
•vhen E' = £ , i.e. when λ' is a flat connection in A, we have q = 0 and [ k ] = ω~. 

M L Jo 0 
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Let H: A > be a homomorphism of regular Lie algebroids over 

f:(M,£ ) »(W,£ 2). Define the pullback 

H**:W(g ) > W ( g ) 

in the standard way: (x) = //+*(*(f (x) ) ), x€tf, where //+* = Λ # + * β Vtf+*. It is 
^ χ χ I χ I x 

clear that // is a homomorphism of algebras of the bidegree (0,0). 

Proposition 3 . 4 . The pullback H has the following properties: 

( 1 ) i o / / + * = H**oi + for ι^€σ , xeM ; 
x , v x x r( x ) , H ( ν ) 3ιι χ ι 

+* 
in conséquence, H maps h^-horizontal éléments into h^-hor izontal ones. 

(2) δο/ /**(Θ) = / / + * ο δ ( Θ ) for BeSecAg*, where ô's dénote the di fièrent ials 

described in II.2.6. 

(3) φ°Η =// <>φ where φ s* dénote the change of variables, see chapter l.B. 

( 4 ) d*H** = H**od. 

(5) [d] o / / + * = / / + * o[d] for J <J , 

l j 1 2 1 2 

( 6 ) ^ oH =H °£ for veA ; in conséquence, H maps invariant 

a d ( ν ) x a d ( Wv) 1 I χ M r 

éléments into invariant ones. 

Proof. ( 1 ) : By the homomorphy of H+* and the antiderivativity of i 's, it is 
X X , v sufficient to check the equality for the éléments of lV(g ) of the forms θ ® 1 and 

^ 3 2 i r ( x ) 
1 ® θ, where θ € g 

i o f f * * ( e ® l ) = i (# +*θΘΐ) = ι (//+*θ) =<9,//+(u)> = i + (θ) 
χ , ν χ χ , ν χ χ , ν χ f{ χ ) , Η ( ν) 

= tf+*oi + ( θ ) , 
χ Γ( χ ) , Η ( ν ) 

1 ο / / + * ( 1 ® θ ) = 1 (1 <8>//+*θ) = 0 = tf+*<>i + ( 1 Θ Θ ) . 
χ , ν χ χ, ν χ χ f( χ ) , Η ( ν) 

# 

(2): δ* s are antiderivations, therefore it is sufficient to consider e e S e c g 2 . 
For x € M and w € g , ι i 3 n x 

<(δο# + *Θ) , w AW > = < ( //+* ) ,[w,w]> = <9 ,//+[w ,w ]> = <Θ , [H*[w ),//+(w )]> 
x 0 1 x 0 1 f(x) x 0 1 r ( x ) χ Ο x 1 

= <(δΘ) ,H* (w )Λ// + ( W )> = <(/ /**οδ(Θ) ) , W A W > . 
Γ( χ ) χ 0 χ 1 x O l 

(3): By (2) above, 

φοΗ**{1) = //+*<><p(l), 
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φοΗ**ίΘ® 1) =¥>(//+*Θ«> 1) = //+*Θ<8> 1 = //+*°φ(Θ® 1 ) , 
φοΗ**(1 ® Θ) = φ( 1 «>//+*Θ) = 1 <8> //+*Θ - δ (//+*Θ) ® 1 = 1 β> //+*Θ - //** (δΘ) ® 1 
= Η** ( 1 ® Θ - δΘ <8> 1 ) =Η**οφ{1 ® Θ ) . 

+* 
The gênerai formula follows from the homomorphy of φ and H . 

+# +* -
(4): Thanks to the previous property, (4) follows from the equality do/ / =// ©d 

which can be checked trivially. 
(5): (4) yields d'o//** = / / + * o d ' and the two imply (5) immediately. 
(6): First, we show, for Θ € Sec g^, that 

* (Η**Θ),ν > = <//**(£ * Θ),ι/> 
ad ο ξ 1 1 ad ©ξ 2 1 

where v^eSecg^ is a cross-section for which there exists v^eSecg^ fulfilling 
H*<>v^ = v^>f. For the purpose, we notice [17] that // +ο[[ξ^ t ν] = Ιξ^ v^°f. Thus 

" (//+*Θ),ι> >=(r °ξ )<H**Stv >-<Η**θ,Ιζ >v 1> 
ad ο ζ 1 ' ι " 1 M ' 1 M l 

= (y οξ ) < θ , ι ; > ο / - < θ , [ ζ , y ] > o f f < 2 " Θ ,ρ >of = <Η**{£ ·» Θ ) , ι > > . 

2 ^ 2 2 2 2 ad o£ 2 2 ad ο ξ 2 ι 

Lemma 1.6(1) leads now to the equality 

<£ (//+*Ψ),ι> > = <//**(£ ^ ) , y > , (9) 
a d o Ç 1 1 AD0%2 1 

Ψ € Wq , where y , ξ are as above. 
2 1 1 + * * 
The equality £ ^ (//+ Ψ)=// + (£ Ψ) follows in an évident manner from those 

ado£ a

 ADO%2 

written for a strong homomorphism and for the canonical one. In each of thèse cases, 

this follows from (9) and the observation which says 

— for arbitrarily taken xeM and veg , there exist local cross-sections ν 
1 all.x ι 

and ν such that ν (x)=v and ν and ν fulfil the required condition H ©i> =v o f . 
2 1 1 2 ^ 1 2 

By the analogous reasoning, we assert equality (6). • 

+* 

Corollary 3.5. H maps h^-horizontal and invariant éléments into h^-horizontal 

and invariant ones, defining, for 1^> l^t a homomorphism of algebras 

H**:{W92\ h i° > h 7 ° 
2 *2 » 2 ' 1 » 1 ' 

commuting with the differentials (i.e. [d] o / / + * = / / + * o [d] ). • 
4 *2 
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Let us assume that in we are given some regular Lie subalgebroid over 

(M,E^), i = l,2, and that //[B^cfî^ In the standard way, one can define the pullback 

[ W ] + * : l f ( g 2 , h 2 ) > V ( g i . h i ) 

(χ) = A[// +]*®Vtf +(*(x)) where [H*]*:g/h > g / h is the induced linear 
χ χ χ X \ 2 2 

homomorphism). Since the diagram 

commutes, we obtain - by the above - that [̂ J commutes with the differentials, i.e. 

\ 2 , h 2 ΙΧ , h a 

giving a homomorphism on cohomologies 

4 . C H A R A C T E R I S T I C H O M O M O R P H I S M - I T S C O N S T R U C T I O N 

Here we construct some characteristic homomorphism of a partially flat regular Lie 
algebroid, being a generalization of the one constructed in II for a flat regular Lie 
algebroid. 

Consider, in a given regular Lie algebroid A over (M,£), two géométrie structures: 

(1) a partial flat connection λ' over an involutive subdistribution E' c£, 

(2) a subalgebroid BcA over (M,£), see the following diagram: 
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The system (Λ,Β,λ') will be called a PFS-regular Lie algebroid (over {Μ,Ε,Ε')). 

The construction of the characteristic homomorphism of a PFS-regular Lie algebroid 
has, as in the case of an FS-regular Lie algebroid, a number of steps. 

4.1. Let s:g >£j/h dénote, as in II.3.1, the canonical projection. Put, for a 
positive integer 1 

I/(g;h) := A(g/h)* Θ V ^ g * and lf(g;h) : = SecW(g;h) . 

1f(g;h) i with the natural structure of an algebra will be called the truncated relative 

Weil algebra. 
* 

The représentation ad" of B on A(g/h) described in II. 3 . 3 , together with the 
B ' s < i * 

représentation ad|£ of B on V g (being the restriction to B of the adjoint 
< ι * \ 

représentation of A on V g J, yields the représentation of B on l/(g;h) denoted also -

for brevity - by ad. 

For an arbitrary Ç e S e c B , the differential operator i£ :W(g;h) >W(g;h) 

is a dif f erentiation of the truncated relative Weil algebra W(g;h) , from which we 

obtain that the space W(g;h)^ ^ c of invariant cross-sections is a subalgebra of 
W ( g ; h ) r 

The monomorphisms 

As :A(g/h) >Ag and As ® id :A(g/h) ®V g >Ag ®V g 

of vector bundles are invariant with respect to the représentations considered of the 

Lie algebroid fî, which is easy to see by the définitions. As a corollary from the above 
* ι * ι :.nd the monomorphy of As ® id we obtain that As ® id <>ψ, * € W ( g ; h ) , is an 

invariant cross-section if and only if Ψ is invariant, and that 
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l f ( g ; h ) i / 0 Β Φι i A s ^ i d 1 © * 6 W i g ^ / 0 

is a homomorphism of algebras. On the other hand, a cross-section Φ' of W(g)^ is of th€ 
image of some cross-section of the bundle W(g;h)^ if and only if Φ' is h-horizonta] 
(i.e. if and only if i Φ = 0 for veSech, where i is the operator defined in Sectior 
l.C), so 

W ( g ; h ) ,o > W ( g ) Φι > A s % i d ^ , 

is an isomorphism of algebras. 

4.2. The subspace W{g) 0 is stable under the differential 
ι,h, / 

[ d] ̂  : W ( g ) i > W ( g ) j . Indeed, for an invariant élément Φ' of W ( g ) , we have 
/ o d ( * ' ) = - d o i (Φ') by 1.6(2), 1.16(1), 1.16(3), and, in conséquence, 
1/ v 

i^°d' (Φ' ) = -d'<>i^ (φ' ). Therefore, for a bihomogeneous élément V eW{g) t 

i o [ d ] (Φ') = ι (dφ ,)=-d(i Φ')=0 or i o [ d ] (Φ') = i ( d ' * ' ) = - d ' ( i Φ')=0, see 

Section 3. This enables us to define the differential d :W{g;h) 0 >W{g\h) 
1 , h 1 , / 1 , / 

in such a way that the following diagram commutes: 
^ ( g ; h ) l i 0 - ^ - , i f ( g ) 1 ( h i / 0 

d [<*] , 4 Λ Λ l,h L Jl (10) 

4.3. Consider any connection λ:£ > A in Λ and let the homomorphism 
k:Wg >Ω {M) be constructed for λ. The form <ρ(Φ): = [>] (As^® id 1©*), VeW(g;h) , 

A . 1 1 
is h-horizontal, which follows in an easy way from 1.17 and 1.23. Therefore, the form 
* 

j (φ(Φ))€Ω (M) is horizontal. Then (see II.2] there exists a form Δ Φ ^ Ω {M) such 
B V J E 

that 

(r )*(ΔΦ) = / ( [ k ] (As'eid 1**)). 
B 1 

4 . 4 . Remark. One can easily check that if λ is a connection in B, then, for 

*€SecA ( g / h)*eVy\ (0 when k > 0, 

λ^(Ω νφ) when k = 0. 

4.5. Let g = rank(£/£') and let λ be adapted to λ'. Defined in the above manner, 
the mapping 
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Δ ,:îf(g;h) , >Ω [Μ), Ψ ι >ΔΨ, 
q q £ 

q' >q (and q' > [g/2] in the case of a basic connection), is a homomorphism of 
algebras, see Example 3.3, and the diagram 

commutes. 

Proposition 4.6. The mapping Δ , restricted to the invariant cross-sections 
q 

Δ ,'.W(g;h) , f 0 >Ω (W) 
q q » * Ε 

£ 
commutes with the difièrentials d , and d . 

q , h 

Proof. j and γ are homomorphisms of regular Lie algebroids; then, according to 
B 

* A B 
11.(5), the commutativi ty of j with the dif f erentials d and d , and seeing the last 
diagram and the définition of d , we notice that it is sufficient to have the 

1 > h

 A 

commuting of [ k ] ,:W(g) , 0 >Ω {M) with [d] , and d , but this follows from 
q q » h , / A q 

3 . 2 ( 3 ) . • 

Theorem 4 . 7 . The mapping 

Δ :H(W{9;h) d J »// (M) 
q # q , / q , h y Ε 

W ! > [Δ , J) 
q * 

is a correctly defined homomorphism of algebras. u 

4 . 8 . If λ is basic, then the following diagram commutes: 

(11) 

114 



in which the vertical arrow is a homomorphism of algebras, induced by the projection. 

Δ falso Δ, for a basic connection) is called the characteristic 
qtt v lq/2]tt J 

homomorphism of the PFS-regular Lie algebroid (Λ,Β,λ'). Its image is a subalgebra of 
//^(M) called the characteristic algebra of the PFS-regular Lie algebroid (Λ,Β,λ'), 
v.hereas its éléments - the characteristic classes of this algebroid. 

5 . T H E F U N C T O R I A L I T Y A N D O T H E R P R O P E R T I E S 

Let (A ,Β ,λ') and (A ,Β ,λ') be two PFS-regular Lie algebroids over {M ,£ ,£' ) Γ Γ 1 2 2 2 6 & ι ι ι 
and (M 9E ,Ε'), respectively. 

Définition 5.1. By a homomorphism 

H: (A ,Β ,λ' ) > [A ,Β ,λ' ) 
1 1 1 2 2 2 

between them we mean a homomorphism H:A^ > A^ of regular Lie algebroids, say over 

f : ( M , £ ) > ( » , £ ) , such that 

d ) f.[£;]c£;, 

(2) //©λ' = A ' e f |£' , 
1 2 ι 

(3) //[B ] c B . 
1 2 

In the sequel, the notations of some objects related to A^t B^ and H will be the 
same as in the following diagram: 
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By the pullback of a PFS-regular Lie algebroid (Λ,Ρ,λ') over (Μ,£,£') via a 
mapping f : (M ,£ ,£' )——> (Ai, £,£'), i.e. a mapping f:M >M such that f'[E ]cE and 

1 1 1 1 * 1 
f [£']c£', we mean the PFS-regular Lie algebroid (f AA9 fABt λ' ) where λ':E' >fAA 

* 1 1 1 
is the pullback of λ' [17; 3.2.1]: λ' (ν) = (ν,λ' (f ν) ), veE'. Proposition [ 1 7 ; 3 . 2 . 2 ] 

* 1 

gives the flatness of λ'. The canonical homomorphism ΡΓ

2

:^ A >Λ a homomorphism 
of PFS-regular Lie algebroids. 

Each homomorphism Ηι(Α^,Β^,λ^) ϊίΑ^,Β^,λ'^) of PFS-regular Lie algebroids can 
be represented in the form of a superposition of a strong homomorphism with the 
canonical one: 

(A ,B %\')JL->{fΛΑ ,ΓΒ ,λ') =->(Λ ,Β , λ ' ) . 
1 1 1 2 2 2 . 2 2 2 

Theorem 5 . 2 . (The functoriality of Δ 
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Let {A ,£ ,λ') and [A ,Β ,λ') be two PFS-regular Lie algebroids over {M ,£ ,£' ) 
1 - 1 1 2 2 2 1 1 1 

and ( M , £ , £ ' ) , respect ively; put q = rank (£/£'). Let / Μ Λ , Β , λ ' ) ,Β , λ ' ) be 
2 2 2 ^ J r i i' i 1 1 1 2 2 2 

a homomorphism between them over f:{M^9E^tE'^) > {M^t E^t £^). /Issu/ne that the adapted 
connections λ and λ , such that //©λ = λ ©f are given. Then the following diagram 

1 2 1 2 * * 

co/n/nutes. 

Proof. From the commutativity of diagrams (10) and (11) it follows that it is 
sufficient to check the same for the diagram 

in which and k^ are defined for and , respectively. Using the equalities (a) 
ή'ω =//+ ω and (b) Η*Ω = H* Ω ίω and Ω being the connection form and the 

* 1 2 * 1 2 v i ι ° 
curvature form of , i = l,2), one can prove (without any dif f iculties) the 
commutativity at each point xeMt considering the generators 1, 1 ® θ , θ ® 1 , 
G ^ 9 2 ] f i x ) » o n l y - Equality (a) is évident, whereas (b) follows from [17; 3.2.2] and 
the horizontality of the curvature forms. • 

5.3 Theorem (The independence of Δ , ̂  of an adapted connection). 

For any PFS-regular Lie algebroid (Λ,Β,λ') over (<*/,£,£'), the characteristic 

homomorphism Δ , :H[W(g,h) , ) >// (Ai), q' >rank(£/£'), is independent of the 
q # q , / Ε 

choice of an adapted connection. 
..Γ 

Proof. Let us consider any two connections A q , λ^:£ >Λ adapted to λ' and the 
connection A:T(Rx£ >TRxA in TlRx A defined by 
λ (v,w) = (ν,λ (w)-(1-t)+λ (w)-t), (v,w)<=7IRx£ . λ is adapted to the flat 

I ( t , x ) 0 1 t I x 

partial connection idxA' :TRxE' >TRxA'. . Of course, the System 
(TTRx A,TRx B, id χ λ' ) is a PFS-regular Lie algebroid and λ is an adapted connection. 
One can prove that the connection form ω-.TRxA > 0 x g of λ equals 
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ω (ν, w) = (Ο,ω (w) · ( 1-ί ) + ω (w) · t ), (ν, w) <= Γ (Rχ Λ , where ω and ω are the 
( t ,χ) ο ι t \ χ ο ι 

connection forms of A q and λ^ , respectively. The homomorphisms F^:A >TRxA, 

i = 0 , 1, of regular Lie algebroids (over f :M——>(RxM, xi—->(i,x)), defined in 
II. 5 , give homomorphisms F ΆΑ,Β,λ') > (TIRx A, TRx B, id χ λ' ) of PFS-regular Lie 
algebroids such that F^o\^=\of i = 0, 1. The principle of functoriality (Theorem 
5 . 2 ) ensures the commutativity of the diagrams 

i = 0 , 1. Since f # = f # (see the proof of Th. 4.3.1 from [17]) and the superposition 
F 1 G 

A >TRxA )A, G: = pr^, of homomorphisms of regular Lie algebroids being equal 

to id , gives [F ] « [G] = id (G does not détermine a PFS-homomorphism, but this is 
::o problem) , theref ore we have 

Δ , = Δ , o f F ] + * ο [ α ] + * = Α Δ , ° [ G ] + * = f*oA / 
0 q ' # 0 q ' # 0 0 Oq # 1 Oq tt 

= Δ , o[F ] + # ο [ α ] + # = Δ , . • 
l q # 1 l q # 

Définition 5.4. Let us consider two PFS-regular Lie algebroids (Λ,Β^,λ'), i = 0 , 1 
[which differ only in subalgebroids) over (M,£,£'). By analogy with définition II.5.8, 
<ve say that . the characteristic homomorphisms Δ , ://(lf(g,h ) , 0 ) >// (M), 

i q # 1 q , / E 

i = 0 , 1, q' > rank(£/£'), are équivalent if there exists an isomorphism of algebras 
x://()f(g,h ) , 0 ) - > / / ( W ( g , h ) , c ) , such that Δ , = Δ , οα. 

0 q , / l q , / Oq # l q # 

Theorem 5.5. If B and B are homotopic (for définition, see 11,5.2), then Δ , ο ι ^ \ J* 0 q'a 
ind Δ , are équivalent. 

l q # 

Proof. By the same argument as in the proof of Prop.II.5.7, we assert that AQ ,^ 

ind Δ , are related via the commutative diagram: 
l q # 
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HÎW{9fh) , ) v 

0 q \ 
Î \ Δ / 

[F ]+* \ °q 

0 \v 
W ( O x g , h ) ,) H {M) 

q E 

[ F ] + * / 
1 κ Δ / 

ψ / lq # 
H{W[g,h ) , ) X . ι q 

It remains to show that [F^] is an isomorphism of algebras, i= 0 , 1. We do it 
as in the proof of Th.II.5.9: 

For F^ being equal to the superposition P r
2 ° ^ i ( i-n which F. is an isomorphism), 

the problem reduces to the considération of the canonical projection 
pr2:{fA{mxA)ffA{B)tiidxX'V) > (TIRχ A,B, id χ λ' ), more exactly, to the 
investigation of the homomorphism 

pr**:W(Oxg,h) , > W (f * (0 x g), f*h) , 

2 q , / 1 1 q , / 

After the canonical identification 

f * ( A ( 0 x g / h ) % V < q ' ( 0 x g ) * ) = Λ ( Μ 0 χ g)/f*h)*®V < q'f* ( 0 χ g ) * , 

according to 11.(11) (see Chapter II. 4) and the fact that f * (®*Γ) = ® k (f T ) for any 
représentation T (cf. [17; 2.3.3] and the proof of Prop.II.4.2.l), we obtain that 
f^(ad)=ad (the ad's dénote the canonical représentations induced by the adjoint one), 
and that pr*** = f**. As in the proof of Th. II. 5.9, the rest follows from Prop. 1.6.2. • 

5.6. A comparison with the tangential classes of partially flat principal 
bundles. 

A PFS-regular Lie algebroid (Λ,Β,λ') over (Η,Ε,Ε') détermines an FS-regular Lie 
algebroid {Α' ,Β' ,λ' ) over (ff,£') in which Α'=γ~1[Ε' ], Β'^γ^ΐΕ']. With thèse 

A B 
objects we have associated some homomorphisms: Δ ,„:W{gth) , 0 >Ω (M) and 

q * q » i β E 
Δ :W(g,h) 0 >Q , {M' ) (see 4.7 and II.3.7). The indices B and B' at the letter I 
indicate the regular Lie algebroid with respect to which the invariant éléments are 
taken. A simple relation between Δ . and Δ^ is described by the following diagram: 

q # # 
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* Δ '* 
(SecA(g/h) ) , 0 c îf(g,h) , 5 > Ω ( Λ / ) 

(SecA(g/h)*) - > Ω ΛΜ' ) . 
1 Β1 

ïhe problem what the relation looks like on the level of cohomologies will not be 

investigated here. We only notice that each élément #e(SecA(g/h) ) 0 being a cycle in 
1B 

W(g,h) , 0 ii.e with respect to [d] ,) is a cycle in Tf(g,h) (i.e. with respect to ô ) ; 
q , IB q ο 

the converse fact is not true in gênerai, which may be the source of the characteristic 

classes (in // ,(M')) measuring the concordance of λ' with B, which can not be obtained 

by Δ , . 
q 

6 . A C O M P A R I S O N W I T H T H E C H A R A C T E R I S T I C C L A S S E S O F F O L I A T E D B U N D L E S 

Let us be given: 
(a) a G-principal fibre bundle Ρ = (Ρ,π,M,G. ·), 
(b) a flat partial connection in P over an involutive distribution FcTM, 

(c) a closed Lie subgroup H c G and an //-réduction P' cP. 

In other words, we are given some foliated principal bundle with a réduction, 

considered, for example, in [lO]. As usual, let Q and f) dénote the Lie algebras of G 

and //, respectively. In [10], to such a bundle there corresponds a characteristic 
homomorphism ^ ,^://(g,//) ,) >H^{M) (denoted there by Δ) where q' > codim(&, & 

being the foliation determined by P, and 

H(Q,H) , =(Λ9*®ν<ςΥ)„ S (A( 9/F))%V < q y ) r 

q H IH 

is the truncated relative Weil algebra constructed isomorphically as the subalgebra of 
the truncated algebra A(â/f)) ®V q Q , consisting only of those éléments which are 
invariant with respect to the représentation Adq of H induced by the restriction to H 
of the adjoint représentation Ad :G >GL(g). The differential d , in W{Q,H) 

G q l q 

defined in the standard way, cornes from the differential, denoted here by d , in the 
s 
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χ χ 

Weil algebra l/g = Ag ®Vg , defined as follows: we treat g as a left Lie algebra of G 
(with the bracket denoted by [-,-]L) and d S l / g >WQ is the antiderivation of total 

i Χ X X L * N L * degree +1 such that d (w ®l) = l ® w + d w ®1 and i d ( l ® w ) = e w for i^€g, 
s A v s 9 

X X L # X L 
w € g (d is the Chevalley-Eilenberg differential, whereas θ w =-w <>ad where 

L A L ô S 
ad (μ) = [ν,μ] , p e g ) . In the sequel, as opposed to the left Lie algebra, the bracket 

Ô R in the right Lie algebra of G will be denoted by [·,·] ; there is a relation 
L R Λ 

[ν,μ] = -[ν,μ] , and we recall once again that, for Z G P ^ , z:g »g^ is an 
isomorphism of Lie algebras when g is equipped with the right structure. 

The partial connection in P détermines a partial connection λ' in the transitive 
Lie algebroid A(P), and the system obtained (A{P),Α{Ρ' ),λ') is a PFS-transitive Lie 
algebroid. In 4..7 the characteristic homomorphism Δ , :H(W{gth) , 0 ) >Ω (M) is 

q # q , / dR 

obtained ( g and h being the Lie algebra bundles adjoint of A[P) and Α{Ρ' ), 

respectively) . We compare Â , with Δ , . For the purpose, consider the adjoint 
' q # q # 

représentation Ad^-.P >L ( g ) [17; 5.3.2] and the représentation 
Ad\ :P' > L ( V ( g , h ) , ), /ldqi = ,4dA, ® V < q ' U d ΙΡ')* (for Λ<Λ see Chapter 
II.6), induced by it. As in Chapter II.6, we notice that the differential of Adq, is 
equal to the représentation ad q , \A{P') >,4(lV(g,h) ,) defined by 

A ( f* ) > g q 
ad q

/ , =ad . ® V q (ad , \A{P')) . Propositions 5.5.2-3 from [17] give a 
Ai P ) , g Λ ( Ρ ) , g Λ( /> ) ^ l j ο 

monomorphism 

K:(A(g/F))*®V < q'g*) , — ^ ( S e c A ( g / h ) * Θ V < q ' g * ) r c > ( S e c A ( g / h ) % V < q ' g * ) , c 

defined by the formula κ ( 0 ) (x) = i4dq, (z)(x), z<=P' , i.e. 
P , g ι * 

K ( 0 ) ( X ) = (Atz]*" 1 β V < q z * " 1 ) ^ ) , being an isomorphism when P' is connected. 

Theorem 6.1. K © S commutes with the differentials d , a n d d , , giving the 
q q »i* 

commutâtive diagram 

H{W{QFH) ,) 

\~q'# 
( K O S ) H (W) 

# 7 dR 

W ( g , h ) , ) / q V 
q » / 

Proof. The évident commuting of the diagram 
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( A 9 * ® V < q Y ) h , — ^ (A ( ô / b)*®V < q Y ) f 

9 H H 

K Κ 

( S e c A g * ® V < q ' g * ) h > / 0 (SecA(g/h)%V < q'g*) ; 0 

in which κ(φ) (χ) = (Az*" 1 β V < q z*~* ) ( 0 ) , ζ € Ρ ' , and of diagram ( 1 0 ) , implies that 
I x 

the commutativity of K°S with the differentials follows from that for κ. On the other 
hand, this fact concerning κ can be reduced, in an easy way, to the commutativity of 
κ :WQ ——>Wg ( = Az* 1 ® V z *) with dL and d . There are two ways to establish this. 

ζ ' * L 3 * 
The first way. d is the differential for which the following diagram 

d L d" s 
Ψ Ψ 

commutes where φ is the isomorphism of algebras, defined uniquely on the generators by: 
X X X X X — 

(p{w ® l ) = w ®1 and <p(l®w ) = 1 ® w -d w ® 1 , whereas d is an cintiderivation 
* x _ Λ * 

defined by d(w <8> 1 ) = 1 Θ W , d ( U w ) = 0 . To see this, we calculate 
φ" (w ® l ) = w ®1 and φ~ ( 1 «> w ) = l ® w + d w ® 1 ( = d (w « 1 ) 1 ; next, 

Λ 9 

L - 1 * L * * 
<pod (ur ® l ) = < p o d (w e>l) = l ® w , s s 

L - 1 * L L * 
(p°d °<p (l®w )=<pod od (w ® 1 ) = 0 . 

S 3 3 
Tnerefore it remains to' show that ( 1 ) κ οφ = φ ©κ and (2) κ od = d©K . (2 ) is trivial, 

ζ χ ζ ζ ζ 
whereas ( 1 ) needs the equality 

χ χ χ χ 
κ {d w ) = δ ( κ w ), w €Û . ( 1 3 ) 

ζ Λ ζ 

To prove this, take v , w e g 
ι x 

κ idw*) (v,w) =d w^iz" 1 (ν) ,ζ" 1 (w) ) = -w*( [ζ"1 (ν) ,ζ" 1 (w) ] L ) 
ζ Λ Λ 
= ν*([ζ" 1(ν),ζ" 1(ι/)] Λ) =^(ζ" 1([ν,ν])) = (κ w*)i[v,w]) = δ(κ ν*)(ν,ν). 

ζ ζ 
The second way (direct). 

£ x x x 
(a) κ ©d (w <8>1)=κ ( U v + d w β 1 ) 

ζ 9 ζ Λ 

= 1 ® κ / + /c (d w*)®l (by ( 3 7 ) 1 
ζ ζ Λ ν ' 
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X X χ 

= 1β>κ w + δ(κ w ) ® l = d οκ (w 
Ζ 2 Χ Ζ 

£ Χ Χ 

(b) Το prove that κ °d (l®w )=d ©κ (le>w ), take y € g . Since i ©d =-9 
z ô χ z I x v x v 

(Prop. 1.17), it is sufficient to verify the equality 
l X X 

i οκ od (i®v )=-θ οκ ). To this end, we immediately notice that 
v z ô V z 
i οκ =κ ο ] Λ and κ ©θ- , =-θ <>κ . Now, we can calculate 
v z z z ~ M i > ) z z~ A(v) V z 

1 o , c od (1« > W } = K © I - - OQ i l < 8 > W ) ~ K (1(8)9- . W ) 
ν z s ζ z 1 ί v ) ζ z " 1 ( i / ) = -1 ® θ ©κ (w ) =-θ οκ ( 1 ® W ) . 

ν ζ ν ζ 

At présent, we pass to the second part of our theorem. We can write a diagram 
analogous to the one in the proof of Th.II.6.1. Analogously, we assert that we need the 
equality 

/ ( k , (ω )(θ)) = p o ( d i ) * [ k ] , (κ(θ)) 
q P q 

where ic is the superposition 

W(8,H) , —>.W(g;h) , >W[g) / · ο * 
q q » / q , h , / 

while ωρ is the connection form of an adapted connection. We see that the last equality 
i s as good as the commuting of the following simple diagram: 

k: * 
WQ — ^ AT P 

Z 

Î a î * * ï ( 1 4 ) 

ζ I z 
i k 

y3 _ J L * \A 
I X I X 

for any xeM and zeP^ . In this diagram, k is a homomorphism of algebras 
fulfilling (k(o> )(Θ)) =k (9); in other words, k (ψ*Γ) = ω Α [ψ) AQV ( Γ ) , ^ < = A A * , 

Ρ ζ ζ ζ I ζ I ζ 
T e V â , where ω :Αά >ΛΤ Ρ and Ω :Vâ >ΛΤ Ρ are homomorphisms of algebras 

t z z t ζ ζ 

constructed in the classical manner, Ω being the connection form of ω^. The 
commutativity of (14) can be checked trivially on the generators when one only knows 

A A 2 A A the relations ω on =ζ©ω , Ω oA π =ζ©Ω (ω is the connection form in A{P) lx lz p\ ζ ι z lz I ζ v 

corresponding to ω ^ ) . • 
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