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STRUCTURE OF RIGHT ARTINIAN
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Institut de Mathématiques et Informatique de I'.S.M
Université Claude Bernard LYON I
69622 VILLEURBANNE France

INTRODUCTION

This present work is an Appendix to the previous paper : "Some new
invariants for right Artinian rings" [10], in which we give a "Construction
Theorem" for right Artinian rings, that is a Theorem which gives the Description of
a Systematic Method of Construction of any right Artinian ring, by means of a
finite number of Fundamental Constructions, which are of two different kinds.

Indeed, in the case of algebras over a field F, the general results for right
Artinian rings give a more precise Description of a Systematic Method of
Construction of any right Artinian F-algebra, which constitutes, in some sense, a
"Structure Theorem" for right Artinian algebras over a field.

Thus, our main objective is to give the complete proofs of some results given
in [10] without proof, in order to achieve the presentation of an adaptation of the
Hochschild Cohomology for Algebras.

Then, by means of the notion of F-"Completely structured vertex set”, we
obtain the Theorem 7-4, which constitutes a "Structure Theorem" for right
Artinian algebras over a field.

After this FIRST PART : PROOF OF THE STRUCTURE THEOREM
(Paragraphs 1, 2, 3,4, 5, 6 and 7), in the SECOND PART : ILLUSTRATION OF
THE STRUCTURE THEOREM (Paragraph 8), we give a great number of
Examples and Applications, in order to show how the notions and the theorical
results of the FIRST PART are applicable in concrete situations.



[FIRST PART : |

PROOF OF THE STRUCTURE THEOREM

1. CANONICAL DECOMPOSITION OF THE RIGHT SOCLE.

All algebras considered are associative algebras over a field F.

For any F-algebra A, let J = J(A) be the Jacobson Radical of A and let
S = S(A) be the right Socle of A, that is the sum of all minimal right ideals of A.

It is well known (See, for instance [4], [3] or [1] Ex. 9, p. 58) that S = S(A)
is a semisimple right A-module and that the isotypical (or homogeneous)
components of S are also two-sided ideals of A, called the right feet (pieds) of S or
of A.

These notions have been introduced in [4] and used in [3] by J. Dieudonné
for the study of the Structure of Hypercomplex systems.

It is obvious that the Jacobson Radical J = J(A) is very important in the study
of algebras, as for instance in the statement of the Wedderburn-Dickson-Malcev
Principal Theorem (See for instance [17] p. 209).

Although the Jacobson Radical J = J(A) is more frequently used that the right
Socle S = S(A), as in the previous work [10], one of our aims is to show that the
"Canonical Decomposition" of the right Socle gives one of the main tools for the
proof of our Structure Theorem for right Artinian algebras over a field.

For any F-algebra B, a two-sided B-module (See for instance [2] p. 167) or
simply a B-bimodule is an abelian group M on which B operates on the left and on
the right in such a way that (bm)b' = b(mb') and oom = ma for all m € M,
be B,b' e B and a € F. For example, any two-sided ideal of a F-algebra B is a
B-bimodule.

With this Definition, it is immediate that for each statement of [10]
(Definition, Lemma, Proposition, Theorem, Corollary and Remarks), it is possible
to obtain the analogous statement by the replacement of "ring" by "algebra over a
field F" or "F-algebra", of "ring homomorphism" by "F-algebra homomorphism",
of "bimodule" by "F-algebra bimodule”, of "ring extension" by "F-algebra
extension”, of "general ring extension" by "general F-algebra extension", of
"singular ring extension” by "singular F-algebra extension”, etc...



LEMMA 1-1 - For any F-algebra A, there exists a Canonical Decomposition:
S=S(A)=M(A)®ONA)=MDN

in which :

(a) If I(S) is the left annihilator of S, the zero square proper two-sided
ideal :

M =M(A)=S(A)NI[S(A)]=SnIS)

called the "zero-socle” of A, is the direct sum of the family of nilpotent (or zero
square) feet of S or of A.

(b) The idempotent two-sided ideal :

N = N(A) = [S(A)]2 = §2

called the "one-socle” of A, is the direct sum of the family of idempotent feet
of S or of A.

PROOF - This is a particular case of the Lemma 1-1 of [10].

LEMMA 1-2 - For any F-algebra B and any two-sided ideal T of B, which

verifies : T C S(B), the following conditions are equivalent :

(a) The two-sided ideal T of B is the direct sum of a family of idempotent
feet of B.

(b) There exists a two-sided ideal T' of B such that :

T C S(B) and T=T2

(c) The two-sided ideal T of B is idempotent : T = T2.

(d) The two-sided ideal T of B is "right strongly idempotent" in the sense
of [11, that is : for every o € T, there exists B € T, such that : o. = af.

(€) The left annihilator I(T)) of T verifies : T N I(T) = (0).

(f) Every right ideal 1 of B verifies : IT=1NT.

(g) The left B-module B/T is flat.

(h) The right B-module T is projective and T is the direct sum of a family

of feet of B.

Moreover, under these equivalent conditions, then : T C N(B).

PROOF - This is a particular case of the Lemma 1-2 of [10].

DEFINITION 1-3 - For any F-algebra B, let G (B) be the set of proper two-
sided ideals T of B, which verify the equivalent conditions of the Lemma 1-2.



PROPOSITION 1-4 - Any algebra A over a field F verifies :
(a) The F-algebra A is a semisimple Artinian F-algebra if and only if :
S=S(A)=A
(b) If the F-algebra A is not a semisimple Artinian F-algebra, that is if
S = S(A) is a proper two-sided ideal of A, which determines the proper two-
sided ideals M = M(A) and N = N(A), the factor F-algebras :
B=A/M C' = A/N C=A/S

appear in the following commutative and "exact" diagram :

0 0 0
AN
\ A v
\\S N> T >T
1 i
y Vv v
0 sM>—- SA—' =B >0
w\T
T
% A Y
0 >M >C > C >0
v |
0 0 0
in which the surjective F-algebra epimorphism :
T:A——> B

induces an isomorphism of multiplicative A-bimodules :
T:N>—>»T
from the idempotent proper two-sided ideal N = N(A) of A onto an idempotent

proper two-sided ideal T of B, which verifies :
T C N(B) and Te T(B)

PROOF - This is a particular case of the Proposition 1-4 of [10].



REMARKS 1-5 -

(a) With the classical notion of "algebra extension” (See for instance [16] p.
284) and whenever : S(A) # A, if M = M(A) # (0), the Proposition 1-4 exhibits in
particular the singular F-algebra extension :

(1) 0— sM>" HA—_ " 5B 50

in which M = M(A) is a non null zero square proper two-sided ideal of A, and if :
M = M(A) = (0), then the general F-algebra extension :

t 1

T
() 0 s S ! y A > C »0
coincides with the general F-algebra extension :
om T"
(x") 0— N> A" 5 C— 50

in which C =C' and S = N = N(A) is an idempotent proper two-sided ideal of A.
(b) Whenever A is a right Artinian F-algebra which is not a semisimple
Artinian F-algebra and which verifies the condition :
M =M(A) = (0)
an adaptation of the Theorem 2-13 of [10] gives a "complete
characterization’ of the "one link" (1) = (t") determined by the general F-

algebra extension :

! ]

(t) 0— 5S>+ A" s C— 0

and in particular a description of the Structure of the right Artinian F-algebra A,
which is, in this case, a (right) almost semisimple right Artinian F-algebra, in the
sense of the Definition 2-1 of [10].

(c) Whenever A is a right Artinian F-algebra which is not a semisimple
Artinian F-algebra and which verifies the condition :

M=M(A) #(0)

an adaptation of the Theorem 3-14 of [10] gives a characterization of the "'zero-
link'' (7) determined by the singular F-algebra extension :

(1) 0— sM>"t 3A—" B30

and in particular a description of the Structure of the right Artinian F-algebra A,
which is not a (right) almost semisimple right Artinian F-algebra, by means of a

T-essential singular F-algebra extension :

(1, T) 0— sM>— s (AN)— 5 B, T)—— 0

characterized by an unique T-essential singular class :
€ € Exte(B, T, M)

which gives the "characterization" :



(A,N)=(B, T, M, &)
which implies :
S=S(A)=M(A)®NA)=M DN

In order to obtain a '‘complete characterization'' of the "'zero-link"

(1), that is in order "to calculate the space” :
Exte(B, T, M)

it will be sufficient to give a complete proof of the Lemma 3-6 and of the Theorem
3-10 of [1Q], that is of the Lemma 3-6 and of the Theorem 3-10 of this present

work.

2. THE NOTION OF ALMOST SEMISIMPLE ALGEBRA.
An old problem, set in 1964 by A.W. Goldie (See [6] p. 268), was :
« ... the determination of artinian rings with a zero singular ideal ».
In order to give a solution to this old problem (See [§] and [9]) it has been
very useful to introduce the notion of (right) almost semisimple ring (See Def. 3-1

of [2]).

DEFINITION 2-1 - A ring (or an algebra) A is a (right) almost semisimple
ring (or an almost semisimple algebra) if its right Socle S = S(A) is left faithful,
that is verifies : I(S) = (0).

Of course, any semisimple Artinian ring is a (right) almost semisimple ring.

More generally, the Theorem 3-3 of [9] constitutes a Structure Theorem for
(right) almost semisimple rings.

In particular, it will be very useful to have the Theorem 4-3 of [9], which
constitutes a Structure Theorem for (right) almost semisimple right Artinian rings
(since they coincide with right Artinian rings with a zero right singular ideal, that is

with right non singular right Artinian rings).

LEMMA 2-2 - For any right Artinian algebra A, then :

(a) The algebra A is a semisimple Artinian algebra if and only if :

S=SA)=A

(b) The algebra A is a (right) almost semisimple right Artinian algebra if

and only if :
M =M(A) = (0)

that is if and only if A is a right non singular right Artinian algebra, that is a
right Artinian algebra with a zero right singular ideal [Z{(A) = I(S) = (0)], and

under these equivalent conditions, then :



S=S(A)=N(A)=N

is a non null idempotent two-sided ideal.

PROOF - The Proposition 1-4 implies the part (a).

In a right Artinian algebra A, since the non null right Socle S = S(A) is a
minimum essential right ideal, its left annihilator I(S) coincides with the right
singular ideal Z:(A) of A and the conditions :

I(S) =) and M=SnIS) =)
are equivalent. This implies immediately the part (b).

NOTATIONS 2-3 -

(a) Let & be the class of right Artinian rings, let $, be the class of (right)
almost semisimple right Artinian rings, let $tq be the class of semisimple
Artinian ring and let K be the class of skewfields, which verify the relation :

Kchoch, Cch

(b) For any field F, let &(F) be the class of right Artinian F-algebras, let
#4(F) be the class of almost semisimple right Artinian F-algebras, let $o(F) be the
class of semisimple Artinian F-algebras and let J (F) be the class of
F-skewfields, that is of skewfields which are F-algebras, which verify the relation :

H(F) C RoF) C R, (F) C &F)

DEFINITION 2-4 - A F-"concrete vertex set’" A is an object of the

form :

S

A =[A; K, PO =IA; (VI =[A 5 (V)]

characterized by a finite and non empty set A (called the underlying abstract
vertex set) and by one of the three equivalent previous data, connected by the

conditions :
(a) In the family (K3) = (K))ae A » each K3, is a F-skewfield :
Ky e K(F)
(b) In the family (pp) = (pA)re A » each py is a non null integer :
pr€ N*
(c) In the family (V1) = (Va)re A » each Vy is a non null and finite

dimensional right Ky-vector space of dimension p).



(d) In the family (V3) = (Vi)Ae A - each V3 is a non null and finite

dimensional left K)-vector space of dimension p), , which may be considered

as the dual space V;gV = $K}‘(V;L, K)) of the right Ky-vector space V).

Of course, for this kind of objects the notion of isomorphism is obvious and as in
the case of quivers, in the sense of the Definition p. 96 of [17], it is convenient

(and harmless) to call two F-"concrete vertex sets” A and A' equal when

they are only isomorphic.

LEMMA 2-5 - Any F-"concrete vertex set" of the form :

A =[A; K, GVI = [A; (VDI = [A; (V)]

determines a semisimple Artinian F-algebra :
R=R(A)= Il RA
Ae A

characterized by the family (RMje A of simple Artinian F-algebras R* having the
"realizations" :
£
RAM=£(V)) = M, (Kp) = [EVYI°

which imply that the right K)-vector space V) is a (RM-K))-bimodule
Vi = RMVK;, and also a (R-Kjy)-bimodule V) = R(VK)K}» , and that the left
Ky -vector space V; ,dual of V), is a (Kp-RM-bimodule V; = K;‘(V;)Rk and

also a (Ky-R)-bimodule V; = KA(V;)R , in such a way that the families :

(VIreA and (VDhe A

are respectively the set of isomorphism classes of simple left R-modules
Va =Rr(V).) and the set of isomorphism classes of simple right R-modules
V;: = (V;)R of type A € A, identified with the underlying "abstract vertex set"

A = V(R) of the quiver :
I'(R) = (V(R), ©)

of the semisimple Artinian F-algebra R = R(A).



PROOF - The Wedderburn-Artin Structure Theorem for semisimple Artinian
rings or algebras implies immediately the proof.

LEMMA 2-6 - Any semisimple Artinian F-algebra :
R e &oF)

determines an unique F-"concrete vertex set"” :
A =AR)
such that :

R =R(A)

“up to an F-isomorphism".

PROOF - With the previous notations, this Lemma is a partial translation of the
Wedderburn-Artin Structure Theorem for semisimple Artinian rings or algebras.

COROLLARY 2-7 - [Technical version of the WEDDERBURN-ARTIN

STRUCTURE THEOREM] -
With the previous notations, the Structure of any semisimple Artinian

F-algebra :

R e &oF)
is characterized, "up to an F-isomorphism”, by a (or by its) F-"concrete
vertex set' :

A=A KD, pV] =[A; (VI =[A; (V;)]

such that :

R =R(A)
and therefore :

A = AR)

In other words, the correspondences :

A S R(A) and Ri— s A(R)

are one-to-one reciprocal correspondences between the F-""concrete vertex

sets" X and the isomorphism classes [R] of semisimple Artinian F-algebras
R e &y(F).



PROOF - This is a complete and technical translation of the Wedderburn-Artin
Structure Theorem for semisimple Artinian rings or algebras.

DEFINITION 2-8 - A pair (H, G) of semisimple Artinian F-algebras :
He &yF) and G e &y(F)
verify the relation : <<G dominates H>> or << H is dominated by G> >
noted :
HAG
if and only if G has a F-concrete vertex set of the form :

S~

K@) =N =[A; K. @I =[A; (VI =[A; vVl

and there exists a non empty subset :
ACA

such H has a F-concrete vertex set of the form :

AE) = A" =[A; Ky, @] = A3 (U] =[A"; (UD]

or a "generalized F-concrete vertex set” of the form :

o

AHEH) = A'=[A; K, @) =[A; UV =[A; (U]

in which : qy =0, Uy = (0) and U; =(0) for all A € (A - A"), in such a way that

the semisimple Artinian F-algebra H has the realization :

=R /X' = &£ = | = DI°
H=R(A) MQA, (U) 7L(g\,qua(x) kg\,[:e(ux)]

and the "generalized realization” :

H=RAN= Il & = IT My k= IT (2P
(A e (Un) Ae A qx( A) Ae A[ (Ul

LEMMA 2-9 - With the previous notations, any pair (H, G) of semisimple
Artinian F-algebras, subject to the condition :

HAG
determines the canonical (H-G)-bimodule :

10



L=pLg= Il gvy,up= 11 M K
nlg=,14 (Va, U A pl,qx( A)

in which £ (Vy, Uy) is the abelian group of Kj-linear maps from Vy into Uy,
and in which Mpk . qA(K)”) is the abelian group of (p) % qu)-matrices with

coefficients in the F-skewfield K), and such that for every element :
I=tpel= 11 €viU
A A A Un)

h=(hy)e H= H LU and = € G= n IV

then, the conditions :
hl = (hplp) and Ig=(hen)
characterize the structure of (H-G)-bimodule.

PROOF - This is obvious.

LEMMA 2-10 - With the previous notations, for any semisimple Artinian
F-algebra G, with the F-concrete vertex set :

o~

AG)=A
the semisimple Artinian F-algebras H, subject to the condition :
HG
are characterized by the families of integers :
(qn) = @reA

with a non empty support :
AM={Ae A;qp#20} 22
in such a way that :
(a) The canonical (H-G)-bimodule L = y Lq is a non null finitely generated
right G-module with an isotypical decomposition of the form :

L= @ A=~ II 12
Ae A re A

such that q) is the length of the isotypical component LA of type A € A,

characterized by the condition :
LA=8(Va, U =Up @ Vi =Mp g (Kp)

in which Uy is a right Ky-vector space of dimension qj.
(b) The semisimple Artinian F-algebra :

11



H= IT ewun=I1T M, k= IT un=I1 M, K
e O =5 2% 0KV Ae A Un =, A 9K

is the F-algebra of endomorphisms :

H =& 6(Lg)
of the non null finitely generated right G-module L = LG characterized by the
canonical (H-G)-bimodule L = |y L, or by the family of integers (qi), with a

non empty support.

PROOF - According to the Definition 2-8, the Lemma 2-5 implies immediately the
part (a) and the classical properties of the finitely generated semisimple modules
(See for instance the Theorem 1 p. 15 of [1]) imply easily the part (b) and complete

the proof.

EXAMPLE 2-11 - Any pair (H, G) of semisimple Artinian F-algebras, subject

to the condition :
H<G

determines the canonical (H-G)-bimodule L = iy Lg and therefore the Formal

triangular matrix F-algebra :

B:(H L):(H:H«G)
0G

with the right Socle S = S(B) defined by the Formal matrix relation :
S = 0L = S(B)
0G

Then, it is easy to verify that B is a (right) almost semisimple right Artinian

F-algebra which is not a semisimple Artinian F-algebra, that is :

B e [#,(F) - &o(F)]

FIRST FUNDAMENTAL CONSTRUCTION 2-12.
This "First Fundamental Construction” determines a F-algebra :
A e [Ra(F) - Ko(F)]
In fact, for any pair (H, G) of semisimple Artinian F-algebras, subject to the
condition : H < G, for any right Artinian F-algebra C € & (F) and for any
"parameter” ¥, constituted by an injective F-algebra homomorphism :

Y:C>—3H

12



which defines a F-subalgebra : W¥(C) C H, simply noted : C C H, it is easy to

verify that the right Artinian F-algebra A determined as the F-subalgebra of the
previous F-algebra B constituted by the Formal triangular matrix F-algebra :

0G 0 G

A= (C L)s [‘*’(C) L]:(C ot LH< G)

with a right Socle :

0L
S= =S(A) = S(B
(oc] (A) =S(B)

J
is also a (right) almost semisimple right Artinian F-algebra which is not a
semisimple F-algebra, that is :
A € [R4(F) - &Ko(F)]
Moreover, this F-algebra A appears in the exact sequence :
0 ) > A > C -0

which means that A is a "general F-algebra extension” of the non null idempotent

ideal S by the right Artinian F-algebra C.

THEOREM 2-13 - For any F-algebra A, the following conditions are
equivalent :

(a) The F-algebra A is a (right) almost semisimple right Artinian
F-algebra which is not a semisimple Artinian F-algebra, that is :

A e [&,(F) - Ro(F)]

(b) The F-algebra A is a right Artinian F-algebra which is not a

semisimple Artinian F-algebra and which verifies the condition :
M =M(A) = (0)

which implies that the F-algebra A appears in the general F-algebra extension :

H L

1" 0— 5S>t A" s Cc 0

in which S = S(A) = N(A) # (0) is a non null proper idempotent two-sided ideal
and C = Ays.

(c) The Structure of the right Artinian F-algebra A is determined by the

previous "'First Fundamental Construction', that is characterized by :
(a') A right Artinian F-algebra C.
(B A pair (H, G) of semisimple Artinian F-algebras :
He &(F) and Ge &yF)

subject to the condition :

13



HJG
and which defines S as the right Socle :

0L
S= =S(B
RS

of the Formal triangular matrix F-algebra :
B=({H L )l_H-H<0G)
0G

associated to the canonical (H-G)-bimodule L. = g L G.
(y) A "parameter" ¥ constituted by an

homomorphism :
Y:C>——H

injective F-algebra

such that the right Artinian F-algebra A is the Formal triangular matrix

F-algebra :

0G 0 G

A:(CL)E(W@)L}4C>—XHH<JG)

with a right Socle :

0L
S: "—‘SA =SB
(OG) (A) =S5(B)

Moreover, under these equivalent conditions, the Jacobson Radicals J(A)

and J(C) verify the relation :
AlJ(A) = [C/JO)] x G

PROOF - Firstly, according to the Proposition 1-4, the Lemma 2-2 implies that

the conditions (a) and (b) are equivalent.

Secondly, the previous "First Fundamental Construction" 2-12 shows easily

that the condition (c) implies the equivalent conditions (a) and (b), and also the last

relation.

Conversely, when the equivalent conditions (a) and (b) are verified,

according to the Lemma 2-2, the Theorem 4-3 of [9] implies the existence of a pair

(H, G) of semisimple Artinian F-algebras, subject to the condition : H < G, which

determines the Formal triangular matrix F-algebra :

B:C{L}qﬂzﬂqs)
0G

with a right Socle :

0L
S= =S(B
(06 )-s®

14



such that the right Artinian F-algebra A verifies the relation :
SB)=S=S(A)CACB
This implies the existence of an unique F-subalgebra :
A'CH
such that A is the Formal triangular matrix F-algebra :
A=(A'L)
0G
Thus, for the right Artinian factor F-algebra C = A/S, which is defined only

"up to an F-isomorphism", there exists an unique injective F-algebra

homomorphism :
¥Y:.C>——H

which is a "section”, such that :
CS YO =ACH
and this implies the characterization of the right Artinian F-algebra A given in the
condition (c).
Therefore, the equivalent conditions (a) and (b) imply the condition (c) and
this completes the proof.

3. THE NOTION OF T-ESSENTIAL SINGULAR ALGEBRA
EXTENSION.

It is convenient to remark that for any right Artinian F-algebra A which
verifies the condition : M = M(A) # (0), which implies automatically :
S =S(A) # A and N = N(A) # A, according to the Proposition 1-4, the right
Artinian factor F-algebra B = A/M appears in the singular F-algebra extension :

(t) 0 » M ! 5 A 1:>>B >0

> B, induces an

in which the surjective F-algebra epimorphism t : A

isomorphism of multiplicative A-bimodules T : N >———» T, from the idempotent

proper two-sided ideal N = N(A) of A onto an idempotent proper two-sided ideal
T = 1(N) of B, which verifies : T C N(B) and T € € (B), in such a way that for

the right Artinian factor F-algebra C = A/S = B/T, the singular F-algebra extension
(1) induces on M a structure of C-bimodule.

This justifies the introduction of the following notions.

15



DEFINITION 3-1 - For any pair (B, T) constituted by a F-algebra B and a

proper two-sided ideal T of B, which determines the factor F-algebra C = B/T

and the canonical surjective F-algebra epimorphism ¢ : B > C, for any

C-bimodule M, then :

(a) A pair (A, N) constituted by a F-algebra A and a proper two-sided
ideal N of A, characterizes a T-singular F-algebra extension of M by (B, T) of
the form :

©,T) 0——sM>" (AN
if the F-algebra A characterizes a singular F-algebra extension of M by B of the

C B, T)—0

form :
i o
(G) 0 HSM>_"5A > B , 0

in which the surjective F-algebra epimorphism :
c:A-

> B
induces an isomorphism of multiplicative A-bimodules :
Oo:N>—>»T

from the special proper two-sided ideal N of A, onto the proper two-sided
ideal T of B, considered as an A-bimodule by means of ©, in such a way that
(0, T) induces on M the structure of C-bimodule.

(b) Two T-singular F-algebra extensions :

6. T) 0——sM>— (A, N) > (B, T) ——— 0

and

(o, T) 0 ‘M > (A, N") ° > B, T)——0

which induce on M the structure of C-bimodule, are "equivalent” if there exists
a F-algebra isomorphism :

~~

WiA—— A
such that : i' = wol and 6 = G'ow and N' = w(N).
Then, they belong to the "same class" noted :
[0, T] =[0', T] = [A, N] = [A', N]
(c) The pair (B, T) and the C-bimodule M determine the space :
Ext(B,T,M)
of "classes" [o, T} of T-singular F-algebra extensions (6, T) of M by (B, T),

which induce on M the given structure of C-bimodule.
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(d) In particular, for every class :
€ e Ext (B, T, M)
the "characterization" noted :
(A,N)=(B, T, M, &)

means that the pair (A, N) appears in a T-singular F-algebra extension :

G, T) 00— sM>— " (AN)

unique, "up to an equivalence”, such that :
[A,N] =[0, T} =& € Ext (B, T, M)

° > (B, T)——0

DEFINITION 3-2 - With the previous notations, a T-singular F-algebra

extension:

©.T) 0—sM>—s(AN—" % B,T)—0

which induces on M the given structure of C-bimodule, is called a T-essential
singular F-algebra extension if and only if for every right ideal & of A, the
conditions:

iM)ynQ =(0) and NNnQ=(0)
imply : & =(0).

LEMMA 3-3 - With the previous notations, if two T-singular F-algebra
extensions (o, T) and (c', T) which induce on M the given structure of C-

bimodule, are equivalent, that is if :
[0, T]=[0', T] € Ext (B, T, M)
then (0, T) is a T-essential singular F-algebra extension if and only if (¢', T) is

a T-essential singular F-algebra extension.

PROOF - According to the Definition 3-1, the Definition 3-2 implies immediately
the proof.
This Lemma 3-3 justifies the following Definition.

DEFINITION 3-4 - For any pair (B, T) constituted by a F-algebra B and a
proper two-sided ideal T of B, which determines the factor F-algebra C = B/T
> C, any C-

and the canonical surjective F-algebra epimorphism ¢ : B

bimodule M determines the space :
Ext (B, T, M)
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of "classes" [0, T] of T-singular F-algebra extensions (o, T) of M by (B, T),
which induce on M the given structure of C-bimodule, and the "subspace” or
"subset":

Exte (B, T, M)
of T-essential singular classes [0, T] of T-essential singular F-algebra

extensions (6, T) of M by (B, T), which induce on M the given structure of C-

bimodule.

LEMMA 3-5 - (G. HOCHSCHILD) - For any algebra B over a field F and
any B-bimodule M, then :
(a) Every factor set constituted by a 2-cocycle :
fe ZXB,M)
determines the F-algebra :
A=(B,M,f
and the singular F-algebra extension :

(©) = o(f) 0— Mot 5A—% o8B

<

in which the F-algebra A is defined by the F-vector space :
A=MxB

equipped with the multiplication characterized by the condition :

(m1, b) (m2, b2) = (m1b2 + bymy + f(by, b2), b1b2)
forall (m,by)=a1€ A and (mp,bp)=a€ A
and in which :

i{m) = (m, 0) and o((m,b)) =b
forallme Mandb e B.

(b) The class of singular F-algebra extensions :
[o(D] = [o] € Ext(B, M)

also noted :
[6(D] = [6] =[A] =[B, M, f] = [B, M, E]
depends only of the cohomology class :
/f\ =& e H2(B, M)
(c) There exists an isomorphism of F-vector spaces :
@ : HXAB, M) — s Ext(B, M)

such that :
®€) =[c(N)] =[B, M, f] = [B, M, §]
for every f € £ e H2(B, M).
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PROOF - Since F is a field, any F-algebra is projective and any singular
F-algebra extension is a F-split singular F-algebra extension.

Thus, this Lemma summarizes the classical and fundamental properties of the
Hochschild Cohomology Theory for associative algebras [11], [12], [13] (See
also, for instance the Theorem 2-1, p. 295 of [2] or the Theorem 3-1, p. 285 of

(ieh.

LEMMA 3-6 - For any pair (B, T) constituted by a F-algebra B and a proper
two-sided ideal T of B, which determines the factor F-algebra C = B/T and the
canonical surjective F-algebra epimorphism :

¢:B
and for any C-bimodule M, then :

(a) The F-vector space noted :
ZXB, T, M) = Z2(B/T, M) = Z2(C, M)

of normalized 2-cocycles h from the F-algebra C in the C-bimodule M,

> C

determines the Second Hochschild Cohomology group noted :
H2(B, T, M) = HX(C, M) = Z2(C, M)/B%(C, M)
and which is in fact a F-vector space.
(b) There exists a morphism of F-vector spaces :
¢2: Z%B, T, M) =Z%(C,M) —— Z2(B, M)
characterized by the condition :
h* = @a(h) =ho (¢ x ¢)
(c) Every factor set constituted by a 2-cocycle :
he Z%B, T, M) = ZX(B/T, M) = Z2(C, M)

determines the "pair" :

[(A, N) = (B, T, M, h)J

and the T-singular F-algebra extension :

6. T)=6(h) 0——>M>—t (AN —% (B, T)—o 0

in which the F-algebra A is well defined by the condition :
|A = (B, M, h¥%)|

which means that the F-algebra A is the F-vector space defined by the

condition :

() A=Mx B

and equipped with the multiplication characterized by the condition :
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(++) [(m1, b1) (mp, bp) = (m1b2 + bimy + h*(by, bz), b1by)]

for all (mq1,by) =ay € Aand(mp, by)=ape A ;inwhich:
i(m) = (m, 0) and o((m,b))=Db
for allm € M and b € B; and in which the proper two-sided ideal N of A is
well defined by the condition :
(k%) N=(,T)={0,t),te T}

(d) The class of T-singular F-algebra extensions :
[o(h)] = [0, T] € Ext(B, T, M)
also noted :
[o(h)] = [0, T =[A,N]=[B, T,M,h] = [B, T, M, &]
depends only of the cohomology class :

A
h =& € H2(B, T, M) = HX(C, M)

(e) There exists an isomorphism of F-vector spaces :

¥ : HX(B, T, M) ) —— Ext(B, T, M)
such that :
V(&) =[o)] =[B, T,M, h] =[B, T, M, §]

for every:
he £e H2B, T, M) = H2(B/T, M) = H2(C, M).

PROOF - The Definition of the Hochschild Cohomology implies immediately the
parts (a) and (b).

The Lemma 3-5 shows that the F-algebra :
|A = (B, M, h*)]

determines the singular F-algebra extension :

o(h*) 0—sM>t 5A -+ B , 0

in which the F-algebra A is defined by the F-vector space :
(*) A=Mx B

equipped with the multiplication characterized by the condition :
(4) [(my, by) (my, bp) = (m1bp + bymy + h*(by, b2), b1by)]

for all (my,b;)=a1€ A and (mp,bp)=a€e A

and in which :
i(m)=(m,0) and o((m,b))=b
forallme Mandbe B.
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For every t1 € T and tp € T, the Definition :
h* =g@a(h) =ho (¢ x )
implies the relations :
h*(t1, b2) = h*(b1, 12) =0
and therefore, the condition (++) implies the relations :
(m1, b1)(0, t2) = (0, bitz) and (0, t1)(m2, b2) = (0, t1b2)
since M is a C-bimodule, annihilated by T.
These relations show that there exists a two-sided ideal N of A defined by :
(x%%) N=@,T)={0,t);te T}

and that the surjective F-algebra epimorphism :

c:A > B

induces an isomorphism of multiplicative A-bimodules :
6:N>—>»T

from the special two-sided ideal N of A, onto the proper two-sided ideal T of B,
considered as an A-bimodule by means of ©.

This proves the existence of the T-singular F-algebra extension :

(6, T) = a(h) 0— s M>— s (A,N) —2 5 (B, T) —— 0

and completes the proof of the part (c).
For every cohomology class :
£ € H2(C, M) = H2(B/T, M) = H2(B, T, M)

and two 2-cocycles :

he § and h'e §
which determine the two "pairs” :

(ALN)=(B,T,M,h) and (A, N)=(B, T, M, h)
there exists a normalized 1-cochain v e C1(C, M) such that :

h'=h+82v
which implies :
h™* = h* + §2v*

and it is immediate that there exists a F-algebra isomorphism :

w A= (B,Mh*)—"5 A'= (B, M, h'*)
characterized by the condition :
w[(m, b)] = (m - v*(b), b)
for all (m, b) =a € A, and which verifies the relations :
i'=woi and oc=06'ow and N' = w(N)

21



Thus, w characterizes an "equivalence” from (o, T) = ¢(h) onto
(o', T) = o(h'), which implies the relation :
[A, N] =[c(h)] = [0, T] = [0, T] = [a(h)] = [A', N']
and completes the proof of the part (d).
For any T-singular F-algebra extension :

¢\ T) 00— Mt (A N)—2 5 B, T)—0

which induces on M the given structure of C-bimodule, there exists at least one

morphism of F-vector spaces u : B—— A', normalized by u(1) = 1, which is a
section or a right inverse of o' and such that the restriction of uto T is an

> T,

inverse of the isomorphism of multiplicative A'-bimodules ¢' : N' >
induced by o'.

It is possible to identify each m € M withi'(m) € A'so thati': M — A'is
the identity injection. Then, it is easy to verify that the relation :

o'[u(b1b2)] = bibz = o’[u(b1) u(b2)]
implies the existence of an unique 2-cocycle :
fe ZAB, M)

characterized by the condition :

(1) f(b1, b2) = u(b1) u(b2) - u(b1by)
for all by € B and by € B.

Likewise, the description of the structure of B-bimodule on M can be written
in terms of u as :

u(b)m = bm and m u(b) =mb

forallbe Bandme M.

The existence of the isomorphism of multiplicative A'-bimodules :
G N> T

implies the relations :

alau(tp)] = o'(ant and o'[u(ty)az] = t10'(a2)
and therefore the relations :
aqu(tp) = ul[o'(aptz] and u(ty)az = ulty o'(az)]

forallaje A'ape ALtje Tandtr e T.
In particular, the conditions : a; = u(by) and ap = u(bp), imply the relations :
(2) u(by) u(tz) = u(bitz) and u(t1) u(b2) = u(t1b2)
foralibye B,bpe B,tje Tandtp e T.
Thus, the condition (1) and the relations (2) imply the relation :
(3) f(b1, o) =f(t, b2) =0
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forallbje B,bye B,tje Tandtr e T.
This relation (3) implies immediately the existence of an unique 2-cocycle :
h e Z2(C, M) = Z2(B/T, M) = Z%(B, T, M)
characterized by the condition :
“4) h* = qah) =f
and which determines the T-singular F-algebra extension :

(0, T) = o(h) 0——M>——s (A, N)

Then, the conditions (1) and (4) imply the existence of an "equivalence” of

° > (B, T)—— 0

T-singular F-algebra extensions :

w: (A, N)=(B, T, M, h)—— (A", N
characterized by the condition :
w[(m, b)] =m + u(b)
for all (m, b) =a € A, and this implies the relation :
[A, NT=[A,N]=[B, T, M, h] = [a(h)]
Moreover, with obvious notations, the replacement of u by a u' of the same
kind, implies the replacement of f by a " and also the replacement of h by a h'.
Then, it is easy to verify that there exists v e C}(C, M) such that :
u' = u + v* and this relation implies : f' = f + §2v*, that is : h™* = h* + §2v*,
which implies the relation :
h'=h+ 82v
Therefore, the T-singular F-algebra extension (¢', T) determines an unique

cohomology class :

A A
h'=h =& e H2(C, M) = H(B/T, M) = H2(B, T, M)

such that :
[0, T]={AN]=[B, T.M,h}=[B, T,M, h'] =[B, T, M, &]

This last property and the part (d) imply the existence of a bijection :

¥ : H2(C, M) = HX(B, T, M) — Ext(B, T, M)
such that :
Y€)= [o(h)] =[B, T, M, h] =[B, T, M, §]
for every h € £ € H2(C, M) = HX(B/T, M) = HX(B, T, M).
Thus, there exists on the set Ext(B, T, M) a structure of F-vector space such
that this bijection W become an isomorphism of F-vector spaces and this

completes the proof.
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DEFINITION 3-7 - For any pair (B, T) constituted by a F-algebra B and a
proper two-sided ideal T of B, which determines the factor F-algebra C = B/T
and the canonical surjective F-algebra epimorphism :
¢:B—>C

and for any C-bimodule M, then , for any 2-cocycle :

he Z2B, T, M) = Z2(B/T, M) = Z2(C, M)
for which any element :

ap = (mg, bg) e M x B

determines the F-vector space :

sg(ap, h) = {b € B ; mgb + h*(bg, b) =0}
and the right annihilator :

rB(bg) = {b'e B ; bgb' =0}
which is a right ideal of the F-algebra B, then, this 2-cocycle h belongs to the
subset :
Z2(B, T, M) = ZX(B/T, M) = ZXC, M)

of T-essential 2-cocycles if h verifies the condition :

(E) « For every element :
ag=(mg,bg)e Mx IgMM)C M x B
the conditions :
() rg(bo) C sp(ag, h) and (s) bosp(ag, h) N T = (0)
imply : bg = 0 (which implies automatically : ag =0, that is : mg = 0 and
bg = Q) ».

LEMMA 3-8 - For any pair (B, T) constituted by a F-algebra B and a proper
two-sided ideal T of B, which determines the factor F-algebra C = B/T and the
canonical surjective F-algebra epimorphism :

¢:B > C

and for any C-bimodule M, then, if two 2-cocycles :
he Z%(C, M) and h'e ZXC, M)

are cohomologous, that is if :
A A
h =h'=§ e HXB, T, M) = H3(B/T, M) = H2(C, M)

then, h is T-essential if and only if h' is T-essential, that is :
he Z3(B, T, M) if and only if W' € ZX(B, T, M).



PROOF - This follows easily from the Definition 3-7 and this Lemma 3-8
justifies the following Definition.

DEFINITION 3-9 - In the case of algebras over a field F, for any pair
(B, T) constituted by a F-algebra B and a proper two-sided ideal T of B, which
determines the factor F-algebra C = B/T and the canonical surjective F-algebra

epimorphism ¢ : B > C, any C-bimodule M determines the F-vector

space :
H2(B, T, M) = H2(B/T, M) = H2(C, M) = Z2(C, M)/BZ(C, M)

of cohomology classes & = ﬁ of 2-cocycles :
h e Z2(B, T, M) = Z2(B/T, M) = Z2(C, M)
and the "subspace” or "subset” :
H2(B, T, M) = HX(B/T, M) = Z2(B, T, M)/BX(C, M)

A
of T-essential cohomology classes & = h of T-essential 2-cocycles :
he ZX(B, T, M) = Z(B/T, M) = ZXC, M)

which is only a set.

THEOREM 3-10 - /n the case of algebras over a field F, for any pair (B, T)
constituted by a F-algebra B and a proper two-sided ideal T of B, which
determines the factor F-algebra C = B/T and the canonical surjective F-algebra

epimorphism :
> C

¢o:B
and for any C-bimodule M, the isomorphism of F-vector spaces :

¥ : H2(C, M) = H2(B, T, M) — Ext(B, T, M)

induces a bijection :

¥ : H3(B, T, M) — = Exte(B, T, M)

such that :
\PC(E.;) = [g(h)] = [Bv T’ Ma h] = [B’ Tv M’ &]

for every:
he &e HXB, T, M) = ZX(B, T, M)/B2(C, M)
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PROOF - The Lemma 3-6 characterizes the isomorphism ¥ and shows that every
2-cocycle :
he Z%C, M) = ZXB/T,M)=Z2B, T, M)
determines the "pair” :
(A,N)=(B, T,M, h)

and the T-singular F-algebra extension :

(6, T) = o(h) 0— s M>t 5 AN —2 5 B,T)——0
in which the F-algebra A is defined by :
(5) A= (B, M, h*

and in which the proper two-sided ideal N of A is defined by :
N=(@,T)={@,t);te T}
and the proper two-sided ideal M' = i(M) of A is defined by :
M=M,0)={(m,0);me M}
Then, according to the Lemmas 3-3 and 3-8, in order to complete the proof, it
is sufficient to prove that the condition :
6) h e Z2(B, T, M) = Z2(BIT, M) = ZX(C, M)

is equivalent to the condition :

(7) « The T-singular F-algebra extension (o, T) = o(h) is a T-essential
singular F-algebra extension » ;
that is to the condition :

(8) « For every ag = (mg, bg) € A, the conditions :

9) M'mapA = (0) and (10) N N apA = (0)
imply : ag = (), thatis : mg =0 and bg =0 ».

The Lemma 3-5 and the relation (5) imply that two elements :

ag = (mg, bg) € A and a=(m,b)e A

verify the relation :

(11 aga = (mq, bg) (m, b) = (bgm + mgb + h*(bg, b) , bgb)

In particular, if bg ¢ Ig(M), there exist m; € M and mp € M such that :
bgmj = my # 0, and therefore the elements a1 =(m1,0) € Aanday =(mp,0) e A
verify : aj # 0 and ap # 0, and also the relation :

apay = (mog, bo)(m1, 0) = (bomy, 0) = (m2, 0) =a2€e M’
which imply the relation :
M'magA#(0)
Thus, in the condition (8) it is sufficient to consider any element :
ag=(mp,bple Mx IgM) C M x B
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for which the relation (11) gives the relation :

(12) apa = (mg, bp)(m, b) = (mgb + h*(bp, b), bgb)
which implies the relations :
(13) M' M apA = {(mgb + h*(bg, b), 0) ; b € rp(bo)}
and
(14) N nagA = {(0, bgb) ; bgb € T and b € sg(ag, h)}
Then, it is immediate that the condition (9) is equivalent to the condition :
(r) rg(bp) C sp(agp, h)
and that the condition (10) is equivalent to the condition :
() bosp(ap, h) N T = (0)

Thus, the condition (8) is equivalent to the condition (E) that is to the
condition (6) and this completes the proof.

NOTATIONS 3-11 - For any pair (B, T) constituted by a right Artinian F-
algebra B and a proper two-sided ideal T € G (B), which determines the right
Artinian factor F-algebra C = B/T and the canonical surjective F-algebra
epimorphism :

¢:B > C

the semisimple Artinian F-algebra :
B' = B/J(B)
and the canonical surjective F-algebra epimorphism :
¢ :B > B'=B/J(B)

which determine the proper two-sided ideal :
¢'(M=Te T(B)
the semisimple Artinian factor F-algebra :
C' = B/T' = B/(T+J(B))
and the canonical surjective F-algebra epimorphism :

¢1:B—— C' =BT

then :

(a) Let M (B, T) be the class of non null C-bimodules M such that the
right C-module M = Mc is semisimple and Artinian (or of finite length, or finitely
generated).

(b) Let M'(B', T") = M (C") be the class of non null finitely generated
right C'-modules M' = M'c which determine the semisimple Artinian F-

algebras of endomorphisms :
H=fcM'e)
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and the canonical (H'-C'")-bimodules :
Mv - H'M'C'

LEMMA 3-12 - With the previous Hypothesis and Notations, then :

(a) The F-algebra C' = B'/T" verifies the relation : C' = C/J(C), so that the
canonical surjective F-algebra epimorphism :

o":C > C'=C/J(C)
verifies the relation : @10 @' =@" 0 @.
(b) Any non null C-bimodule :
Me M@B,T)
is characterized by a non null right C'-module :
M =Mce M'(@C)=M'B, T)
and by a "parameter” ¥' constituted by a F-algebra homomorphism :
Y'e Morg[C, H]

such that the C-bimodule M is defined by the characterization :
M=[M; ;¥':C—- H']

which means that the non null C-bimodule M = ¢ M¢ derives from the non null
canonical (H'-C")-bimodule M' = i M'cr, by the "scalar restrictions” defined

by the F-algebra homomorphisms :
¥Y:C— H and ¢":C—>C

PROOF - The general properties of the Jacobson Radical imply easily the part
(a). Then, the part (b) follows from the general properties of semisimple modules.

SECOND FUNDAMENTAL CONSTRUCTION 3-13.
This "Second Fundamental Construction" determines a F-algebra :
A € [R(F) - ,(F)]
In fact, for the data constituted by :
(o) A right Artinian F-algebra B.
(B) A proper two-sided ideal T € % (B), which determines the right

Artinian factor F-algebra C = B/T and the canonical surjective F-algebra

epimorphism :
¢:B > C
(y) A non null C-bimodule :
Me M(B,T)

determined by the "characterization” :
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M=[M;¥:C— H
defined by a non null right C'-module :
M =Mce M(C)= M'B, T)
and by a "parameter"” ‘Y'constituted by a F-algebra homorphism :
¥Y'e Morpg(C, H']

A
(8) A "parameter” & =h constituted by a T-essential cohomology

class :

A
E=he HXB, T, M) = Exte(B, T, M)

these data give the construction of a pair (A, N) by the ""characterization’ :
(A,N)=(B, T,M, h)=(B, T, M, &)

which determines, according to the following Theorem 3-14, a T-essential singular
F-algebra extension :

T =) 00— s M>— (AN s (B, T) — 0

in which A is a right Artinian F-algebra, which is not a (right) almost semisimple
right Artinian F-algebra, that is :
A e [R(F) - #,4(F)]
with a right Socle :
S=S(A)=MA)®NA)=M&N
More precisely, according to the Lemma 3-6 this ""Charaterization"”
means that in the T-singular F-algebra extension (1, T) = o(h), the F-algebra A is

well defined by the condition :
[A = (B, M, h*)]

which means that the F-algebra A is the F-vector space defined by the condition :
(*) A=Mx B

and equipped with the multiplication characterized by the condition :
(x+) [(m1, b1) (my, by) = (m1bz + bymy + h*(by, ba), b1ba)]

for all (m, b1) =aj € A and (mp, by) =a3 € A ;in which:
i(m) = (m, 0) and 6((m,b))=b
for all m € M and b € B; and in which the proper two-sided ideal N of A is well
defined by the condition : '
(%%%) N=@0,T)={0,t);te T}
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THEOREM 3-14 - For any F-algebra A, the following conditions are
equivalent :
(a) The F-algebra A is a right Artinian F-algebra which is not a (right)
almost semisimple right Artinian F-algebra, that is :
A e [R(F) - &,(F)]
(b) The F-algebra A is a right Artinian F-algebra which verifies the

condition :
M=M(A)=(0)
which implies that the F-algebra A and the proper two-sided ideal :
N = N(A)

characterize-. by the canonical decomposition of the right Socle :
S=S(A)=MA)D®NA)=MDN
determine the "pair" (A, N) which characterizes a T-essential singular

F-algebra extension :

€T O0— sM>" s (AN)— (B, T)—0

for the factor F-algebras:

B =AM and C=B/T=A/S
and for the proper two-sided ideal T = ©(N) = T(N) of B, which verifies :

T e G(B)
and which induces on M a structure of C-bimodule such that :
Me M@B,T)
(c) The Structure of the right Artinian F-algebra A is determined by the

previous ""Second Fundamental Construction”, that is characterized by :

(o) A right Artinian F-algebra B.
(B) A proper two-sided ideal T € G (B), which determines the right

Artinian factor F-algebra C = B/T and the canonical surjective F-algebra

epimorphism :
¢:B——>C
(V) A non null C-bimodule :
Me M(@B,T)

determined by the " characterization" :
M=M,;¥:C—— HI
defined by a non null right C'-module :
M=Mce M(CYy=M'B', T)
with the semisimple Artinian F-algebra of endomorphisms :
H = $cM'e)
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and by a "parameter" ' constituted by a F-algebra homomorphism :
¥Y'e Morg[C, H']

A
(8) A "parameter" € = h constituted by a T-essential cohomology

class :

A
£ =h e HXB, T,M) = Exte(B, T, M)

which give the construction of the pair (A, N) by the 'characterization' :
(A,N)=(B, T,M, h)=(B, T, M, §)

which implies :

S=S(A)=M(A) ® N(A) =M@ N

so that the pair (A, N) is completely and well defined by the previous
conditions (x), (#x) and (x*x) of the Lemma 3-6.
Moreover, under these equivalent conditions, the Jacobson Radicals J(A)

and J(B) determine the same semisimple Artinian F-algebra :
|A/J(A) = B/J(B)|

PROOF - According to the Lemma 2-2 and the Proposition 1-4, the Remarks
before the Definition 3-1 show that the condition (a) is equivalent to the first part of
the condition (b), which implies the existence of the T-singular F-algebra extension
(t, T), in which : T € € (B), and the relation :
M=M(A) C S(A)=S
implies that M is a semisimple and Artinian right A-module M = M4 which derives
from a non null semisimple and Artinian right C'-module :
M =Mce M(@C)=M'B, T)
and it is easy to verify that (t, T) induces on M a structure of C-bimodule such

that :
Me M@B,T)
Moreover, since in the right Artinian F-algebra A, its right Socle :
S=S(A)=MA)PNA) =MBPN=iM)®ON
is a "minimum essential right ideal", in particular, for any non null right ideal & of
A, which verifies necessarily : S N Q # (0), there exists at least one minimal right

ideal &' of A such that : @' C @, and which verifies necessarily : @' C M or
Q&' C N, which imply : M n & # (0) or N N & # (0), and therefore the Definition

3-2 shows that (1, T) is a T-essential singular F-algebra extension.
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This proves that the condition (a) implies the condition (b).

According to the Theorem 3-10 and the Lemma 3-6, the Lemmas 3-3 and
3-12, the Definition 3-4 and the Definition 3-1 show that the condition (b) implies
the condition (c).

Now, let A be a F-algebra determined by the condition (c), in which,
according to the Definition 3-1, the ''characterization' :

ALN)=B, T,M,h)=B,T,M, &)
implies that the pair (A, N) appears in a T-essential singular F-algebra
extension :

@, T)=agth) 00— M>——s(A,N)

unique, "up to an equivalence”, such that :

> B, T)—— 0

A
£ =h € HX(B, T, M) = Exte(B, T, M)

In particular, in the singular F-algebra extension :

(o) 0—sM>—— A% 5B 40
since the right A-modules B = Bp and M = My are Artinian, the right A-module Az
is Artinian and therefore the F-algebra A is a right Artinian F-algebra.

The condition : M e M (B, T), implies that M is a semisimple right

A-module, which verifies necessarily the relation :
M=i(M) C S(A)
According to the Definition 1-3, the Lemma 1-2 implies that the ideal :
T € €(B), verifies : T C N(B) C S(B), which shows that T is a semisimple right
B-module, and according to the Definition 3-1 which shows that the T-essential

singular F-algebra extension (6, T) induces an isomorphism of

multiplicative A-bimodules ¢ : N > > T, it follows easily that N is a

semisimple right A-module, which verifies necessarily the relation :
N C S(A)
and therefore, it follows the relation :
S=M®N=iM) DN C S(A)

For the T-essential singular F-algebra extension (¢, T), the

Definition 3-2 shows that for any right ideal & of A, the conditions :
iM)ynQa =) and NN =(0)

imply : & = (0), and this property implies that the two-sided ideal S =M @ N is
an essential right ideal of A, and therefore :
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S=M®N=iM) DN =S(A)
which implies easily : M = M(A) # (0) and N = N(A).
This proves that the condition (c) implies the condition (a), and the property
of the Jacobson Radicals is obvious in any singular F-algebra extension.

PROPOSITION 3-15 - For any pair (B, T) constituted by a F-algebra B and
a proper two-sided ideal T of B, which determines the F-algebra C = B/T and
for any C-bimodule M, if T verifies :
Te €B)
then :
(a) The subset :
72(C, M) = ZXB/T, M) = ZB, T, M)

of T-essential 2-cocycles is constituted by the 2-cocycles :
h e Z2(C, M) = ZAB/T, M) = Z2(B, T, M)
which verify the condition :
(E") « For every element :
ag=(mg,bp) e Mx [IgM)-T]C Mx B
the conditions :
(0 rg(bo) C sp(ap, h)
and
(s) bo sp(ag, h) N T =(0)
imply : bg=0 ».
(b) In particular, if the C-bimodule M verifies :
BM)=T
then :

A 2
0=0e H;(B,T,M) = H2(B, T, M)
and in this case the space Hg(B, T, M) is non empty.

PROOF - At first, any C-bimodule M verifies the relation :
T C Anng(M) = lg(M) N rg(M)
which gives a sense to the condition (E') and which shows that the Definition 3-7

implies the relation :
T C sp(ag, h)
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Secondly, for every element :
ag=(mg,bg)e MxTC MxB
according to the Definition 1-3, the Lemma 1-2 shows that the hypothesis :
T € € (B), implies that there exists B € T such that : by = bpP, so that the
condition (s) implies :
bo = boPB € bosp(ag, h) N T = (0)
that is : bg = 0, which proves that the conditions (E) and (E') are equivalent and this
proves the part (a).
Then, the part (a) and the Definition 3-9 imply immediately the part (b), and
this completes the proof.

4. CLASSICAL INVARIANTS FOR RIGHT ARTINIAN
ALGEBRAS.

One of the most important classical invariants for any right Artinian F-
algebra A, is its quiver :

I'(A) = (V,E) = (V(A), E(A))
in the sense of the Definition of the page 97 of [17], for which it is convenient (and
harmless) to call two quivers equal when they are only isomorphic, that is, there is
a bijection between their vertex sets that maps the edge sets bijectively.
PROPOSITION 4-1 - Any right Artinian F-algebra :
A e &(F)
determines a semisimple Artinian F-algebra:
A/J(A) =R e &o(F)

and a classical invariant constituted by the F-'""concrete vertex set' :

AW =AR®R = A =[A; K, @] =[A; (VDI = [A; (V)]

such that :

R=R(A)
in which the underlying "abstract vertex set" A coincides with the common
vertex set :
A=V(A)=V(R)
of the quivers :
I'(A) = (V(A), E(A)) and I'R) = (V(R), D)
of the F-algebras A € &(F) and R € $(F).
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PROOF - The first assertion is obvious since the right Artinian F-algebra R,
without Radical, is semisimple.

The fact that the mapping P—— P/PJ(A) defines a bijective correspondence
between V(A) and V(R) (See for instance the Proposition p. 93 of [17]) gives the
relation :

A=V(A)=V(R)
according to the previous convention.
At last, if two right Artinian F-algebras A and A' are isomorphic, it is

obvious that the semisimple Artinian F-algebras A/J(A) =R and A/J(A") =R’ are
isomorphic, so that the Corollary 2-7 gives the relation :

AA)=AR) = AR) = A (A)

which completes the proof.

5. CANONICAL RESOLUTION OF RIGHT ARTINIAN
ALGEBRAS.
Now, our aim is to define some new invariants for right Artinian F-algebras.

DEFINITION 5-1 - For any F-algebra B with a right Socle S(B) having the
canonical decomposition :

S(B) =M(B) © N(B)
the "'special ideal" of B, noted Q(B) is the (two-sided) ideal defined by the

conditions :

QB)=M@B) if M®B)#()
QB)=NB) if M®B)=(0)
which show that Q(B) is a non null ideal if and only if S(B) is non null.

LEMMA 5-2 - For any right Artinian F-algebra B € &(F), the "special ideal"
Q = Q(B) is a non null ideal of B, which is a "proper ideal" of B if and only if B
is not a semisimple Artinian F-algebra, that is if and only if :

B e [&(F) - &o(F)]

PROOF - Since the hypothesis : B € &(F), implies : S(B) # (0), this follows
immediately from the Lemma 2-2 and the Definition 5-1.
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THEOREM 5-3 - For any right Artinian F-algebra:
Ae &(F)
there exist an unique integer m € N, a (finite right) Canonical Resolution, of

the form :
T1

RA) = [A = Am— > Ame .. Ai— o Apg ... Al — L Agl]
and a (finite right) strictly descending Fundamental Sequence of proper (two-
sided) ideals, of the form :
AA) = (Co, Uq, A2, ..., Ui, ..., UAn-1, UAm = (0)
associated by the conditions :
A= A/Cli for all iel={0,1,2,.. m}
and characterized by the following conditions :
(a) If A is a semisimple Artinian F-algebra : A € &(F), then : m = 0, and
RA)=[A=Aq and A(A) = (Ao = (0))
are respectively the trivial (finite right) Canonical Resolution and the trivial
Fundamental Sequence.
(b) If A is not a semisimple Artinian F-algebra: A ¢ $((F), then : 1 <m,
and the F-algebra Ag is a semisimple Artinian F-algebra:
Ao e FoF)
such that for every integer ie I* = {1, 2, ..., m}, the right Artinian F-algebra:
Aje &(F)
is not a semisimple Artinian F-algebra:
Aje Fo(F)
and the i-th "link"" :

T-
A; LSS Aia

of the Canonical Resolution R (A) is the surjective F-algebra epimorphism ;

associated to the exact sequence or "F-algebra extension" :

) 0—os Qi v A — s A — 0

characterized by the condition :
Ker 1i = Qi = Q(Aj)
equivalent to the equivalent conditions :

Ai1 = Ai/Qi = AifQ(A) and Qi-1/Aj = Q(A/Q))

PROOF - The Theorem 5-4 of [10], applied in the case of F-algebras, implies
immediately the proof.

36



COROLLARY 5-4 - For any right Artinian F-algebra:
Ae &(F)

with the Notations of the Theorem 5-3, there exists a (finite right) Canonical
Sequence p(A), characterized by the following conditions :

(a) If A is a semisimple Artinian F-algebra : A € &o(F), then p(A) is the
empty or trivial Canonical Sequence : p(A) = .

(b) If A is not a semisimple Artinian F-algebra : A ¢ $(F), then, the
Canonical Sequence :

P(A) = (P1, P2, s Pis -s Pm)

is the finite sequence of integers with values in {0, 1}, characterized by the
following conditions :

(bg) For every integer je 1* = {1, 2, ..., m}, the condition :
pj=0
is equivalent to the equivalent conditions :

Q' = [QADI2=(0)

and
Ker 1; = Qj = Q(Aj) = M(Aj) = M = (0)
which mean that the j-th "link'':

T-
Aj ] s Aj1
of the Canonical Resolution R (A) is a "zero-link"associated to the singular

F-algebra extension :

T
(tj) 0 > M;j > Aj > Aj1—— 0

in which the right Artinian F-algebra : Aje & (F), is not a (right) almost
semisimple right Artinian F-algebra:
Aje [R(F) - &,(F)]
[with a Structure characterized by the Theorem 3-14].
(by) For every integer k € T* = {1, 2, ..., m}, the condition :
pk =1
is equivalent to the equivalent conditions :

Q2 = [Q(AVI2 = Q(AK) = Qk # (0)

and
Ker 1k = Qk = Q(Ay) = N(Ax) = S(Ag) = Sk # (0)
which mean that the k-th "link" :

Ax > Ag.1
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of the Canonical Resolution R (A) is a "one-link" associated to the general

F-algebra extension :

o) 00— Sy s A ——K s Apg———s 0

in which the right Artinian F-algebra : Ay € & (F), is a (right) almost
semisimple right Artinian F-algebra : Ax € &,(F), which is not a semisimple
Artinian F-algebra :

Ag € [R4(F) - &o(F)]
[with a Structure characterized by the Theorem 2-13].

PROOF - This is an immediate consequence of the Proposition 1-4, of the
Definition 5-1 and of the Theorem 5-3 which characterizes the Canonical
Resolution R.(A) of a right Artinian F-algebra A.

DEFINITION 5-5 - The right Resolutive Dimension of a right Artinian F-
algebra :
Ae &(F)
is the natural integer :
m = p dim(A)
characterized in the Theorem 5-3 and in the Corollary 5-4 as :
1 - The length m of the finite right Canonical Resolution R (A).
2 - The length m of the finite right Fundamental Sequence ®(A) of two-
sided ideals.
3 - The cardinal number m of the finite right Canonical Sequence p(A)
associated to the right Artinian F-algebra A.
For instance, in the finite right Canonical Resolution R (A), each right
Artinian F-algebra : A; e &(F), verifies the relation :
i =p dim(Aj) forallie I={0,1,2,..,m}

THEOREM 5-6 - For two right Artinian F-algebras A and A', if there exists

a F-algebra isomorphism u : A—""5 A" then :
(a) The right Resolutive Dimensions are equal :
m = p dim(A) = p dim(A") = m'
In other words, the finite right Resolutive Dimension p dim(A) is a
numerical invariant for right Artinian F-algebras.
(b) The finite right Canonical Sequences are equal :
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P(A) = p(A")
In other words, the finite right Canonical Sequence p(A) is a sequential
invariant for right Artinian F-algebras.
(c) The finite right Fundamental Sequences of two-sided ideals :
AA) = (Qo, U1, ..., Qj, ..., Am = (0))
and
A(A) = (A A1, o WY, oo, W' = (0))
verify the relations :
u(@;j =aj forallje 1={0,1,2, .., m}
In other words, the finite right Fundamental Sequences @ (A)and Q(A")
are canonically isomorphic.
(d) There exists an unique F-isomorphism of Resolutions :

R@) : RA) — R(AY)

which is an extension of the F-algebra isomorphism u : A" A

In other words, the finite right Canonical Resolutions R (A) and R (A"
are canonically isomorphic.

(e) In particular, for each index i e 1* = {1, 2, ..., m} the i-th "link"":

Irn
Aj L Aia

’

of the Canonical Resolution R (A), is "unique up to an F-isomorphism” and

constitutes the i-th "resolutive invariant" of the right Artinian F-algebra A.

PROOF - The Theorem 5-7 of [10], applied in the case of F-algebras, implies
immediately the proof.

6. NEW INVARIANTS FOR RIGHT ARTINIAN ALGEBRAS.
The following Notions are introduced in order to describe the Structure of the
Canonical Resolution R (A) of any right Artinian F-algebra A.

DEFINITION 6-1 - For any integer m € N, which determines the sets :
I={0,1,2, .., m} and I*={1,2,..,m}
a «Complete Decomposition of m» or a «Combinatorial Type of dimension m», is

an object of the form :

I =1 ﬂl{,:llll(kéllzlﬁ)

characterized by a disjoint union of the from :

39



(I*) =11l 13

sothat : T+ =T] Ulgand I; "Iy =@, with : Ty = {0} L 1] and [} =1 n 1%,

which determines also the set :
I={kelj;k+1)e Iy

such that if }[8 # O, that is if Ip # &, each integer j € I; determines the integer

k(j) = k € Iy defined by the condition :
k() =Sup {k'e I1 ; k' <j} =Sup {k" €Iz ; k" < j}
and each k € 1y determines the non empty subset :
I§={ie Ip; k=k()}

in a partition of the form :

* k
=11
0 keIzO

with an obvious convention whenever 16 =@ orlh=B and1=1;.

REMARKS 6-2 - A Combinatorial Type (I) of dimension m, may be represented
by a Combinatorial Table, constituted by a first column and possibly by some
rows, in which the ordered set I = {0, 1, 2, ..., m} is described by the
"lexicographic order" in such a way that the subset I is represented by the first
column (which always contains the integer 0) and that if I;; #(J, thatis if Iy # O,

each integer k € I, which appears in the first column, is also the first element of

the row which represents the union of {k} and of the non empty subset Ik, which
appears in the partition of the set 18 , represented by the set of integers which are

not in the first column.

See, for instance, the following Combinatorial Table.
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DEFINITION 6-3 - A "Structured vertex set' is an object of the form :
[A;Z]

in which A is a finite and non empty set (called the underlying "abstract vertex

set") equipped with a ""Combinatorial Structure" X, noted :

T=[Asm,@; (A}, LA, LA, @AY

or more precisely :
L=[A;m,[);{Aj), (AK), A", (AK), (A"}‘), (A", (A)]

and characterized by the following data :
(a) A finite and non empty set A.
(b) An integer m € N and a Combinatorial Type (I) of dimension m, of the

form :

0 I=1 111;=11ﬂ(k11 115)

el
with an obvious convention whenever 13 =@orh=Bandl=1;.

(c) An exhaustive and ascending filtration of A by non empty sets A;, of the

form :
{Ai} = {Ailic1={DF#2A0C AIC .. CAC ... C A1 C Am=A}

which verifies the relation :
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o= {je I*; Aj1=Aj)

and which is equivalent to a partition of A, of the form :

for a family of non empty subsets :
(A¥) = (AR)ker,

connected by the equivalent conditions :

AD = Ag foroe 1y = (o} 1L 13
Ak = Ag - Ag-1 forallk € T}
and
A=l Ak i
i i>ke Iy foralliel
(d) A subset :
ANCA
subject to the conditions :
AO=A"AAD=Q foroen = (0}l 13
A=A N AkzQ forallkeI;

that is a subset : N' C A, connected to a family :
(A%) = (AR)kery
of non empty subsets : AKX C AK, by the condition :

A= 1, Ak
ke I1

(e) Whenever Ia # I or Ip # O, a double family of subsets :
nk - nk . k
(A j)— (A j)kEIz,JEIO

such that for each index k € Iy, the family :
uk N k
(A j )jE Iy

is a "descending sequence” of subsets :
A"¥ C Ak = AKG)
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subject to the condition that if 0 € Iy, then :
A% A0 = Ay

and which determines the family :
(A") = (A"ieo
of non empty subsets :
A"y C Ay =N
defined by the conditions :
”n " i " j : *
A% = Aggy) - AKD = A - A0 forallje 1

(f) Whenever IS £ orly# D, a family :
(A = (Aie1o

of non empty subsets :
Aj T A T A

DEFINITION 6-4 - For any field F, a F- "Completely structured vertex

set'" is an object of the form :

A= (A2 (K, (o). (@), ()

defined by the following data :
(a) A "combinatorial data" constituted by a ""Structured vertex set" of
the form :
[A ;2]
in which the underlying "abstract vertex set" A is equipped with a
"Combinatorial Structure' X, noted :

T=(Aim, DA}, LA, LA, Ay

or more precisely :
T=[Asm, (D) (Al (AK), A (AK), (A"F), (A"), (A

(b) A "numerical data" :

v = {(p), (@), (1))

compatible with X, in the sense that the families of integers :

(pA) = (PAM)Ae A ; (@) = @reA
and
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() = )jeto , Ae A

verify the conditions :
A = Supp[(pp)] ; A’ = Supp([(qr)]
and

j = Suppl:(n:}‘))ye A] forallje I;

(c) An "algebraic data' constituted by a family :
(Kp) = (K)re A
of F-skewfields :
Ky e K(F) forallhe A

REMARKS 6-5 - For this kind of objects, the notion of isomorphism is
obvious.

Like in the case of quivers or of F-Concrete vertex sets, it is convenient (and
harmless) to call two F-"Completely structured vertex sets" equal when they
are only isomorphic.

This Convention is included in the previous Definition 6-4.

A
LEMMA 6-6 - Any F-Completely structured vertex set A characterizes the

following objects :
(a) A F-Concrete vertex set of the form :

o~

A =[A 5K, eI = A (VI =[A; (V]

(b) A F-Concrete vertex set of the form :

A =[A"; (K, @] = [A"; UD] = A5 (UD]

and a Generalized F-concrete vertex set of the form :

~

A=A KD, @] =[A; (U] =[A; (U]

whenever N' # O or II #* .

(c) A family of F-Concrete vertex sets of the form :
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X'j = [A' 5 (Ka), (n&)] =[Af; (Wk)] =[A%; (W;J)]
forallje I; and a family of Generalized F-concrete vertex sets of the form :
A=A K, P1=[A s WDT=[A 5 (Wi

forallje IS, whenever IS # .

PROOF - According to the Definitions 6-3 and 6-4, this follows immediately
from the Definitions 2-4 and 2-8.

More precisely, this means that for cach A € A and possibly for each j € I;,

the right Kj-vector spaces :
Va U Wi

and the left Ky-vector spaces :
Vi Uy Wy
are respectively of the finite dimensions :

pPA qr n&

A
defined by the numerical data of the F-Completely structured vertex set A.

A
COROLLARY 6-7 - Any E-Completely structured vertex set A

characterizes, "by restriction to the corresponding subsets”, the F-Concrete

vertex sets of the form :

Ai=(AAD = [Ars (K, ()] = [Ai s (VT = [Ai 5 (V)] forallie 1
A= (ATAK) = [AK; (Ky), ()] = [AK 5 (V)] = [AK; (VD)) forallke Ty

Ak = (AYAR) = [A%; (Kp), (@] = A% (UD] = [A%; U] forallke T}



~

A= (X//A"j) =[A"; (K, (pA)] = [A" 5 (VO] = [A"; (v;)] forallje 15

PROOF - This follows immediately from the Definitions 2-4, 6-3, 6-4 and the
Lemma 6-6.

LEMMA 6-8 - For any right Artinian F-algebra A € % (F),the data
constituted by its Resolutive Dimension m = pdim(A) and by its Canonical
Sequence :

P(A) = (P1, P25 s Pis s Pm) = (PidieT™

are equivalent to its Combinatorial Type :

1(A) = (I) 1= L i§=14 .I.L(J.I. 1‘5)

kel

of dimension m, connected by the equivalent conditions :
I ={ke I*;px=1) and Ip={je I*;pj=0)

PROOF - This follows from the Theorem 5-3, the Corollary 5-4 and the
Definitions 5-5 and 6-1.

THEOREM 6-9 - The Structure of any right Artinian F-algebra :
Ae &(F)
is characterized by its Combinatorial Type :

I(A) = =y = U/
(A)= (D) =1 (kelz 0]

of dimension m = pdim(A) and by its Canonical Resolution :

T1

R(A) =[A=An m Am-1 ... Aj L A1 ... Ay > Ag]

in which the Structures of the right Artinian F-algebras :

Aje &(F) forallie 1=1{0,1,2, ..., m)}
which are determined by an "ascending iterative contruction” starting from the
semisimple Artinian F-algebra :

Ag e &o(F)
are characterized by the following conditions :
(a) The F-algebra A is a semisimple Artinian F-algebra :
Ao=Rg=Gope R(F)
and more generally, each F-algebra Ajis connected to a semisimple Artinian

F-algebra :
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A/J(A) =R; € &o(F)
by a canonical surjective F-algebra epimorphism :
¢ : Aj ———>> Rj = Ai/J(Aj)

(b) Whenever I; # O, for each index k € I‘;, the Structure of the right

Artinian F-algebra Ay is characterized by the previous "'First Fundamental
Construction", that is described by the Characterization :

Ay = (Ak—l Li )E [‘Pk(Ak-l) L J: (Ak-1 > Y, Hg < Gy)

0 Gk 0 Gy

determined by a pair (Hk, Gx) of semisimple Artinian F-algebras subject to the
condition : Hx < G, which determines the canonical (Hgx-Gg)-bimodule
Ly = Hy LGk’ and by a "parameter’ Wy constituted by an injective F-algebra
homomorphism :

Yk : Ag-1 >—— Hg

Moreover, this Characterization implies the relation :

Ar/J(Ax) = Rk = Rk.1 X Gk = (Ax-1/J(Ak-1)) X Gk

(c) Whenever I; # B or Iy # D, for each index j € IB, associated to the

index k(j) = k € Ip, the Structure of the right Artinian F-algebra Ajis
characterized by the previous "Second Fundamental Construction", that
is described by the Characterization :

(Aj, Nj) = (Aj-1, Tj-1, My, by) = (Ajr, T, ML §9)
determined by an ideal Tj.1 € C(Aj.1) which defines the right Artinian

F-algebra Cj.1 = Aj.1/Tj.1 , a non null Cj.1-bimodule :
Mje M(Aj.1.Tj)

A
and a '"parameter” §; = hj constituted by an unique Tj.i-essential

cohomology class :

A
§j=hje Hg(Aj-l, Tj-1, Mj) = Exte(Aj-1, Tj-1, Mj)

Moreover, this Characterization implies the relation :

[AJ/J(AD = Rj = Ri-1 = Aj1J(Aj1)]
Furthermore, in fact the ideal Tj.1 € € (Aj.1) may be characterized by
some ideal T'j.1 € C(Rj.1) = G (Rg) connected by the conditions :
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T1 = 9'-1(Tj-1) and Tj.1 = N(Aj.D) O @3 5(Tj0)

50 that the non null Cj.1-bimodule :
M;j e M(Aj-] » Tj-1)
is determined by a characterization of the form :
M;=[Mj:¥j:Cj.p—— H']
in which the non null right C'j.1-module :
M'j e M'(C'j-l) = M'(Rj_l, T-1)

with the semisimple Artinian F-algebra of endomorphisms :

Hi = 2ﬁC'j_I(M'j)
is also the canonical (H'j—C'j_l)-bimodule associated to a pair (HJ, Cj-1) of
semisimple Artinian F-algebras, subject to the condition : HJ < CYj.1,and in
which the "parameter” V'j is constituted by a F-algebra homomorphism :

'j € Morg[Cj.1, HJ]

PROOF - According to the Lemmas 2-10 and 6-8, the conditions (a), (b) and the
first part of the condition (c) follow easily from the Theorems 2-13, 3-14, 5-3 and
the Corollary 5-4.

Furthermore, whenever IS @ orlp =, for each j € IB and for the

canonical surjective F-algebra epimorphism :
0'-1: Aj > Ry.1 = Aj1/J(Aj1)
the two-sided ideal Nj.1 = N(Aj.1) of Aj.1 is the direct sum of the idempotent right
feet P of Aj.1, for which the Lemma 1-2 of [8] shows that they verify the relation :
P& t(P) =P Nr(P)=P N J(Aj.1)

which implies that they are in one-to-one correspondence with the non null two-

sided ideals :
P' = ¢'j.1(P) = P/PNJ(Aj-1)
of the semisimple Artinian F-algebra : Rj.1 = Rk, which are exactly the idempotent
right feet P' of Rj.1 = Rk which verify the condition :
P' C N1 = ¢5.1(Nj.1)
and for which, conversely :
P = N(Aj-1) N 95 (P)

These properties imply easily that the conditions :
T = ¢5.1(T) and T =N(Aj.1) N ¢5.1(T)

determine an one-to-one correspondence between the proper two-sided ideals :
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Te C(Aj1)

and the proper two-sided ideals :
T e TRj.1)
subject to the general condition :
T' C Nj.1 = ¢-1(Nj.1)

and to the supplementary condition :

T # N'j.1 = N
whenever: (j-1) =k =0¢€ 1.

According to the Notations 3-11 and the Lemma 3-12, this implies

immediately the last assertion and completes the proof.

THEOREM 6-10 - Any right Artinian F-algebra :
Ae &(F)

A
determines an unique ''complete invariant" A(A) constituted by the

F-Completely structured vertex set of the form :

A .
ﬁ(A) =A={A;X; (K, (pa) (qn), )}

equipped with the Combinatorial Structure :
EA) =E=[A:m, (D (A}, (AR, A", (A%), (A5, (A", (AY)]

and characterized by the following conditions.
(a) The right Artinian F-algebra A € & (F) determines the semisimple

Artinian F-algebra A/J(A) = R € & ((F) and the classical invariant

constituted by the F-concrete vertex set :

L

AA)= KR = A =[A; (Ka). GOl =[A: (VD] = [A; (V)]

such that :
R=R(A)= Il R*
Ae A

for the family (RM)je A of simple Artinian F-algebras R having the

realizations :
RM=E(Vy) = Mpx(KX) =[EVYI°

and in which the underlying abstract vertex set A coincides with the common

vertex ser .
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A=V(A)=V(R)
of the quivers :
I'(A)=(V(A),E(A)) and TR)=(V(R), D)
of the F-algebras A € &(F) and R e &(F).

(b) The Canonical Resolution R (A) determines the Resolutive
Dimension m = pdim(A) and the Combinatorial Type (I) = I(A) of dimension
m, defined in the Lemma 6-8.

(c) The filtration {Ai} is characterized by the conditions :

R(A ) =R; = AVJ(A) forallie I
equivalent to the conditions :
Ri=_II rRM= II 8vp=_I1 M, (K oralliel
Eaen S aeh T Y T aeh Y ’

which imply in particular the relations :

Ao=Rg=R(A ) =Go and A/J(A) =R =R(A)
(d) The subset : N' C A, connected to the family (A'X), and the families

of integers (p)) and (q)) are defined, with the previous Notations of the
Corollary 6-7 and of the Theorem 6-9, by the conditions :

Ak=A(GY forkel and Ak=AMHy) forkel

(e) Whenever IS #Dorlye O, the double family (A"}() is defined, with

the previous Notations of the Theorem 6-9, by the conditions :

Tji=, ®  R* for all j € 1y and k = k(j)
Ae A"j
which imply, with the previous Notations of the Corollary 6-7, the relations :
Ci1= R(X"') = Il r* orallje T,

(1) Whenever IS # 0 or Iy # D, the family (A'}) and the family of integers
(n;») are defined, with the previous Notations of the Lemma 6-6 and of the

Theorem 6-9, by the conditions :

A= A (H) forallje I
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PROOF - The Proposition 4-1 implies the part (a), which gives in particular the
determinations of the "algebraic data" :
(K») = (K\re

A A
of the F-Completely structured vertex set A(A) = A and also of the first family of
integers (pa) = (pA)re A of the "numerical data" : ©(A) =v = {(pa) , (qQ1) , (n&)} of

A A
A(A) = A

The Theorem 5-3 and the Corollary 5-4 give the characterization of the
Canonical Resolution R (A), which is unique up to an F-isomorphism, according
to the Theorem 5-6.

This implies immediately that the data described in the Theorem 6-9 are
unique up to an F-isomorphism.

Firstly, according to the Lemma 6-8, this Theorem 6-9 implies the part (b).

Secondly, the Theorem 6-9 gives the relations :

Rk=Gk X Re.1 forallke I;  and Rj=Rj1 for all j I

which imply immediately, with the convention : Rg = Gy, the relations :

Rj= Il G forall iel and A/JA)=R=Rp= Il G
i>ke I kel

Then, this last relation implies the existence of a partition of A, of the form :

A= 1l Ak

kely
such that :

Gr=_Il RM=R(AK
k=, S Ak (AX)

that is such that :

AG = Ak=(A/AK)
for all k € Iy.
Moreover, with the Notations and the conditions of the Definition 6-3 it is

immediate that the previous conditions are equivalent to the conditions :

Ri= Il Gy= Il R

izke Iy Ae A;

that is to the conditions :

AR)=Ai=(A/A)
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for all i €I, which characterize the exhaustive and ascending filtration
{Ai} = {Ailie1 of A, by non empty sets A;, of the form :

{Aj) ={Ailiec1= {8 #A)C A C..C Aj C...C Ap-1 € An =A}
which verifies the relation :

Io={ie I*; Aj.1= Aj)

equivalent to the conditions of the Lemma 6-8.

This implies the part (c) and the first conditions of the part (d).

Thirdly, according to the Theorem 6-9 which gives the conditions :

Hi < Gg

for all k € I;, and according to the Lemma 2-10, with the Notations and the

conditions of the Definition 6-3, it is immediate that the subset : A' C A, connected

to the family (A'X), and the family of integers (qa) = (qa)re A may be defined by

the conditions :

AHp = Ak=(A'/AK)
forallk e I;, whenever I’; # J, that is whenever A' # .

This completes the proof of the part (d).
Fourthly, whenever IS = orlp#J, foreachindex k € I and every j € IS,

the parts (b) and (c) imply the relations :
Rk = ... =Rj.1 =R
and
9'j-107 = 9

in such a way that the Theorems 3-14 and 6-9 show that the Tj.j-essential singular
F-algebra extension (tj, Tj.1) gives the relation :

Ti(Nj) = Tj1
and the isomorphism of multiplicative A;-bimodules :

Tj: Nj>—>» Tj.1 C Njq
which imply the relation :
N'j = ¢j(Nj) = 0'}-1(Tj-1) C ¢'j-1(Nj-1) = N'j-1

for all j e I§,.

Then, the Theorem 6-9 and more precisely the last part of its proof imply that
each ideal Tj.; € G (Aj.1) is connected by the conditions :
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Tj.1 = @'-1(Tj.) and Tj-1 = N(A.) N @y (T)

to some ideal T'j.; € B (Rj.1) = T (Ry) of the semisimple Artinian F-algebras :
Rj.1 = R = R(A 1) =11 R
subject to the general condition :
T'j.1 C Nj1 = @5-1(Nj-1)

and to the supplementary condition :

T'j-1 # NYj.1 = N
whenever : (j-1) =k =0 € I, in such a way that :

N'j = Tj1 = ¢5-1(Tj-1) € 95.1(Nj.1) = Nj-1 = Tj2

forallje IX such that : k < (G-2) < G-1).

This implies immediately that for each k € I and every j € IX, the ideal

Tj.1€ T(Rj.1) = G(Ry) is of the form :
1= @ , RA

vk
Ae A }
for a family :
(A"}()je Il(;
which is a "descending sequence” of subsets :
A" C Ak = AKO)
subject to the condition that if 0 € I, then :

A% A0 =Ag

Thus, with the Notations and the conditions of the Definition 6-3, this implies
immediately the part (€).
At last, whenever IB # J or I # @, according to the Theorem 6-9 which

gives the conditions :
Hi < Cjq
forallje IS and according to the Lemma 2-10, it is immediate that the family (A'j)

and the family of integers (n&) defined by the conditions :

(A% = A ()
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forall j e 16 verifies the conditions of the Definition 6-3 and this completes the

proof.

REMARKS 6-11 - The last part of the Theorem 6-9 may be completed by the
following Remarks.
(a) Whenever I; # &, with the Notations of the Theorems 6-9 and 6-10, for

every index k € II, the Formal triangular matrix F-algebra :

B = =(Hg=Hg <
k (0 k) (Hg k 9 Gg)

associated to the canonical (Hy - Gg)-bimodule Ly = Hy L Gy and its right Socle :

Sk = =S(B = S(A
k (O Gk) ( k) ( k)

are characterized by the conditions :

Bi=, B
and
=, =, 8

by means of the family of (right) almost simple right Artinian F-algebras :

(B)‘)ke A
with a family of right Socles :

(SMrea
characterized by the conditions :

B* =RA = §A forall A € (A-A)

and by the conditions :

ATA A
Bk=(H LlJandS7~=[OLx) forallA e A’
0 R 0 R

in which H? is the simple Artinian F-algebra defined by :
HA = 8 (Up) = Mg, (Kp) = [LUVI° forall L e A'

and in which LA is the canonical (H*RM)-bimodules defined by :
K
LA =$(Va, U) = Mp;, ,Kn) =Us ® V3

forall A € A', with the Notations of the Lemma 6-6.
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(b) Whenever IS #J or Ip #J, for each index j € IB associated to the index

k(j) =k € I, the last part of the Theorem 6-9 shows that in fact, the ideal
Tj1 € G (Aj.1) may be characterized by some ideal T).1 € T(R;.1) = G (Ry)
connected by the conditions :

Tj1=051(Tj)  and Tjq =N(Aj.1) N @55(Tj1)

and defined, according to the Theorem 6-10, by the condition :

1= @ R}
i leA"}‘

Then, if we consider the surjective F-algebra epimorphisms :

‘CL tAj1 > Ak

defined by the conditions :
T =1Ida, if (k+1) =j e If

and
Y = kel 0 - 0 Tl if (k+1) <je I§

by means of some elements of the Canonical Resolution R (A), and which verify
the relations :

9j1= kot
it is easy to verify that the ideal Tj.q € T(A;.1) may be characterized by some ideal
T{( e € (Ax) = € (By) connected by the conditions :
T}=1(Tj)  and Tj1=NA.) A ! (TP

and defined, according to the Theorem 6-10 and the previous Notations, by the

condition :

= @, s
K heark

which constitutes the translation of the conditions :
Tj.1= w'k(T"L) and T"} =N(A) N (P'i(l(T'j-l)

which follow easily from the relations : ¢j.1 = @'k o ‘cf(, forallke Ipand je 116
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REMARKS 6-12 - Any right Artinian F-algebra :
Aec &(F)

determines its Canonical Resolution :

T1

RA) =[A=Ap— 5 An ... Aj—> Ai ... A > Ag]

which is unique up to an F-isomorphism, and the previous unique "complete

invariant" :

X(A) = K
in which the adjective "complete” has been chosen in order to explain that this
invariant contains, at the same time, three kinds of invariants, namely :
(1) The Combinatorial Invariant Z(A) = X.

(2) The Numerical Invariant b(A) =v = {(pp) , (q0) » (n{)} compatible

with X.
(3) The Algebraic Invariant constituted by the family of F-skewfields

I~

(Ky) = (Ka)ae A defined by the F-Concrete vertex set X(A) = X(R) = A.

Nevertheless, this adjective "complete” does not mean that this "complete

invariant” X(A) = //i is sufficient in order to describe the Structure of the right
Artinian F-algebra A.

Indeed, the Theorem 6-9 shows that the Structure of the Canonical
Resolution R (A) depends explicitely from the knowledge of a set of
"parameters” :

I =T[RA)] = {(¥W . ¥} . E))
constituted by the three families of "parameters” :
(Poken ¥Dje1o Eicto

which are only some "semi-invariants”, in a suitable sense, which is possible to
define more precisely. [See for instance, the part 8-(E)].

The converse problem is examined in the next section.

7. STRUCTURE OF RIGHT ARTINIAN F-ALGEBRAS.
Now, our aim is to show that conversely, for any field F, in the case of

F-algebras, for any F-"Completely structured vertex set":

A
A

and any choice of a set of "parameters” :
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I = {(Yw), (¥, &)}
constituted by three families of "parameters” :
(Wikel; ¥'je 1o Ejielo

compatible with 1/{ in the sense of the following Definition 7-2, it is possible to give
the Description of a Systematic Method of Construction of a right Artinian
F-algebra :

Ae &(F)

by means of a finite number of Fundamental Constructions, which are of two
different kinds, is such a way that :

A A
AA)=A

that is, having the given "complete invariant” and also the given "semi-

invariants"” constituted by the given "parameters” which determine a Canonical

Resolution R(A) of the right Artinian F-algebra A. |

A
CONSTRUCTIONS 7-1 - For any F-Completely structured vertex set A, the

Lemma 6-6 characterizes the F-Concrete vertex set :

~

A =[A K, DI = A (VDI =[A; (VI

the F-Concrete vertex set :

~

A=A (K, @] = [A'; (U] = [A"5 (UD]

and the Generalized F-concrete vertex set :

Ar=IA: (Ka), @] = A ; UDT=[A ; (U]

whenever A' # J or I’; # J, and the F-Concrete vertex sets :

A=A 5 (K, )] = [A 5 (Wi = [AY 3 (Wi

and the Generalized F-concrete vertex sets :
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A=A K, @)= (A5 W] =[A; (W)
forallje 15 whenever IS .

These data determine the simple Artinian F-algebras :
R = (V) = Mp, (K) = [S(VI’ forall A €A

HA = $(Uy) = Mg, (Ky) = [SUT° for all Ae A’
H' = $(W) = Myl (Kp) = [B(WH)]°  forallje [yand A € A

and also the canonical (H*RM-bimodules :
*
LA=$(Va, Un) = Mpy . qy(Ka) = U & Vi

for all Ae A’ and the canonical (H3-R*)-bimodules :
Ly =BVa W= My, .o (K =W, ® V3
Ka
forall je I; and A € Ajj.

Then, according to the Corollary 6-7, there exist the semisimple Artinian

F-algebras :

Ri=R(Ap= Il RM forallie I

A€ Aj
Ge=R(Ak= IT R forallke Iq

k ) Ae Ak
Hy=R(A%= I1 B forallke I'
k ( ) keA'k 1
t1=R(A"=_ Il R forallje I’
H'jzR(X")= I1 wi forallje Iy
V=0 Ay y je ]y

and also the canonical (Hx-Gg)-bimodules :
L= I1 1A= Il LU forallke I
k= oak T agpk T VA UN 1

and the canonical (H3-C'j.1)-bimodules :
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Mi=Li= Il rvi= TI i Wi) foralljeI;
] leA'j 5‘ KeAj (Va i‘) orallje Ip

A last, the conditions :

Tj1=, ® , R for all j € Iy and k = k(j)
keAj

characterize the proper two-sided ideals :

Tj-1€ CRj.1) = C(R)) = C(Ry)
such that :

Cj-1 =Rj.1/Tj forallje 18

Thus, these data characterize the "geometrical objects” defined by ﬁ.
Now, with all these "geometrical objects” and for any choice of a set of
“parameters"” :
' I = {(¥k), (¥, €}
constituted by three families of "parameters" : B
(Yikel; ¥Yielo Epielo

A
compatible with A, it is possible to give the Description of a Systematic Method of

Construction of a right Artinian F-algebra :
Ae &F

with the "complete invariant” :

A A
AA)=A

and characterized by its (finite right) Canonical Resolution :

T1

> Ag]

in which the right Artinian F-algebras A; are constructed by a recurrence on the
integer i€ 1= {0, 1, 2, ..., m}, characterized by the following conditions.
The semisimple Artinian F-algebra Ag € $(F) is defined by the condition :

RA) =[A = Ay — ™ Amt ... Ai— s Apg . A

Ao = Ro = R(A 0) = R(A 9) = Gg

and when the right Artinian F-algebras A, Ay, ..., A;j are constructed, such that :
A A A A AA A A A
A(AQ) = Ag = (A/Ag), A(A1) = A1=(A/A1) ... A(A) = Ai=(A/AY)
if , the right Artinian F-algebra : Aj41 € &(F), is obtained by one and

only one of the two following ""Fundamental Constructions.
(a) FIRST FUNDAMENTAL CONSTRUCTION.
This "First Fundamental Construction” occurs in the case where :
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i+1)=ke I

Then, the Theorem 2-13 shows easily that the existence of a “parameter”
Wy, constituted by an injective F-algebra homomorphism, of the form :
WYk:Aj=Ag] >—@— Hg

A
that is compatible with A, implies the existence of a right Artinian F-algebra
Ax € &(F), defined by the condition :

Ak = At = (Ai ok )E KA L |- (A >—25 Hy < G
0 Gk 0 G

with a right Socle :
0 Lg
Sk =Si+1 =
k i+1 (O G

and which appears in the general F-algebra extension, of the form :

J= S(Ak) = S(Aj41)

T-
(Tis1) 0 —— Sit1 >—— Ajs] — > Aj—— 0

in which : Si+1 = S(Ai+1) = N(Ai+1) = Q(Aj+1) and Aj = Ai+1/Si+1, so that the
right Artinian F-algebra Ak = Aj41 has the "complete invariant” :

A A A
A(Ax) = A = (MAy)

A
induced by A on the subset : Ax C A.

(b) SECOND FUNDAMENTAL CONSTRUCTION.
This "Second Fundamental Construction" occurs in the case where :

G+1)=je I

Then, by means of the canonical surjective F-algebra epimorphism :

@' : Aj —— > Ri = Aj/J(A) =R(A j) =Rj1
the proof of the Theorem 6-9 implies that the conditions :
Tj-1=Ti=N(A) N (P'}l(T'j-l) and T'j=Tj.1 = 9'i(Tj-1) = ¢'i(TH)

determine a proper two-sided ideal :
Tji-1=Tie C(A) =T (A1)
such that :
Ci-1=Ci= ATy and i-1 = Rj-1/Tj.1 = C-1/J(Cj.1)
so that the existence of a "parameter” W'j constituted by a F-algebra

homorphism :

60



j€ Morp[Cj.1, Hi] = Morg[C;, HY]
that is compatible with 1‘/;, determines the non null C;-bimodule :
Mis1 = Mje M(A;, T)) = M(Aj.q, Tj1)
defined by the characterization :
Miy =M= M ¥5:CGi— H']
and therefore, the Theorem 3-14 shows easily that the existence of a "parameter”

A
&; = hjconstituted by a T-essential cohomology class :
§ = Eiy1 € H2(AL Ti, Miyp) = HX(A1, Tj-1, M))

A
that is compatible with A, implies the existence of a right Artinian F-algebra
Aje &(F), defined by the condition :

(Ai+1, Nit1) = (Ai, Ti, Mis1, hit1) = (Ai, Ti, Mis1, &iv1)

or

(Aj, Nj) = (Aj.1, Tj.1, Mj, hy) = (Aj1, Tj-1, Mj, &)

which determines a Tj-essential singular F-algebra extension of the form :

X T
(Ti+1, Ti) 0 —— Mijy1 >—- (Aj+1, Nis+1) LN (A, T)) —> O

with the relation :
Si+1 = S(Ai+1) = M(Aj+1) © N(Ai+1) = Mir1 © Niyq
in which : Miy1 = M(Aj+1) = Q(Ai+1) = Q(Aj) # (0) and Aj = Aj+1/Mij41 , so that

the right Artinian F-algebra Aj = Aj41 has the "complete invariant” :
A AA
A(Aj) = Aj = (AAy)

A
induced by A on the subset : A; C A.

DEFINITION 7-2 - For any F-"Completely structured vertex set' :

A
A

a set of ""parameters’ :
1= {(¥w, (¥}, E)
constituted by three families of "parameters” :
(¥Rke ¥'ie o &ielo

A -
is compatible with A if the "parameters” have the previous characterizations

used in the Constructions 7-1, which permit the Construction, by degrees, that
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is the ascending iterative construction, of a Canonical Resolution R(A) of a

right Artinian F-algebra A.

DEFINITION 7-3 - For any F-""Completely structured vertex set" :

A
A

and for any set of ''parameters'' :
= {(Yw), (¥}, €}

A
compatible with A, let :

A
A=Am=DA;T]=D[A: (¥i). (P . EpI

be the right Artinian F-algebra defined by the Constructions 7-1.

THEOREM 7-4 ("STRUCTURE THEOREM")

For any field F, the Structure of any right Artinian F-algebra :
Ae &(F)

is defined, "up to an F-isomorphism", by a (or by its) F-'""Completely
structured vertex set' :

A={AZ: KD . OGN . @) . o)

equipped with a ""Combinatorial Structure' X, noted :
Z=[A;m, @ {A), A, A, (A)]

or more precisely :
T=[Aim, (s {A), (AK), A, (A%), (AR, (A", (A

and by a set of "parameters’’ :

n={Yw, ¥, E)l
constituted by three families of "parameters” :

(Vi) = Wkey ¥ = ¥iero &) = Eielo

A
compatible with A, in such a way that the right Artinian F-algebra A has a

realization of the form :

A A
A=D[A ] =D[A; (¥, (¥, Ej)]

AA
in which A = A(A) is a "complete invariant", escorted by some "semi-invariants”
constituted by a set of "parameters" Il, which determines a Canonical
Resolution R.(A) of the right Artinian F-algebra A.
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Moreover, with the previous notations, the underlying F-vector space Al
of the right Artinian F-algebra A is characterized by one of the following

equivalent conditions :

15) 1Al=[ ®@ £vol®[ @ L unle| @ £ (Vy, Wi
as) =], &, u)] [ke/\' (Va x)] -Ig;[xf?\'j (Va k)l]

LJE
or

16) 1Al =[ @ My, (K Mp, ,q, (K2)] "
(16) 1AI =, ©, My, (K0)] O, &, My, 5 x)_®[,@*[l€63\,jMpknx(Kx)1]

jely

the "multiplication” of the right Artinian F-algebra A being determined by the

three families :
(Pk)kel, ¥')je 10 Epielo

of ""parameters'’.

PROOF - The Definition 7-3 and the Constructions 7-1 imply that any F-algebra
A, which has a realization of the form :

A=D[A ;)
is a right Artinian F-algebra.
Conversely, the Theorems 6-9 and 6-10 imply that any right Artinian
F-algebra A has a realization of this form :

A
A=D[A;T]]
A A A )
in which A(A) = A and I1is a set of "parameters” compatible with A and which
determines a Canonical Resolution R.(A) of the right Artinian F-algebra A.

This completes the proof of the first assertion.
Moreover, in the case of F-algebras, for each index k € Ij, the "one-link" :

0 > Sk y Ag ™k »> Ag.1— 0

is an exact sequence of F-vector spaces, which gives :

(17) |AKl = [Ak-11 © Sk

and for each index j € I, the “zero-link"':

0 > M > Aj 4 > Aj.j—— 0

is an exact sequence of F-vector spaces, which gives :
(18) |Ajl = [Aj.1] © M
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Then, in the Canonical Resolution R (A), the relations (17) and (18) imply

the relation :

19 Al =|Apl = O @, Sk|@[.D, M;

(19) |Al'=1Aml = |Aql [ke T k] [jelo ]]

The Constructions 7-1 imply the relation :

20 [Agl=IRol=_® &LV

(20) Aol =[Ro Ae Ao (V)
The Constructions 7-1, the Remarks 6-11 and the Definition 6-3 imply the

relations :
Sk=.® Sh=[ @& RMO[ & L
Ae Ak Le Ak Ae Ak

and therefore the Constructions 7-1 imply the relations :

1) Sk = [x o, hﬁ(vm] ® [xf?vk B (Va, Ux)]

The Constructions 7-1 imply the relation :

(22) Mi=Mij= ® Li= & 8, W)

) Ae A'j n Ae Aj A
According to the Definition 6-3 which gives the relation :
(23) A= 1L, A%

kel
and the relation :
(24) A=A ML | 1L, Ak
kel

it is immediate that the relations (19), (20), (21) and (22) imply the relation (15)
which is equivalent to the relation (16), according to the Constructions 7-1.
The last assertion is obvious and completes the proof.

REMARKS 7-5 -
(a) In the previous Theorem 7-4 the F-skewfields Kj € ¥ (F) are not

necessarily of finite dimension over F.
(b) In the previous Theorem 7-4, if each F-skewfield Ky € X (F) is of finite

dimension over F :

(25) Ir), = dimg[K3l| forallAe A

then the relation (16) implies the relation :
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(26) r= xez (X PAX p) + )»EZA'(Q X PA X q0)

¥ EZIS [k EZA,j (ra X pa X n&)]

which gives the formula :

27 r = EA (ra x pa) [px + qA +je215 ni]

Ae

which characterizes the finite dimension over F :
(28) |r = dimp[A]

of the right Artinian F-algebra A.

REMARKS 7-6

The Theorem 7-4 of the previous paper [10], gives a "Construction
Theorem” for right Artinian rings and the previous Theorem 7-4 gives a "Structure
Theorem" for right Artinian F-algebras, in the sense that any right Artinian ring or
right Artinian F-algebra A has a realization of the form :

A=DA: T =D[A: (¥ . (¥9), &)]
for an unique "Completely structured vertex set” or F-"Completely structured
vertex set” :
AA
A =A(A)
These results constitute a generalization of the "Construction Theorem" for

semisimple Artinian rings, given by the Wedderburn-Artin Structure Theorem,
which implies that any semisimple Artinian ring R has a realization of the form :

R =R(A)

for an unique "Concrete vertex set” :

A =AR)
Likewise, according to the Theorem 6-9, the Theorem 6-10 gives a new kind
of partial "Classification" of right Artinian F-algebras, by means of the "complete

A
invariant” A( ), in the sense that for two right Artinian F-algebras A and A, the

o~
existence of an isomorphism u : A—— A', implies :

A A
A(A) = A(AY)

or equivalently, the condition :
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A A
A(A) 2 A(A)
implies that the F-algebras A and A' are not isomorphic.
This result constitutes a generalization of the "Classification” of semisimple

Artinian F-algebras, by means of the "classical invariant" X( ), described in the

Proposition 4-1 and which is given by the Wedderburn-Artin Structure Theorem.
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[SECOND PART :|

ILLUSTRATION OF THE STRUCTURE THEOREM

8. EXAMPLES AND APPLICATIONS.

Let F be any field and let K be any F-skewfield : K € J(F).
(A) CANONICAL RESOLUTION.
(a) . For any non null integer n € N*, let M(K) be the F-algebra of (n x n)

square matrices with coefficients in K.
Firstly, this semisimple Artinian F-algebra :
A =Mp(K)
is characterized by its F-"concrete vertex set” :

~

AW=A =[A={1):K1=K), @1 =n)
Secondly, this right Artinian F-algebra A has the trivial finite right
Canonical Resolution :
R(A)=[A=Aqg)
and verifies the relations :
m=p dim(A)=0 and p(A)=O
which give the «Complete Decomposition of m = 0» :

@) = I(A) == L&l
kel
in which : =11 = (0} and I* = Iy = I} = Ip =@ ; and the F-"Completely

structured vertex set” :

A A .
AA)=A={A={1};Z=Z(A); (K1 =K), (p1 =n), (q1 = 0), (}) = B}

(since Iy = @), with the "Combinatorial Structure" :
A =X=[A={1};m=0, {); {Aj} = {Ag}, AN = (A0, A'=OD, DB, T, T, D]

in which :
{1}=A=Ap=A0 forOe IandOe I

and :
AV =@ ;5 A" Dke,=D 5 Ajeo=2 ; A)jcio=9

sincel[ =@, =@ and [y = .
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A
Of course, this example is trivial since all the informations contained in A(A)

are already contained in A (A), but it shows how the General Structure Theoreni
for right Artinian F-algebras is applicable, for instance, to simple Artinian

F-algebras.
(b) For any non null integer n € N*, let T,(K) be the F-subalgebra :

Ta(K) C Mn(K)

of upper triangular matrices.
The obvious relation :

( K )

Ta(K)
Tn41(K) =

K
0 ...0K/
is equivalent to the relation :
Ta41(K) = (Ta(K) C Mp(K) < M(K))

that is, according to the Theorem 2-13, to the general F-algebra extension :

0—— Sn+1(K) >—> Tn+](K) > >4 Tn(K) —0

in which Sp+1(K) is the idempotent right Socle of the (right) almost semisimple
right Artinian F-algebra Ty+1(K).
Firstly, for any m € N, the right Artinian F-algebra :

A =Tn41(K)

characterizes its F-"concrete vertex set” :

K@A)Y= A =[A; K, (o]
in which: A={0,1,2,..,A, ..., m} and :
(Ka) = (Kaae A = (Ko, K1, Ko, ..., Ky, ..., Kn)
with :
K=Kgp=Ki1=Ky=..=Ky=...=Kp
and

M) =Pea=@Po=Lp1=1L.,pr=1..,pm=1)
and which determines the semisimple Artinian F-algebra :

Ajgmw=R=R(A)= AEIA Mp, (Kp) = XI;IAKx =Ko x Ky x ... x Ky

Secondly, for any m € N, the right Artinian F-algebra :
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A =Tm4+1(K)

has a finite right Canonical Resolution :

RA) =[A=Ap— " Ap g ... Ax—K 2!

> Ag.1... Al > Agl

characterized by the following conditions :
Ap =T1(Ko) =M1(Kg) =Gp =Ko=K
A1 =Tx(Ky) = (Ag = T1(Ko) A, M1(K1) = Hy 9 Gy = M1(Ky))
A2 =T3(K2) = (A1 = T2(Ky) T2, M2(K2) = H2 9 G2 = M1(K2))
Ax = Ti+1(Kk) = (Ak-1 = Tk(Kk-1) >—?—k—+ Mi(Ky) = Hk < Gk = M1(Kx))
in which :
K=Kg=K;1=Kp=...=Kg=... =Kpp-1 =Kpy
and in which the “parameters” :
Y,¥2, ... Yk, . . ¥m
are the canonical injective F-algebra homomorphisms :
Wk : Ak-1 = Te(Kg-1) >— Mi(Ky) = Hi
resulting from the conditions : Kx.1 = Ky, forallk e {1, 2, ..., m}.
Thus, this right Artinian F-algebra A = Tin4+1(K) verifies the relations :
m =p dim(A) and pA)=@pP1=1,..,pk=1,...,pm=1)

which give the « Complete Decomposition of m» :

M) =1I(A) = U=kl
kel
inwhich:1=I ={0,1,2,...m},I*=I={1,2, .., m}and g=p =& ;

and the F-"Completely structured vertex set” :

A A .
AA)=A={A=(0,1,..,m}; Z=2(A); (K, (pA), (@), ()}

in which :
() = Pr=1), (@) =@ =N and () =D ;

with the "Combinatorial Structure” :
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Z(A) =Z={A;m, (D;{Ai}, (AR, A, (AK), O, O, T}

in which :
A=1{0,1,2,.,A, .., m}
Ai = {0, ..., i} foralliel
Ak = {k} forallke Ij
Ak = (k) forallke I
AN=1{1,2,..,m}

and :

Ae, =2 3 AWDien=2 ;5 A =2

since I =@ and Iy = &.

This example, shows the difference between the F-"concrete vertex set”

X(A) which gives only informations about R = A/J(A) and the F-"Completely

A
structured vertex set” A(A) which, with the family of "parameters” (Wi)ke II’

characterizes the Structure of the right Artinian F-algebra A = Ty4+1(K).
Moreover, it is possible to remark that if in the family of F-skewfields :
(Ka) = (Ka)re A = (Ko, K1, K2 ..., Ki, ..., Kmn)
the condition :
K=Kg=K1=Ky=..=Kp=...=Kn
is replaced by the existence of F-algebra monomorphisms :
KoCKiCcKaC ..CKyC..CKn

the previous conditions characterize a "generalized upper triangular matrix

F-algebra" :

(Ko Ki Ka Kp Km\

0 K1 K» Kmi1 Kn

Ka

Tm+1Kp T K1 C ...CKyC ...C Kp) =
. Km-1 Kn

\0 0... 0 Kn/

with the same "Combinatorial Structure” and with the same "numerical

invariants”.
(c) Forany integerm € N, let:

70



=m
A = Dy (K) = K[X]/xm+1y =K[x] = {a = IZEO apxP ; ap € K ; xm+l =0}
be the Artinian local F-algebra factor of the F-algebra K[X] of polynomials with
coefficients in K by the ideal generated by Xm+1, that is the F-algebra generated by
K and by a central element x such that xm+1 = (),
For m =0, then A = Dg(K) = K is a F-skewfield.
For m = 1, then A = D{(K) is the F-algebra of "dual numbers" over the
skewfield K :
D1(K) = K[X]yx2) = K[x] = {a =ag + arx ; aj € K ;x2 =0}
For m 2 1, it is immediate that :
JA) =M =(x) ; AJA)=R=K ; NA)=(0)
and :
[J(A)I™ =S5(A) = M(A) = M = (x™) = Kx™ # (0)

which give the "exact sequence” :

(1) 0 »M > A t>>B—-—————>O

in which :
p=m-1
B =AM =Dg.1(K) = {b= 2_20 bpxP ; bp € K ; x =0}
p_

and :
M =M, = Kx™ = {apxM = xMa,, ; a, € K}
is the B-bimodule characterized by the conditions :
b . (agpx™) = (bgap)x™ and (axM)b' = (apb'g)x™M
forevery b e B and every b' € B.
In fact, since : N(A) = N = (0), the proper two-sided ideal : -

T=(0) e €(B)

and the singular F-algebra extension (1) determine the T = (0)-essential

singular F-algebra extension :

(t,T) 0 > M > (A, (0)) > B, T)—— 0

which is characterized, according to the Theorem 3-14, by an unique T = (0)-

T

essential cohomology class :

o 2
hm =&m € H3(B, T, M) C H%(B, (0), M) = H2(B, M)

such that :
(A,N)=(B,T,M, &n) = (B, (0), M, hy)

that is :
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A = (B’ M9 &m) = (B, M’ hm)
for the T = (0)-essential 2-cocycle :
hm € ZX(B, T, M) C Z2(B, (0), M) = ZX(B, M)

characterized by the conditions :
p=m-1
hy(b, b) = ( El bpb'm-p) xm ifm>2
p:
and
hi(b,b)=0.x=0 ifm=1
foreverybe B andevery b' € B.
Then, firstly, for any m € N, the right Artinian F-algebra :
A =Dp(K)

characterizes its F-"concrete vertex set"” :

AA)=A =[A={1};(K) =(K1=K), (pA) = (p1=1)]
which determines the semisimple Artinian F-algebra :

AJJ(A)=R=R(A)= 7LIE'[A Mp, (Ka) =M1(K1) =K1 =K

Secondly, with the previous notations, this right Artinian F-algebra :
A =Dn(K)
has a finite right Canonical Resolution :

s Agl

R(A) =[A=An— > Amp .. Aj— D> Ajp ... Ap
characterized by the following conditions :
(Ao, No) = (Do(K), (0)) = (Go, (0)) = (K, (0))
(A1, Np) = (D1(K), (0)) = (Ao, To, M1, &1) = (Dp(K), (0), My, h; = 0)
(A2, N2) = (D2(K), (0)) = (A1, T1, M2, £2) = (D1(K), (0), M2, hy)

(Aj, Nj) = DJ(K), () = (Aj.1, Ty-1, Mj, &) = (Dj-1(K), (0), Mj, hy)

(Am, Nm) = (Dm(K), (0)) = (Am-1, Tm-1, Mm, &m) = (Dm-1(K), (0),Mm, hp)
for the Tj.1-essential cohomology classes :

A
hj =& € HXA.1, Tj1, Mj) C H2(Aj1, Mj) = HA(D}.1(K), M))

defined by the Tj.; = (0)-essential 2-cocycles :
hj € ZX(Aj.1, Ty, Mj) C ZX(Aj.1, Mj) = Z2(Dj.1(K), My)
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characterized by the conditions :
o e

hj(b, b") = (p:l bpb'j-p)xl ifj=2
and

hi(b,b) =0.x=0 ifj=1
for every b € B and every b' € B, and in which, with the general notations, the
non null Gj.1-bimodules :

Mje M(Aj.1, Tj.1)
have the characterizations :
M; = [Mj; ¥:Cj1— H'i]
in which :
Cj1= Aj'”Tj-l =Aj1 5 Mj=K= Kxi ; Hi=K

and the "parameters” constitued by the F-algebra homomorphisms :

¥'j € Morg(Cj.1, H']
are determined by the conditions :

p3i-l
‘P'j(c = i Cp xP):Co
p=0
for every ¢ €Cj.1.
Thus, this right Artinian F-algebra A = Dy (K) verifies the relations :

m = pdim(A) and pA)=(p1=0,..,pj=0,....,pPmn =0)
which give the « Complete Decomposition of m »:
M =1(A) = =1l s\l
kel
in which : 1={0,1,2,..,m}, I1j=Ip={0}, I;=and

*

I*=I;=10={1,2,..,m} ; and the F-"Completely structured vertex set" :

Ad)=A=(A={1}:Z=2A); Kp) = K1 = K), (pw) = (p1 = 1),
(@) = @1 =0), (o)) = (o} = 1))

with the "Combinatorial Structure" :
TA)=Z={A={1};m, (D;{Ai}, (AN, A' =0, (A"]k), (A", (A}

in which :
Ai=A={1} forallie |
Ak = A0 = Ap={1} fork=0€ Iy
AN=0
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(A%) = (AK)ge; =B since I} = @
nk ..0 _— M k_
Aj=Aj=® fork-OeIzandJeIO-Ig

and
Al=Aj=A={1) forallje 1§ =1+

This example, shows also the difference between the F-"concrete vertex
set” X(A) which gives only informations about A/J(A) = R = K = K} and the

A
F-"Completely structured vertex set” A(A) which, with the two families of
"parameters” (\P',-)jel(‘;_l* and (&j)jel(*)ﬂ* , characterizes the Structure of the right

Artinian F-algebra A = Dpy(K).

(B) ESSENTIAL COHOMOLOGY.
(a) For the F-algebra Dg = Do(F) = F, whenever F is considered as a
(F-F)-bimodule or as a Dg-bimodule F = My, for the proper two-sided ideal :
To=(0) e CF)=CDg)
according to the relation :
Ip (M1) = Ir(F) = (0) = To
the Proposition 3-15 and the obvious relation :
H%(Do, My) = HX(F, F) = {0}
imply the relation :

(€1 =0} = (0} =H2 (Do, To, My) = HXF, (0), F) = H2(F, F)

A
in which §; = 0 is the unique Tg = (0)-essential cohomology class from
Dg = F into M = F, which determines the unique Tg-essential singular class :
[o1, Tol € Exte(Do, To, M1) = Exte(F, (0), F)
characterized by the Ty = (0)-essential singular F-algebra extension :

(61, T0) 0 ——> (F = M) = (D1, Ny = (0)) — L

in which the "pair” (D1, N1 = (0)) is defined by the condition :

> (Dg, Tg) —— 0

A
(D1, N1) = (Do, To, M1, &1) = (F, (0), F, 0)

which determines, in particular, the singular F-algebra extension :
c

(c1) 0—— (F=My) >——11——) (D1 =D1(F)) 1 > (Dg=F) —— 0
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in which the right Artinian F-algebra D is defined by the condition :
D1 = (Do, My, §1) = (F, F, 0) = D1(F)
in such a way that the non null element :
if(1)=x e J(Dy)
which characterizes the isomorphism of F-vector spaces :

iy : F= M| — J(D1) = M(Dy)
determines a "realization” of the F-algebra Djp, as the F-algebra of "dual

numbers":
D1 =Di(F) = F[Xlx2) = Flx] = {a=ap + a1x ; X2 = 0, aj € F}

which has also the "matrix realization” :

D1=D1(F)=[ F]:{a:[a"a‘] aj € F}
0 0 ag

It is convenient to remark that when the F-algebra Dj is given, the previous
"realization" depends of the choice of a non null element x € J(D1), which is not

uniquely determined, but only "up to an F-automorphism" :
oy € Autp(Dg) = F*

such that :
wp(x)=x"= px and wy(a) = oy(ag + aix) = ag + ajux = ag + aix’
for the associated element L € F* =~ Autp(D1) and for every a € Dj.

(b) For the F-algebra D1 = D1(F), whenever the factor F-algebra :
0 ={a = [a() O] ap € F}EFEMZ
0 ap

Dim, =D1Bo, @) =
1 1 0 |F
is considered as a (D1-D1)-bimodule or as a Dj-bimodule F = My, it is easy to

prove the relations :
B2(Dj, M) = B3(Dy(F), F) = {0}
and
Z2(Dy, Mp) =Z2(Dy, F) = {fpe CY(Dy,F); fu(a, a’) =paja';andp e F} =F
which imply the relation :
H2(Dy, M2) = H%(Dy, F) = {fy € C%(D1, F) ; fy(a, a') =paja'yand p € F} =F
Thus, for the proper two-sided ideal :

Ti=(0)e TDy)

and for any cohomology class :

A
fu=pe F=HD;, My) = HY(Dy, F)
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according to the obvious relations :
lDl(MZ) ={b"=b"9g+b"1x; b"j€ Fand b"g =0}

and
p,(b") = {b"=b'o + b'1x ; b'j € F and b"1b'g = 0}
for every element :
a"=(a"2,b")e M xlDl(Mz) C My x D1
which determines the F-vector space :
le(a", fi) = {b=(bp + b1x) € D1;a"b + f;(b", b) = 0}

= {b = (bg + b1x) € D1 ;a"zbg + ub" by =0}
the Definition 3-7 considers the condition (E), in which the conditions (r) and (s)

become the condition :

(r") m,(b") C sp, (", fy)
and the condition :
(s") b"sp,(a”, fy) "' T1=(0)

such that, since T = (0), this last condition (s") is automatically verified.
Then, whenever p = 0, since the special and non null element :

a" =(a"2, b") = (0, x) € M2 x Ip,(M2) C M2 x D
verifies the condition (r"), the Definition 3-7 shows that the 2-cocycle fg =0 is not

a Ty-essential 2-cocyle :
fo=0¢ Z2(D1, T, Mp) C Z2(Dy, Ty, M)

A A
and therefore, the Definition 3-9 shows that the cohomology class fg=0 =0 is

not a T-essential cohomology class :

A
fo=0e HADy, Ty, Mp) C H(Dy, T, Mp)

On the contrary, whenever p # 0, that is whenever L € F* = F - {0}, since
the condition : b" # 0, that is b"1 # 0, implies the relations :
X € fDl(b") and X e le(a", fy)

the condition (r") implies necessarily : b" = 0, which gives :
> (b") =Dy = sp, @", )
and in particular : 1 € le(a", f), which implies : a"7 = 0, and this proves that the

condition (r") implies : a" = (a"p, b") = 0, in such a way that the Definition 3-7
shows that, for u € F*, the 2-cocycle fy is a Ty-essential cocycle :
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fy € Z2(D1, T1, Mp) C ZX(Dy, Ty, M)
and therefore, the Definition 3-9 shows that, for u € F*, the cohomology class
A
fy =W is a Ty-essential cohomology class :

A
fu =n e HX(D1, T1, M2) C HXDy, Tt, M)

These two last results characterize the “space” :
HX(D1, T1. M)
of Ty-essential cohomology classes from Dy into My, which is only a set, by
the relation :
H2(Dy, Ty, Mp) = F* C F =H2(Dy, Ty, M) = HX(D1, Mp)
and the Theorems 3-10 and 3-14 imply that every Ty = (0)-essential cohomology

class :

A 2
fpu=pe F*=H;(Dy, T1, M2)

determines the unique Ty-essential singular class :
[02, T1] € Exte(D1, T1, M2) = Exte(D1(F), (0), F)

characterized by the Ty = (0)-essential singular F-algebra extension :

o2

(02.T1) 0 —s (F = Mg) >—2— (B, Np = (0))
in which the “pair” (B, N2 =(0)) is defined by the condition :
(By, N2) = (D1, T1, M2, p) = (D(F), (0), F, f)
which determines, in particular, the singular F-algebra extension :
o2

> (D1, T))— 0

> (D1=D1(F)—0

(62 0— (F=Mg) >—2 (By = By(F)
in which the right Artinian F-algebra By, is defined by the condition :
By = (D1, M, 1) = (D1(F), F, fy) = By(F)
which implies easily the existence of a F-basis (1, e1, e2), which determines a
"realization” of the F-algebra By, of the form :

By =Bu(F) = {a=ag + aje1 +aze ; ele2=eze1=e%=0, e%=ue2; aj € F}

such that :
o)(a) = 02(ap + aje + azep) = (ag + a1x) € D1 =D(F)
forevery a € By and such that :
ir2(a) = axep forall ay € F=M,

and also the "matrix realization” :
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ag Hap a2
=ya= 0 ap a1 aj € FJ
0 0 g

By, = By(F) =

in which appears the "parameter” || € F* = Hg(Dl, Ty, Mp).

(c) For the previous F-algebra By, = By (F), whenever the factor algebra :

Fl 0 0 ap 00
Buyy=| O [FL 0 |=92=]| 020 |a0e Fr=F=Ms
0 0 |F 0 0 a

is considered as a (By-By)-bimodule or as a By-bimodule F = M3, it is easy to
prove the relation :
H2(By,, M3) = HX(By, F)
= {gve C2(By, F); gv(a, a') = v(aja2 + ma')) and ve F} =F
Thus, for the proper two-sided ideal :
T2=(0) e T(By)
as in the previous example, it is possible to prove that the "space” :
H2(By, T2, M3)

of Ty-essential cohomology classes from By into M3, which is only a set, is
characterized by the relation :
2
H(By, T2, M3)=F* C F= H2(Bu, Ty, M3) = HZ(BH, M3)
Then, the Theorems 3-10 and 3-14 imply that every Ty = (0)-essential

cohomology class :

A 2
gv =V e F*=H(By, T2, M3)

determines the unique Ty-essential singular class [63, T3], defined by :

1 o]
(63.T2)  0— (F=Ms3) > (Byy, N3 = (0) —>> (By, T2)— 0
in which the "pair” (B, y, N3 = (0)) is defined by the condition :
(Bu,Vv N2) = (Buv T2v M3’ V) = (Bu(F)’ (O)v F’ gV)
which determines, in particular, the singular F-algebra extension :
i : (o)
(63) 0— (F=Mj3) > (Byy = By y(F)) — > (By = By(F)) — 0

in which the right Artinian F-algebra By, y is defined by the condition :
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Bp,v = (By, M3, v) = (Bu(F), F, gy) = By v(F)
which implies easily the existence of a F-basis (1, ey, €2, e3), which determines a
"realization” of the F-algebra By y = By, v(F) of the form :
cle3=e3e1=e%=eze3=e3ez=e% =0
Bp,v = By v(F) =4 a=ap+ajej+azer+ases
e%:ucz,e1ez=e2e1=ve3 , ajeF

such that :
03(a) = 63(ap+ajer+azez+ases) = (ag+ajer+azer) € By = By(F)
for every a € By y and such that :
13(a3) = azes foralla3e F=Mj

and also the "matrix realization” :

ag vay vay a3

0
=\ a= 20 Har 2 ,aje€ F

0 0 a ay
0 0 0 a

B [IRY (F) =

in which appear the "parameters” | € F* = Hg(Dl, T1, M») and
v e F* = H3(By, T2, M3).

(d) At last, for the right Artinian F-algebra :
B = (Di(F) C Mx(F) < F)

which has the "matrix realization” :

F bo b1 h bie F
B=BE)=| OIF F|={b=|0b b| ,iecF
0 0 F 0 0 g gie F

and its idempotent right Socle :
S(B)=N(B)=T € T(B)

with the "matrix realization” :

sB) =NB)=T=|? O F|{t=|0 0 L|,eF
0 0 F 0 0 g gr€ F

which determines the right Artinian F-algebra :
B/T=C=Di(F)
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and the general F-algebra extension :
ig

(t") 0 s T s (B =B(F)) i > (C=D1(F)) —— 0
and for the C-bimodule or Dj-bimodule M' = M3 = M3 =F, the Example (B) - (b)
gives the relation :
H2(B, T, M') = H(C, M) = Z%(C, M") =Z2(D1, M)
= {hy € C¥D1,F); hy(a,a) =paja'jand p € F} =F
Then, for the proper two-sided ideal :
Te G(B)

and for any cohomology class :

A
hy =p e F=H2(B, T, M) = H(C, M)
according to the obvious relation :
IBM) = {b'e B;bo=0)}
for every element :
a=(m,b)e M'x [IgM)C M'x B

which determines the F-vector space :

sp(a’, hy) ={be B;mb + h;(b', b) =0} ={be B ; m'bg+ ub'1by =0}

the Definition 3-7 considers the condition (E) , in which the conditions (r) and (s)

become the condition :

(r') rp(b") C sp(a’, hy)
and the condition :
(s") b'sg(a’, hy) N T = (0).

If the element b' € Ig(M') verifies : b'y # 0, the element :
toe T C sp(a, hy)
defined by the conditions : /1 = g1 =0 and I = 1, verifies the relation :
0#bye bsg(a, hy) N T

Therefore, the condition (s') implies : b'y = 0, thatis : b' e T, and the
Lemma 1-2 implies the existence of an element t' € T such that : b' = b't', which
verifies :

b'=b't' € b'sp(a’, hy) N T =(0)

that is : b' = 0, which gives : rg(b") = B, so that the condition (r') implies :
sp(a’, hy) = B, and in particular the relation : b" € sg(a’, hy), for the element
b" € B defined by the conditions : b"1 =1["1 =1"9 =g"1 =0 and b"g = 1, which
imply : m' = 0, thatis : a' = (m', b") = 0, in such a way that the Definition 3-7
shows that, for |1 € F, the 2-cocycle hy, is a T-essential cocycle :
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hy € Zg(B, T,M) =Z72(B, T, M) = Z2(C, M")
and therefore, the Definition 3-9 shows that, for p € F, the cohomology class
A
hy =y is a T-essential cohomology class :

A
hy =p € F=HB, T, M) = HX(B, T, M') = HX(C, M)

This proves that the "space” :
H2(B, T, M)

of T-essential cohomology classes from B into M', which is in general only a
set, is characterized by the relation :
H2(B, T, M') = F= H2(B, T, M) = H2(C, M)

Moreover, the Theorems 3-10 and 3-14 imply that every T-essential

cohomology class :

hy=p=F= H2(B, T, M) = HXB, T, M3)
u_u— = e ’ ’ = e(’ ’ 3

determines the unique T-essential singular class :
[o', T] € Exte(B, T, M') = Exte(B, T, M3)

characterized by the T-essential singular F-algebra extension :

¢, T) 0—s M =F)>—s (B, N)

> B, T)——0

in which the "pair” (B'y, N') is defined by the condition :
(B'uv N') = (B’ T, M's u) = (B(F)) Tv F, hu)
which determines, in particular the singular F-algebra extension :

(c") 0—— (M = F) > (Bl = Bu(F) — > (B = B(F)) —» 0

in which the right Artinian F-algebra B'y is defined by the condition :

By = (B, M, ) = (B(F), F, hy) = BYy(F)

which implies easily that this F-algebra B'y has the "matrix realization” of the

B'u=B'u(F)=[ 0}{“ ) [aO 0]}

0 F 0 g1

form :

completely characterized in the following [TABLE N° 1|, in which the
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coefficients aj, /j and gj are in F, in such a manner that the relations :
N'=NBpW=@0,T)={ae By ;a=ar=a2=0}
and
M=M@B'W=(F,0={ae By;a=a1=l1=h=g1=0,a¢€ F}
characterize the right Socle :
S'=S(B'Y) =M@BY S NBY=M@®N'={ae Byy;a0=a; =0}

(C) FIRST EXAMPLE.
Firstly, with the previous notations, every p € F determines the right

Artinian F-algebra :
A=Al = AMF) = B'y(F) C Mg(F) 9 F)

which has the "matrix realization” of the form :

A:Au=Au(F)=[ F}{a ) [ao 5 ”

0 F 0 g2
completely characterized in the following [TABLE N° 2|, in which the coefficients

aj, /j and g are in F, in such a manner that its idempotent right Socle is
characterized by the relation :
S=S(A)=S(AM)={ae A=AMl;g=aj=az=1l1 = =g1 =0}
and determines the right Artinian F-algebra :
A/S = AW/S = B'y = B)y(F)
and the general F-algebra extension :
© 0—S> 5 (A=Al=AKE) — 2 (B = BuE) —s 0

For any field F and every y € F, this construction gives an example of right

Artinian F-algebra :

A = AM = AIF)
of finite dimension over F :

dimg[A]=r=13

with a finite right Canonical Resolution :

R(A) =[A = (Ag = AW) %5 (A3=B)) >
(A2=B) 2% (A1=D) %L, (Ag=F)]
which gives the finite right Resolutive Dimension :
p dim(A)=m =4
that is :
1= {0, 1,23, 4] I* = (1,23, 4)

and the finite right Canonical Sequence :
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p(A)=(p1=0,p2=1,p3=0,ps=1)
equivalent to the conditions :
15={j‘sl*;pj=0}={1,3} II:{keI*;pk=1}={2,4}

which give a « Complete Decomposition of m = 4» of the form :
M =1(A) r=pldn=( LK\l
kel
inwhich : I} = {0,2,4}, b ={ke I1 ; (k+ e 16} = {0, 2}, I% = {1} and

13 ={3).

In order to complete the characterization of the F-"Completely structured

vertex set” :

A A .
AA)=A={A;Z;(KD, (0, @), 1)}
equipped with its "Combinatorial Structure" :

Z(A) =Z=[A:m=4,(D); {Ai}, (AD), A, (AK), (A"}‘), (A", (A']

in which the relations :
A={1,2, 3}

(K) =(Ky=F,K2=F,K3=F) and (pA)=(p1=1Lp2=1,p3=1)
are obvious, it is possible to prove the relations :

A={1}=A1 T A={1,2} =A3C A4={1,2,3}=A;

A0 = {1} ; AZ= {2} ; A4 =(3};
A'=1{2,3} AO=@ ; AZ={2}) ; A¥={3};
AY=02 A% =1{2)
" 1 " t "2
A'1=AN1=Ap= {1} A'3=AN3=A2-A"3={1}

and also the relations :
@)=@q1=0, q2=2,q3=6)

1
(nx)z(nizl, n%:(),ng:())

M)=@m3=1,n3=0,n3=0)
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which imply in particular the relation :

Ag=Bp=Gp=Rg= Il R=R!=K;=F
Ae Ag

and the relation :

—_R — — A — -
A/J(A)_R_R‘;_XIE—IAR =K;x K3 x K3=Fx Fx F

Moreover, with the Constructions 7-1, the Theorem 7-4 shows that the
Structure of the right Artinian F-algebra A is characterized by its F-"Completely

AA
structured vertex set” A = A(A) and by the three families of "parameters” :
(Fikely ¥ie o Eielo

characterized by the following conditions :
(ci1)Forj=1le 18 the "parameter” W'y is the F-algebra homomorphism :

‘P'1=IdK1:C0=K1=F————>H'1=K1=F

which determines the non null Cp-bimodule :
M;=[M7;¥1:Co——> HI1]=F
and the "parameter” & is the unique Tq = (0)-essential cohomology class :

A
&1 =0 e HX(Ag, To, My) = H2 (Dg, To, M1) = HX(F, (0), F)

which give the characterization :

(D1, N1 = (0)) = (A1, Ny) = (Ag, To. M1, £1) = (. (0), F, 0)

(bj) Fork=2¢€ I;, the "parameter” ¥ is the canonical injective

F-algebra homomorphism :
V2 : A1 =Dy =D1(F) >—— Hj = My(K2) = Mx(F)
which gives the characterization :

B = Ag = (Ar 2 Hp <1 Gp) = (D1(F) C My(F) < F)

(c2) For j =3 € I, which implies the relation :

Ty=T"3 = kee?\ 2 SA =82 =T =S(A2) = S(B)

the "parameter” V'3 is the canonical F-algebra homomorphism :
¥'3:Cp=AyTy=B/T=C=Di(F)—>» H3 =K =F

which determines the non null Cz-bimodule :
M3 =[M3;¥3:C—> H3]=M'=F
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and the "parameter” &3 is the Ty = T-essential cohomology class :

A
Es=hy =p e F=HX(Ag, T2, M) =H(B, T, M)

which give the characterization :
(B'n, N) = (A3, N3) = (A2, T2, M3, €3) = (B(F), T, F, hy)

(b2) Fork=4 ¢ I;, the "parameter” W4 is the canonical injective

F-algebra homomorphism :
Y4 : Az =By = B(F) >—— Hyq = Mg(K3) = Mg(F)

Thus, this description gives a first illustration of our Structure Theorem.

(D) SECOND EXAMPLE.

Secondly, with the previous notations, for any field F, every pair (i, v) of
elements L € F* and v € F*, determines an example of right Artinian F-algebra :
A =By y = By v(F)

of finite dimension over F :
dimg[A]l=r=4

with a finite right Canonical Resolution :
R(A) = [(A = A3 = By) — > (A2 = By) —2>(A1 = D) —5> (Ag =P
which gives the finite right Resolutive Dimension :
pdim(A)=m =3
that is :
I={0,1,2,3} I*={1, 2,3}
and the finite right Canonical Sequence :
p(A)=(p1=0,p2=0,p3=0)
equivalent to the conditions :
Ip= {je I*;p; =0} = I* = {1, 2, 3} I[={keI*;px=1}=0

which give a « Complete Decomposition of m = 3» of the form :

(D = KA) 1=151111=(J.L1};)J111
kelp
inwhich: 1=1{0,1,2,3),I1 =l = {0}, [ =@ and * = [ =13 = {1, 2, 3}.

In order to complete the characterization of the F-"Completely structured

vertex set” :
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A A .
A(A)=A = {A;Z(A) ;5 (K, (P, (@), ()}

equipped with its "Combinatorial Structure"” :
Z(A)=Z =[A;m=3,(); {Aj}, (AD), A, (A), (A"}(), (A"p, (A)]

in which the relations :
A={1}

(Kp) =(K1=F) PV =p1=1
are obvious, it is possible to prove the relations :
Ai=A={1} forallie I
Ak=A0= A= (1} fork=0€ I
AN=0
(A®) = (AK)ge 1; =@  sincel; =@

A¥=AD =0 fork=0elhandje K=

B=1*=1{1,23)
Aj=ANj=A={1} forallje IJ=T1*

and also the relations :
@) =(q1=0)
hy=@ml=1,0k=1,n}=1)

which imply in particular the relation :

Ap=Bo=Gp=Ro= Il RA=Rl!=K;=F
Ae Ag

and the relation :

which shows that the right Artinian F-algebras :
A=Aj3 , Ay A, Ag=F
are local F-algebras.
Moreover, with the Constructions 7-1, the Theorem 7-4 shows that the

Structure of the right Artinian F-algebra A is characterized by its F-"Completely

A A
structured vertex set" A = A(A) and by the two families of "parameters” :

(¥'je 10=1* and &jie o=r*

characterized by the following conditions :
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(ci)Forj=1e€e I(*) the "parameter” ¥'1 is the F-algebra homomorphism :
Y"1 =‘IdK1 :Co=Ki=F— > H1=K;=F

which determines the non null Cg-bimodule :
M;=[M"1;¥1:Co——> H1]=F
and the parameter &1 is the unique To = (0)-essential cohomology class :

A
&1 =0 e HX(Aq, To, M1) = HX(D, To, M) = HX(F, (0), F)

which give the characterization :
A
(D1, Ny = (0)) = (A1, N1) = (Ag, To, My, &1) = (F, (0), F, 0)
(cp) Forj=2¢€ IZ), the "parameter” ¥'; is the canonical surjective

F-algebra epimorphism :

Y9 :D1=A1=Cq > H2=K;=F =Dy/J(D1) = A1/J(A}))

which determines the non null Ci-bimodule :
My =[M;¥%:Ci— H?]=F
and the "parameter” &y = | is a Ty = (0)-essential cohomology class :

A
& = fy e F*=H(A1, T1, Mp) = H(D1, T1, Mp) = H(D1(P), (0), F)

which give the characterization :
(Bp, N2 = (0)) = (A2, N2) = (A1, T1, M2, &2) = (D1(F), (0), F, f,))
(c3) Forj=3 € IB, the "parameter” W's is the canonical surjective

F-algebra epimorphism :
W3 :By=Ar=Cy

> H3 = K1 =F =Bp/JBp) = A2J/J(A2)

which determines the non null Cy-bimodule :
M3 =[M3;¥3:Co— H3]=F

and the "parameter” &3 = v is a Tp = (0)-essential cohomology class :
A
E3 =gy =V € F* = HX(Ag, Ty, M3) = HX(By, T2, M3) = HABy(F), (0), F)
which give the characterization :

(By,v. N3 =(0)) = (A3, N3) = (A2, T, M3, £3) = (Bu(F), (0), F, gv)
Thus, this description gives a second illustration of our Structure Theorem.

(E) THE ROLE OF THE PARAMETERS.
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- The previous example shows that for any field F, every pair :
(1, v) € (F* x F*)
determines a right Artinian F-algebra :
A = Bp’v = Bu’v(F)
with a finite right Canonical Resolution :
o o c
R(A) = [(A = A3 = Byy) —> (A2 =By) —> (A1 =D1) —>> (Ag=F)]
and a Structure characterized by its F-"Completely structured vertex set” :
A A
A=A(A)

and by two families of “parameters” :
S * f ' ' * A A A
¥Pjeto=(¥'1, ¥2,¥3) and (Epiero=€1=0,&=fyp=p,&=gy=V)

In particular, with the Notations of the Example (A) - (¢), for any field F,
the particular pair :
(1, 1) € (F* x F*)

determines the right Artinian F-algebra :
A=B1,1=B1,1(F) = D3 =D3(F)
with a finite right Canonical Resolution :
- - - T - T - T -
R(A) = [(A = A3 = D3(F)) —>> (Ag = Dz(F)) —2» (A1 =Dp) —>» (Ag = F)]
and a Structure characterized by the same F-"Completely structured vertex set" :
A— A A
AA) = A =AA)

and by two families of "parameters” :

o - . = A= A = A
PPjep=W'1, Y2, ¥3) and (e =€1=0,62=f1=1,&=g1=1)

Thus, it is not impossible that the right Artinian F-algebras : A and A, be
isomorphic.

In fact, it is easy to verify that the F-algebra automorphism :

oy € Autp(D1(F)) = F*
defined by the condition :
mp(a=ao+a1x)=5=a0+a1ux for all a € Dy(F)
the F-algebra isomorphism :
@y : A2 = By(F) —— Az = Do(F)

defined by the condition :
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(Y)u(a =ap+aje] +axep) =a =ag+ ajpux + a2px2
for all a € A3 = By, v(F) and the F-algebra isomorphism :
uv
By : A3 =By y(F) — Az =Dy(F)
defined by the condition :
My,v(a = ag + ajeq + agey + a3e3) = a = ap + aypx + appx2 + azv-1p2x3
for all a e Az = By y(F), determine an isomorphism of Resolutions :
@ : R(A) — R(A)

characterized by the following commutative diagram :

A=Az =By y(F) —Bos Ay =By(F) — 2 Ay =Di(F)— L Ag=F
1Oy 1oy 1oy 1 1dg
A=A3=D3F) — 2> Ar=DyF)— 25 A1 =Di(F) — L Ag=F

Now, it is possible to compare the "iterative constructions” of the

F-algebras A = By v(F) and A = D3(F) = B 1(F).
With obvious notations, in the first step, starting from the same F-algebras :

Ag=F= 1?;0
which give : ') = ¥'1, and therefore : M| = My, the same "parameters” :

- A —_ - -
£1=£1=0 € HX(Aq, To, M1) = H(Ao, To, My) = H2(F, (0), F)

determine the same algebras :

A1=Di(F) = A;
with the same canonical F-algebra epimorphisms : 67 = 13.

Then, in the second step, starting from the same F-algebras :
A;=Dy(F)= Ay

which give : W2 =01 =11 = ¥'y, and therefore : My = My, this gives the same

"spaces” :

F* = H2(A1, T1, Mp) = HX(A1, T1, Mp) = HX(D1(F), (0), F)

From here, the choice of different "parameters” :

A
&2 = fy = e F* = HX(A1, T1, M2) = HX(D1(F), (0), F)
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and

- A - = —
&2 =11 =1e F*=HXA), T1, M) = HADy(F), (0), F)

determines two (0)-essential singular F-algebra extensions :
lo;
(02, T1)  0—s (F = Mg) >—> (Bu(F), Nz = (0) —2> (A1, T1)— 0
and

_— -— — ’t — —
2. T1)  0— (F=Mp)>— D2(F), N2 = (0) —2» (A, T)— 0
which are "equivalent' if and only if : &3 = -«’;—2, thatisif and only if : p = 1.

Thus, whenever 1 # it € F*, the two previous (0)-essential singular

F-algebra extensions (67, Tp) and (12, T1) are not equivalent, but they

are isomorphic by means of the following exact and commutative diagram :

(62) 0— (F= Mg) >25 (Ag = By(F)) — 2> (A1 = D1(F)) —> 0
1o 1oy oy
(12) 0——s (F=My) 2, (A2 = Da(F)) — %> (A1 = Di(F)) —> 0

in which the isomorphisms of F-vector spaces :
i2 : (F=Mp) >——>» M(A2) = M(By(F)) = Fez

and
121 (F=Mj) >——— M(Aj) = M(Dy(F)) = Fx2
are defined by :
i2(ap) =az e and i2(ag) = apx?
forall ag € F=Mp and all ag € F =My, in which :
@y :F=Mp——5F=M;
is the isomorphism of D}(F)-bimodules defined by :
0'p(ag) = pa forallap e F=Mj

and in which @y, and oy are the previous F-algebra isomorphisms.
It seems that this curious phenomenon results from the fact that the group of

F-automorphisms :
Autp(D1(F)) = F*

operates on the space of (0)-essential cohomology classes :
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H2(D1(F), (0), F)
by an "action” :

Autp(D1(F)) x HX(D1(F), (0), F) —— HX(D1(F), (0), F)

A A A
(wy D — oylfl=f"

characterized by the condition :
f= [(T)'u-]'l ofo [y x oyl
forevery f e Z%(Dl(F), (0), F) and every pu' € F* = Autg(D1(F)), in such a way
that the relation :
A A
fu=oulf1]

A - A
shows that the "parameters” &3 = f, =1 and €2 = f1 = 1 are connected by the

relation :

&2 = wyl€2]
determined by the F-algebra automorphism :
oy € Autp(D1(F)) =F*
and which implies the existence of the F-algebra isomorphism :

@y : (Ag = By(F)) ——> (A2 = Da(F))
Then, in the third step, starting from the isomorphic F-algebras :
Az =By(F) and Ay =Dy(F)
by means of the F-algebra isomorphism @y, which gives :

Y'3=01007 and ‘T"3 =T1012
and therefore :

\P'3 = {{—,'3 o (T)u_
it is possible to compare the structures of the Ajz-bimodule M3 and of the

Kz—bimodule: I\7[3, and also the (0)-essential cohomology classes :

A
&3 =gv =V € F* = HX(Az, T2, M3) = HX(By(F), (0), F)

and

_ . -
E3=g1=1e F*=HXAy, Ty, M3) = H(D2(F), (0), F)
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for which there exists a connection analogous to a previous relation.
This example shows that for the right Artinian F-algebras :

A =Byy =By v(F) and A =B =B ,(F) = D3 =D3(F)
having the same F-"Completely structured vertex set” :

A A A
AA)=A=AA)
their “parameters” verify in particular the relations :
¥y =P ¥ = ‘-}7'2 Y3 = ‘?'3 0 (T)u

and

&1=6 €2 = ayl€2]
which show how they are connected, by means of the "iterative construction” of

the F-algebra isomorphisms :

oy € Autp(D((F)) and (T)u .Y =, Kz, which determine the F-algebra

isomorphism : @y v : A =S A

These observations explain the reasons for which, in the Remarks 6-11 of
[10], we have said that the "parameters"” are some "semi-invariants” of the
Structure of right Artinian rings or F-algebras.

Morcover, it is convenient to remark that the réle of the parameters is

necessary, as this is shown by the last example following the Theorem 8-1.

(F) LOCAL RIGHT ARTINIAN F-ALGEBRAS.
For any field F, let & (F) be the class of local right Artinian

F-algebras, that is of right Artinian F-algebras :
A e &(F)
which are local in the sense that the semisimple Artinian F-algebra A/J(A)=Risa

F-skewfield :
AJ(A) =R =K e X(F)

called its "residue class F-skewfield", this last condition being equivalent to the
fact that A has a F-"concrete vertex set” of the form :

~

AA)=A =[A={1} Ky =K1=K), (pp) =(p1=1)]
For a finite right Resolutive Dimension :
pdim (A) =m

which gives :
I={0,1,2, .. m} *={1,2,..,m}
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the condition : A = {1}, determines a finite right Canonical Sequence of the form:
p(A)=(p1=0,p2=0,..,pj=0, ..., pm =0)
equivalent to the conditions :
Lh={jeI*;pj=0} =I* I ={keI*;px=1}=0

which give a «Complete Decomposition of m» of the form :

D =1(A) I=15.U.11=(kl|. I;).I.I.Il

elp
in which : 1={0,1,2,..,m},I1 =l = {0}, [ =@
and

*=L=1=(1,2,..,m}

In order to complete the characterization of the F-"Completely structured

vertex set” :

A A .
AA)=A={A;Z=2(A); (K, (p), (@), ()}

equipped with its "Combinatorial Structure" :
Z(A)=Z=[A;m, (D); {Ai}, (AK), A, (AR, (A"Jl-(), (A", (A%)]

it is possible to prove that the conditions :
A={1} (Kp) = (K1 =K) PV =(P1=1)

imply automatically the relations :

Ai=A={1} forallie I
Ak=A0=Ag= (1) fork=0€e I
A=
(A%) = (A¥)er; =D since I} = @

A"J!<=A"JO=@ fork=0ehandje IX =

A'j=Aj=A = {1} forall j e 1J=I*

and also the relations :
(@) =(@1=0)
() = (@ =ni=n;2 1) = (y); elo=I*

for non null integers nj € N*, indexed by je I* = {1, 2, ..., m}.
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Morever, it is convenient to remark that with the general notations, the
previous conditions imply automatically the relations :
T} = (0) and Tj-1=(0) € B(Aj1)
which give the relations :
Aj.1/Tj-1 =Cj1 = Aja forallje I*
and that for each index j € Iy =I*, which determines the right Aj.1-module :

M = L} = $(Vi, W) =W} =KJi =K"i = Wi

and its F-algebra of endomorphisms :
Hi = tﬁAj_l(M'j) = & (Wi) = Mp;(K)
the characterization of a non null Cj.1-bimodule :
M;=[M}j; ¥ : Cj.1 — HY)
is determined by a “parameter” \¥'j constituted by a F-algebra homomorphism :
¥y : Cj1= Aj.1—— Hi=E(Wi) = Mnj(K)
Thus, for a local right Artinian F-algebra :
Ae RyF)

the knowledge of its F-"Completely structured vertex set” :

A A
A(A)=A
is equivalent to the knowledge of its F-"Local completely structured vertex set”,
of the form ;
QA)=Q=[m, D, K, (jjer]

in which m is an integer : m € N which determines I = {0, 1, 2, ..., m}, in which
K is a F-skewfield : K € K (F) and in which (nj)je1* is a family of non null
integers : nje N*, indexed by je I* = {1, 2, ..., m}.

Then, the translation of the Constructions 7-1 and of the Theorem 7-4 gives
the following result.

THEOREM 8-1 (STRUCTURE THEOREM IN THE LOCAL CASE).
For any field F, the Structure of any local right Artinian F-algebra :
Ae &(F) ‘
is characterized "up to an F-isomorphism” by a (or by its) F-"Local completely
structured vertex set" :
Q=[m,[D,K, njjer]
and by two families of "parameters” :
(¥'jer* Ejjer*
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in such a manner that in its finite right Canonical Resolution :

1i>> Aj-1 ... A1 ——E» Ap=K]

RA) = [A = An—S5 Am.1 ... Aj
the Structures of the local right Artinian F-algebras :

Aje &y F) forallie |
are determined by an "ascending iterative construction” from the F-skewfield
Ag =K e K (F), to the local right Artinian F-algebra : A = Ay, characterized
by the following conditions :

(a) The local right Artinian F-algebras Aj verify the relations :
Ai/J(AD=Ri=K forallie
which give in particular the relation :
A/J(A)=R=Rp =K
(b) For each index j € 1*, the Structure of the local right Artinian
F-algebra :

Aje &(F)
is characterized by :

(ot) The local right Artinian F-algebra :

Aj.1€ &yF)
constructed by an ascending iterative construction from Ag = K € X (F).

(B) The proper two-sided ideal :
Tj.1=(0) € B(Aj.1)
which determines the local right Artinian F-algebra :
Aj1/Tj1 = C1= Ay
with the canonical surjective F-algebra epimorphism :
0j-1= IdAj_] PAj >—> G
which is an isomorphism, and also the canonical surjective F-algebra
epimorphism :
0"j-1 = (11 0...0Tj-1) : Cj.1 = Aj.p —> Cj.1 =G/ J(C.) =K
(Y) A "parameter” V'j constituted by a F-algebra homomorphism :
¥:Cj1= A — Hi = $(Wi) = Mnj(K)
which determines, by the characterization :
M;j = [Mj= Wi =K% ; ¥j: Gj.1 — H1]
the non null Cj.1-bimodule or Aj.1-bimodule :
M;e M(Aj-] , Tj-1=(0)
(8) The "parameter” &; constituted by an unique Tj.1 = (0)-essential

cohomology class :
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A
hj = & € HX(Aj.1, Tj-1, Mj) = HX (A1, (0), M)

such that :

(Aj, Nj = (0) = (Aj-1, Tj-1, Mj, by) = (Aj-1, Tj1, M, &)
which gives the "iterative cohomological characterization' :
Aj= (Aj-1, Mj, hy) = (Aj.1, M, &)

by means of the "parameters" :
(¥jer* and &ier
(c) Moreover, the underlying F-vector space Al of the local right Artinian

F-algebra A is characterized by the conditions :
IAI=K®| & Wi|=K®| & Knj|=Ks
je I* jeI*

in which :

S=1+_Z n;
jelI*

the "multiplication" of the local right Artinian F-algebra A being determined by
the two families :

(¥'jer* Eier*
of "parameters".

PROOF - This is a particular case of the Theorem 7-4.

For instance, this general Theorem 8-1 may be illustrated by the SECOND

EXAMPLE :
A= Bu,v = Bu,v(F)

and also by the following particular example.

In the case where : m = 1, a F-"Local completely structured vertex set" of
the form :

Q=[m, (I), K, (nj)j er*]
is completely determined by a F-skewfield :
Ap=Ke K@
and by a non null integer :
nj=n; e N*

Thus, if we choose : nj =ny = 1, the local right Artinian F-algebra A is

completely determined by the two "parameters' constituted by a F-algebra

homomorphism :
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¥'1 € Morg[Co, H'1] = Morg[K, K]
and by a Tg = (0)-essential cohomology class :

A
h1 = &1 € HX(Ag, To, My) = HA(K, (0), My)

which give the ""cohomological characterization’ :
- A=(Ag, M &)
In particular, for any F-automorphism :
o € Autp(K) = Gal[K : F]
the Proposition 3-15 shows that the choice of the "“parameters’’ :
¥Y'1 =06 e Autp(K) = Gal[K : F]

and :

£1=0  HAK, (0), My) = HK, (0), s K1)

characterizes a local right Artinian F-algebra :

A
As = (A0, M1, &1) = (K, 5 K1, 0)

having the "matrix realization” :

A::Ao-z G K ={a=[c(al) aO],aiE K}
0 0 al

In this last example, whenever the F-skewfield K € X (F) is commutative
and the Galois group Autp(K) = Gal[K : F] is not trivial [for instance : F = R and
K = €], it is immediate that the local right Artinian F-algebra Ag is non

commutative if and only if :
o # 1 e Autg(K) = Gal[K : F]
It follows that the structures of the F-algebras Ag with the same complete

A A
invariant : A(Ag) = A, depend explicitely of the “parameter’ ¥ = 6, which
is necessary in order to describe the "multiplication” of the F-algebra Ag, and this
gives an example of the necessity of the role of the parameters.

(G) A LAST EXAMPLE.

A

For any field F and any F-"Completely structured vertex set" A, a natural

problem is the problem of the existence and of the choice of "parameters”, in
order to construct a right Artinian F-algebra :

Ae &(F)
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subject to the condition :

A A
7 A(A)=A
Our aim is to discuss this problem on an example, in which the given

F-"Completely structured vertex set” :

A .
A={A;Z;(Kp), (), (@), ®0))

and its "Combinatorial Structure” :
Z=[A;m,D; {Ai}, AR, A, (AK), (A"J!‘) » (A", (A')]

are defined by the following conditions :

(aq) A={1,2,3,456,7,8,9}
(o) For the integer m = 4, which gives :
1={0,1,2,3,4} ; I*={1, 2,3, 4}

the equivalent conditions :
=123} 5 I ={L4 ; TI1={01,4})

give the « Complete Decomposition of m = 4 », of the form :

-1 - k
) 1=1; 11 11_(k.L.|12 IO)J.L I

in which :
L={kel;(ktl)e g} =(1} and E=1) =IH={2,3)

(03) Ao =1{1,2}
Ai=Ar=A3=1{1,2,3,4,56,7}
As=A={1,2,3,4,5.67,8,9)
(oug) A0=Ap={1,2}
Al=Ay1-Ap=1(3,4,5,6,7)
A4=A4-Az=(8,9)

(as) A'=1{5,6,7, 8}
Al ={5,6,7)
A4 = (8}
(0ig) A =14,5,6,7)
AY =5, 6,7)
(a7) A"p=A1- Ay ={1,2,3)
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A'3=A1-A"l=1(1,2,3,4)

(08) A2=A"2={1,2,3}
A3 =A"3={1, 2, 3, 4}
B (Ka) = Kiaea = K1, K2, K3, Ky, K3, K¢, K7, K3 K9)
in which each K), is a F-skewfield : K) € X (F)
(B2) (v = (PMre A = (p1=1, p2=1, p3=1, p4=1, ps=1,pe=1, p7=1, pg=1, po=1)
(B3) (@) = (@re A = @1=0, q2=0, q3=0, q4=0, g5=1, g6=1, q7=1, q8=q, q9=0)
in which qg = q € N*, is considered as a "numerical parameter".

Ba) (03) = @)y 4 = (W3=1, nd=1, nd=1, n2=0, n2=0, n2=0, n2=0, n3=0, n3=0)
(03) = (M 4 = (13=1, n3=1, nd=1, n3=1, n3=0, n}=0, n3=0, n3=0, n3=0)

Thus, our objective is to construct a right Artinian F-algebra :

Ae &(F)

subject to the condition :
A A
) AA)=A

which implies the existence of a finite right Canonical Sequence :
p(A)=(p1=1,p2=0,p3=0,ps=1)
and the existence of a finite right Canonical Resolution of the form :

RA =[A=Ag— 2o Aj— B s Ap— 2 5 Aj—L s Ag]

in which the Structures of the right Artinian F-algebras :
Aje &(F) forallie I

are determined by an "ascending iterative construction” from the semisimple
Artinian F-algebra : Ag € &((F), to the right Artinian F-algebra : A = A4,

A
characterized, by means of the "geometrical objects” determined by A in the
Constructions 7-1, by the Theorem 7-4, that is by the following conditions :

(a) Since the conditions () imply :

RM=8(Vy) = Mp, (Kp) = M1(Ky) = K forallAe A
forevery k € I = {0, 1, 4}, the conditions :
Gk = IT rr
Ae Ak
and the conditions (04) imply the relations :
=Bo=Go=_II R*= Il Kj=K;xK
Ao =Bo=Co Ae AO Ae AO A= 2
Gy = RM= II Kj=Kjx x Kg x x K
1=, ek re al 3 X K4 x K5 x K¢ x K7
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G4 RM= JI Ky=KgxK

Ae A4
which give in particular the first characterization :

Ap =K1 x K2

andforallie I1={0, 1, 2, 3, 4}, the conditions :
A/J(A) =Rj=_I1 RA
i) =Rj Ae Ay

and the conditions (ot3) imply the relations :

Ro= Il R*= JI KA=K;xK;
Ae Ag e g

Ri=Rp=Rj3= IT rr= Il Kj3 =K1 x K7 x K3 x K4 x K5 x Kg x K7
Ae A3 Ae A3

R=Rs= Il R*= TI Ki=K;xKyxKszxKsxKsxKgx K7 x Kg x K
R47&eA4 leM1123K45K6789

which give in particular the relation :
A/J(A) =R =Kj x Kax K3 x K4 x K5 x Kg x K7 x Kg x Ko
which means that the F-algebra A is a "reduced right Artinian F-algebra"” in the
sense that :
A/J(A)=R
is a finite product of F-skewfields.
(a") Since the conditions (cts) imply :
HA = B (Up) = Mg, (Kp) forallAe A'={5,6,7,8)

the condition (B3) implies the relations :
| HS = $(Us) = M (Ks) = Mi(Ks) =Ks
H6 = £(Ue) = Mg (Ke) = Mi1(Ke) =Ks
H7 = £(U7) = Mg,(K7) = Mi(K7) =K7
and the relation :
H8 = £(Ug) = Mg, (Kg) = Mq(Ks)
so that, forallk e II = {1, 4}, the conditions :
=5k
and the, conditions (0ts) imply the relation :

H;= Il HM=H5x H6 x H =K5 x K¢ x K7
Ae Al

Hy

and the relation :
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= Il BHM=H8 =L Ug) =My(K
e A4 (Ug) = Mg(Kg)

Moreover, there exists a family of (right) almost simple right Artinian
F-algebras :

Ha

(BY) = (BMaea
with a family of right Socles :
(S} = (e
characterized by the conditions :
B =SA =RA=K; forallAe A-A'={1,2,3,4,9}

and by the conditions :

A LA A
sz[H L] and sk:[OL] forallAe A'= {5, 6,7, 8}

0 R} 0 R}
which give the relations :
0 Ks 0 Kg 0 Ky
SS:[O K5] S6=[0 Kﬁ] S7=[O K7]
0 Kjs 0 K¢ 0 Ky
and the relations :
B . Kg_ 0 0. Kg
© Ky 0 » Ky
o | e o 2
] K Tlo 0l
0 0---0. Kg 0 0---0. Kg

For the index k = 0 € Ij, the condition (04) determines the semisimple

Artinian F-algebra :

with a right Socle :

So=SBg)= Il s$*= @ S= @ RM=K{®K
0=5Bo Ae AD Ae AO Ae Ag ! 2

For the index k = 1 € Iy, the pair (Hy, G1) of semisimple Artinian F-algebras :
Hi =Ks5 x Kg x Ky and G1 =K3 xKgq x K5 x Kg x K7
which verifies automatically the condition :
H; 9 G;
determines the (right) almost semisimple right Artinian F-algebra :
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Hi Ly

By =Bj = =(H;=H; 9Gy) = Il B*=B3x B4x BS x B6 x B?

k 1(0(}1)(1 1 1))“5Al

with a right Socle :

Si=8={0M \as@p=I1 sh= @ Sh=S3@s4@SS@S6®ST
0 G1 Ae Al Ae Al

which has a "matrix realization” of the form ;

{51 8]
0 Gi 0 K7

completely characterized in the following [TABLE N° 3|, which gives a "matrix

realization” of the right Socle, of the form :

Sk=sl=[0 Ll]z[o 0]
0 Gy 0 Kj

completely characterized in the following [TABLE N° 4.

Likewise, for the index k = 4 € I, the pair (H4, G4) of semisimple Artinian
F-algebras :
Hg = Mgy(Kg) and G4=Kg x K¢
which verifies automatically the condition :

Hs 4Gy
determines the (right) almost semisimple right Artinian F-algebra :

Ha L4
By = B4 = =(H4=Hy < Gg)= Il B =B8x BY
: 4(004)( Y

with a right Socle :

01y
Sk=S4= =SBy = Il sr= @& sr=S8@s9
k=>4 (004) B = ehe TS

which has a "matrix realization" of the form :

pemsi[ e ][ 0]
0 Gg 0 Ko

103



[TABLES OF MATRIX REALIZATIONS|

[TABLE N° 4]

[TABLE N° 3|

- ‘
~ ~
o o ™ ;C> N e = O O MIC O, 0 O M
o M lo o ! S ° : ) g
o : o M oo o MM o ;P © 0o M o
N e} | [
M o o :C> © M o o M o o :CD © 8 o o
_______ b = - '
_______________ P
: <! : !
o o o ::} 4 'c © o o 0o o0I®@ M's o o
| 1
[ o
== i ‘o o o o o o }”F‘O ‘o © ©
________ R S S
~ . 1 v
o o M :C> Cio o o o o o {C> Cio o ©
Vo) 1
o lo o ! )
o M o ! :o o o o o © :C> o o o
o ]
lﬁM o ol © o o oI [ o o o0ol® @ 00 o
]
i
]
. | .
| |
— : O.—o _]'-‘ |
I
| [ Oﬁ
| |
1 |
| !
________ e L
| e e it
1 |
| l
ﬂ: | o |
1 o | (s
| |
L "
I
S i
I “
. 1
m -
75}

104



completely characterized in the following [TABLE N° 5|,

which gives a “matrix realization” of the right Socle, of the form :
sesicg ol o )
0 Gy 0 Ko

completely characterized in the following [TAB LE N° 6|.

(b1) For the index k = 1 € I’;, which determines the (right) almost

semisimple right Artinian F-algebra :
B, =(H1 L1
0 Gy
in which the F-algebra Hj verifies the relation :
Hi=Ks5 x Kg x K7

from the F-algebra Ag which has the first characterization :

Ag =Kji x Ky

the Structure of the right Artinian F-algebra :
Ax=Are &(F)
is characterized by "a first parameter” ¥ constituted by a injective F-algebra
homomorphism :
Y1:A0=Ki1 x Ky>—— Hy =K5x Kg x K7
which defines a F-subalgebra :
Ap C Hy

which gives the second characterization :

Al = Ao L =(A()>——ql—-> Hi < Gy)
0 G

which implies :

0L
S: =SA =SB
1 (()Glj (A1) =S(By)

It is very important to remark that there may exist several OBSTRUCTIONS
to the existence of this "parameter” W¥j.
For instance, the existence of W1, which is in particular a monomorphism
of F-vector spaces, imply that the F-dimensions verify necessarily the relation :
[K1:F]+[Ky:F]<[Ks:F] +[Kg:F] +[K7: F]
Therefore, the condition :
[Kj:F]+[K;z:F]>[Ks:F]+[Kg:F]+[K7:F]
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[TABLES OF MATRIX REALIZATIONS]

TABLE N° 6

[TABLE N° 5|

L4

S=

1
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is an OBSTRUCTION to the existence of the "parameter” \¥'1, and for instance,
this OBSTRUCTION is realized in the particularcase : F=R ; Ks=Kg=K7=C
and Kj = K7 = H (quaternions).

Now, in the general case, we choose the F-skewfields Kj, in such a
manner that there exist three (injective) F-algebra homomorphisms :

Y1L5: K1 CKs ; WI6:K;C Kg ; ¥2,7:Ky C Ky
which are some "auxiliary parameters”.

With this hypothesis, it is possible to choose the injective F-algebra
homomorphism :

Y1:Ap=Ki1 x Kp>—3H1=Kj5 x Kg x K7
defined by the condition :
WYil(a1, a2)] = (a1, a1, 22) € (K5 x K¢ x K7)

for every (aj, a2) € (K1 x K2).

This choice implies immediately that the right Artinian F-algebra :

Ax=Are &(F)
has a "matrix realization"” of the form :
Al =[A0 L1 ]
0 Gi

completely characterized in the following [TABLE N° 7| , which means that each

elementa € Aj is represented by a (8 x 8) square matrix, in which the coefficients

verify the conditions :

a1 € K1 C Ky Ise Kjs
a; € Ki1 C Kg le € Kg
ap e Ko C Ky l7€ K7
az e Kj ag € Kyg as € Kj ag € Kg a7 € K7

the addition and the multiplication in the F-algebra Aj being the classical addition
and multiplication of matrices.

In this "matrix realization”, the idempotent right Socle S1 =S(Ay1) =

S(B1) has an isotypical decomposition :

Si= ® SA=S3S4dS5®S6®S7=N;=N(Ay)
Ae Al
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|TABLES OF MATRIX REALIZATIONSJ

[TABLE N° 7]

—_—_—— e e — ——

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
N 0 0
1
0 M o
0 0 |




in which each idempotent foot SM is represented by the elements a € A1, in which
the columns, different from the (A+1)-th column, are null.
(cp) Fortheindex j=2 € I(; associated to the index k(j) =k =1 € Iy, the

condition :

T"2=)\Eelavlsx forj=2¢ Ij
2

and the condition (o) determine the proper two-sided ideal :
T?=54® S50 S6 7
which verifies :
T'2 € B(B1) = B(A)
and for the surjective F-algebra epimorphism :

=11 =1da : Aj1= Al > Ak = Aj

the condition :
Ty =T1=N;n [r%]-l (T%)

characterizes a proper two-sided ideal :
Tj.1=T1e (A1) = T(Aj1)
defined by the condition :
TI=S4®S5®S6 7
which determines the right Artinian F-algebra :
AT =Cie &(F)

and the canonical surjective F-algebra epimorphism :

01: A > C1=Kj1 x K7 x K3
which associates, to any element a € A1, the matrix :
[ 2,00 ' 0

0 a, 0,0
(pl(a)= 0 0 a : 0 E(alsaz’a3)€(Kf<Ki(K;EC1

and also the canonical surjective F-algebra epimorphism :
0" = Idcl :Cq > C'1=Ci/J(C1)=C1 =K1 x K2 x K3

Moreover, forj=2 € 15 according to the conditions (ag), (B2) and (B4), the

relations :
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L2 = w3  Vi- B(Va, W) = Mp, , ) (K)

and
H = $(W)) = Mn) (K)) = SRMLY)

forallA e A'p ={1, 2, 3}, give the relations :
L2 =Mp1(K) =Mi(K) =Ky, forallle A2={1,2,3}
and |
H'Z = Mj(K)) = Ky foralll e A2 = {1, 2, 3}
which imply the relations :
My=_® LA=Ki®K,9Kj3
Ae Ay
and
H2 = xg\'z H2 =K; x K2 x K3

which characterize M'; as a (H2 - C1)-bimodule.

Thus, in order to choose "a second parameter” W'y constituted by a
F-algebra homomorphism :

¥y :Cr=(Kj x Kg x K3) —— H2 = (K1 x K2 x K3)
which determines, by the characterization :
My =My ;¥ : C;—— H?)
a non null Cy-bimodule :
My e M(A1, Ty)
we can choose for W' any F-algebra endomorphism :
Yy € Endp(Cy)

For instance, we can choose three "auxiliary parameters"” constituted by

three F-automorphisms :
N1 € Autp(Kq) N2 € Autp(K2) n3 € Autp(K3)

which determine “the second parameter” :

¥'2 = (M1, M2, N3) € Autp(K1) x Autp(K2) x Autp(K3) € Endp(Cy)

With this choice, which gives the relation :

Ini(M2) =Tq

according to the condition :

Tire T(A1)
the Proposition 3-15 implies the relation :

A 2
0 =0 e H;(A1, T1, M2) = HX(A1, T, M)
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and therefore, in order to choose "a third parameter” &3 it is possible to choose

the T1-essential cohomology class :

A A 2
hy =& =0 =0e H{ (A1, T1, M2)

which gives the characterization :
(A2, N2) = (A1, T1, M2, 0) = (Ay, T1, Mg, §2)

and in particular the "iterative cohomological characterization” :
Az = (A1, My, &)

A
These choices of W'y = (11, N2, N3) and of &2 = 0, imply immediately that
the right Artinian F-algebra :

. Aj=Are & (F)
has a "matrix realization” of the form :
r_nl(al) oy ! 0 0 I 1 10 0,0
. | | | '
O 2 0 0y . bl 119,00
0 0 a o: : ::150:0
0 00 al l I 10 10
e ———t - ———-
|n2(az) a, OI | |0 0,0
| I b '
I U B A
o 0 a,l Lo o !1
Ay= | _______ IRt IR R T
: :113(33) oy | : :
| 1 0 az :
——————— i D
I B R k) SR T
' | Il ta, 0.0
| | T .
| | | 10 ag 0
| | | k---=-5--
] ! | y O 0, a,

which means that each element a € Aj is represented by a (13 x 13) square matrix,

in which the coefficients verify the conditions :

aj € Ky C Ks a1 € Ky Ise Ks
aj € K1 C Kg ar € Ky ls € Kg
ae Ky C Ky o3 € K3 I e Ky
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aj € K3 ag € Ky as € Kjs ag € Kg a7 € Ky
the addition and the multiplication in the F-algebra Aj being the classical addition
and multiplication of matrices.
In this "matrix realization"”, the "one-socle” :
N(A2)=N2=(0,T) ={0, T)={©0,1);te T1}
is represented by the four last columns, the other columns being null.
(c3) Forthe index j=3 € IS associated to the index k(j) =k = 1 € I, the

condition ;

T"3=xeefx"lsk forj=3e I
3

and the condition (0g) determine the proper two-sided ideal :
T3=S5®s60§7
which verifies :

T3 e B(By) = E(A))

and for the surjective F-algebra epimorphism :

t{(:T%:‘Ez:Aj_]:Az > Ak = Ay

the condition :
Tj-l =Tr=Non [T%:l-l (T"%)
characterizes a proper two-sided ideal :

Tj.1 =T2 € T(A2) = C(Aj1)
defined by the condition :

T= ®  Sh=S5@56as’
Ae A"3
in which :
SA = (0, SH
is characterized by the (A+6)-th column in Aj, the other columns being null, and
which determines the right Artinian F-algebra :
ATy =Cre &(F)
defined by the relation :
C2=D]'(Ky) x D)*(K9) x D*(K3) x K4

in which :
na(ar) ax} forallA e {1, 2, 3}
a)

and the obvious canonical surjective F-algebra epimorphism :

TIA =
DIMK2) -[
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¢2: Ag———> C2=D["(Ky) x D)*(K2) x D3*(K3) x Ky

and also the canonical surjective F-algebra epimorphism :
¢0"2:C2 > C = C/J(C2) =K1 x K2 x K3 x K4

Morever, forj=3 € 16 according to the conditions (ag), (B2) and (B4), the

relations :
L'3=W3®V*=:B(V W3)=M 3(K)
At A W) =Mp, oy (Ky,

and
HY = W) =May Kv) = e )

forallAe A'y3 = (1, 2,3, 4}, give the relations :
L3 =M1(Kp) =Mi(Kp) =Ka forallhe A'3={1,2,3,4}

and
H'3 = Mi(K)) = Ky forallAe A'3 = (1,2, 3, 4}

which imply the relations :

Mi3= @& L3I=Ki®K,®K3®Ky
Ae A'3

and
H3= Il H3=K;xKyxK3xKy
Ae A3
which characterize M'3 as a (H3-Cp)-bimodule.
Thus, in order to choose "a fourth parameter” W¥'3 constituted by a

F-algebra homomorphism :

¥3:Cr—— H3 =K x K2 x K3 x Ky
which determines, by the characterization :

M3 =[M'3;¥'3: Cp—> H3J
a non null C-bimodule :
M3 e M(A2, T2)

it is possible to choose for '3 the F-algebra epimorphism :

¥'3:Cp—— H3 =K1 x K2 x K3 x K4
characterized by the condition :

¥'3(¢) = (nf(an), n3(a2), N3(a3), a4)

for every a € Ap, which determine @2(a) =ce Cy.
Therefore, the Cp-bimodule M3 is characterized by the fact that for every :
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B =(B1, B2, B3, B4) € (K1 @ K2 ® K3 @ K4) =M3
and for every @z(a) =c € Cp, then :

cB = M%(ap) B1. n3(a2) B2 n3(a3) B3, 24Ba)

and
Bc = (B1a1 , P22z , B3as , Psaq)
Then , for every :
= (11, 2, B3) € (F*)3
it is easy to verify that the condition :
1hf1(a, a’) = (umi(a)a'y, pona(ar)a’z, pans(as)a's, 0)
characterizes a 2-cocycle :
h = hy € Z2(A3, T2, M3) = Z2(Cp, M3)
Fristly, the definition of M3 implies the relations :
I, M3)={ae A a1=;p=a3=a4=0} D T
Secondly, in order to prove the relation :
h=hy € ZX(A2, T2, M3)

according to the Proposition 3-15, we must show that for every element :

a=(B, a) € M3 x [Io,(M3) - T2] C M3 x Ay

the conditions :

€3] ra(@ C sAZ(E, h) = {a'e Ay ;Ba' + h*(a, a') =0}
and

(s) a. sAZ(:'i, h) " Ty = (0)

imply a =0, thatis : B = (B1, B2, B3, B4) =0 and a = 0.
Then, ifae [I A2(M3) - T»], in the element a € Ay there exists an o # 0 for

one i€ {l1,2, 3}, and if we choose a" € Aj such that a";= 1 and the other

components of a" being null, then the relations :

a" € 1A,(a) and a" ¢ sAZ(E, h)

show that the condition (T) is not verified, in such a way that the Definitions 3-7
and 3-9 imply the relations :
h=hy e ZX(A2, T2, M3)

and



A A
h =hy & H (A, T2, M3) C HX(Ag, T2, M3)

Therefore, in order to choose "a fifth parameter” &3 it is possible to

choose the Tp-essential cohomology class :

A 2
hy = &3 € H;(A2, T2, M3)

which gives the fourth characterization :
(A3, N3) = (A2, T2, M3, hy) = (A2, T2, M3, £3)

and in particular the "iterative cohomological characterization” :
A3z = (Az, M3, &3)

A
These choices of ¥'3 and of §3 = f,, imply immediately that the right
Artinian F-algebra :
Aj=Asze R(F)

has a "matrix realization" of the form :

[nz(ao 0 }
Aj=| 1
0 a7

completely characterized in the following |TABLE N° 8| , which means that each

element a € Aj is represented by a (17 x 17) square matrix, in which the

coefficients verify the conditions :

aje Kj C Ks o1 € Kq B1 € Ki Ise Ks
a1 € K1 C Kg o € Koy Bre Ky lg € Kg
ape Kp C Ky o3 € K3 B3 e K3 I € Ky
a3 € K3 age Ky as e Ks ag € Kg a7 € Ky

the addition and the multiplication in the F-algebra A3 being the classical addition
and multiplication of matrices.
(bg) For the index k = 4 € I;, which determines the (right) almost

semisimple right Artinian F-algebra :

B4=(H4 L4)
0 G4

in which the F-algebra Hy verifies the relation :
Hy = Mq(K8)
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[TABLES OF MATRIX REALIZATIONS]

|TABLE N° 8|

S o O

®.0 0
0:’ 0,
0.0 !
Sooboeohoos
e Q)
“ﬁ e

|
1
1
lep  (fe)tL 0
|
1
t

Y (oLt (Bl

IIIIIIIIIIII -

—_——

0:% (U 0
0 .%d Co)tuind @Hn

0 0:
o o “TC A;v;h O
0 0:'¢ ("o'u'd ('l
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from the F-algebra A3, the Structure of the right Artinian F-algebra :
A=Ax=Ase &(F)
is characterized by a "sixth parameter” \P 4 constituted by an injective F-algebra
homomorphism :
W4 : A3 >——> Ha=My(Kg)

which defines a F-subalgebra :

A3 C Hy
which gives the fifth characterization :
A=Ag= (ML) a;> Y4, 1, < 0w
0 Gy
which implies :

0Ly
SA =84 = =S = B
(A) =354 (0G4) (Agq) = S(B4)

For instance, according to the existence of the previous (injective) F-algebra
homomorphisms :
Y1L5:K;i C Ks ; Y1.6:K; C Kg ; ¥2.7:Ky C Ky
if we suppose the existence of (injective) F-algebra homomorphisms :
P38:K3C Kg; ¥48: K4 C Kg; W38: K5 C Kg;
P68 . Kg C Kg; ¥78:K7C Kg

such that the following diagram is commutative :

SEDN

*\\ﬁ//f

and if the "numerical parameter” q € N*, verifies :
q=17
we can choose for the injective F-algebra homomorphism :
W4 : A3 >———>> Hq = M(Kg) = M17(Kg)
the "canonical injection” defined by the previous "matrix realization” of the
F-algebra Aj.



With these choices, it is immediate that the right Artinian F-algebra :
A=Aze &(F)

has a "matrix realization" of the form :

g —

n3(a1) 0

0 ag

completely characterized in the following |TABLE N° 9] , which means that each

element a € A = Ay is represented by a (19 x 19) square matrix, in which the

coefficients verify the conditions :

aje€ K1 C K5 C Kg o1€ Ki C K5 C Kg
a1€ K1 C Kg C Kg ore Ko C K7C Kg
ap € Ko C K7 C Kg a3 e K3 C Kg

Bi1e K1 C K5 C Kg Ise K5 C Kg

Bre Ky C K7 C Kg l¢ € Kg C Kg

B3 e K3 C Kg l7e K1 C Kg

Bae K4 C Kg

a3e€e K3 C Kg;ase K4y C Kg;ase Ks C Kg;age Kg C Kg;a7e K7 C Kg
ag € Kg ; ag € Ko

andatlast:lée Kgfor1<i €17;

the addition and the multiplication in the F-algebra A = A4 being the classical

addition and multiplication of matrices.

With the previous "matrix realization” of the right Artinian F-algebra A, it
is easy to determine its quiver (in the sense of [17] p. 97) :

['(A) = (A= V(A), E=E(A))
in which the vertex set A = V(A) being defined by :

A=V(A)={1,2,3,4,5,6,17, 8,9}
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ITABLE N° 9]

[TABLES OF MATRIX REALIZATIONS]
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the edge set E = E(A) = {(¢j, ¢j) : €i J(A) ¢j# (0)} is characterized by the

following table :

AT T

T [s [ o]

3 4 5 6 7 8

| 1 | @ L5) | 1,6 (1,8)
2 (2,2) 2,71 (2,8)

HE (33) (3,8)
4 4,4) 4,8)
5 " (5,8)

I s | (6.8) !
7 (1.8) |
8 |
9 1 1]

This last example gives an illustration of our Structure Theorem, which
shows the possibility of the existence of OBSTRUCTIONS to the choice of the
"parameters"”, which characterize the "multiplicative structure” of the right Artinian
F-algebra.
Moreover, it suggests the problem of the study of the connexions between

our notion of F-"Completely structured vertex set” and the classical notions of

quiver.
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