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STRUCTURE OF RIGHT ARTINIAN 
ALGEBRAS OVER A F I E L D 

Michel HACQUE 

Institut de Mathématiques et Informatique de TI.S.M 
Université Claude Bernard LYON I 
69622 VILLEURBANNE France 

INTRODUCTION 
This present work is an Appendix to the previous paper : "Some new 

invariants for right Artinian rings" [10]. in which we give a "Construction 
Theorem" for right Artinian rings, that is a Theorem which gives the Description of 
a Systematic Method of Construction of any right Artinian ring, by means of a 
finite number of Fundamental Constructions, which are of two different kinds. 

Indeed, in the case of algebras over a field F, the general results for right 
Artinian rings give a more precise Description of a Systematic Method of 
Construction of any right Artinian F-algebra, which constitutes, in some sense, a 
"Structure Theorem" for right Artinian algebras over a field. 

Thus, our main objective is to give the complete proofs of some results given 
in [10] without proof, in order to achieve the presentation of an adaptation of the 
Hochschild Cohomology for Algebras. 

Then, by means of the notion of F- "Completely structured vertex set", we 
obtain the Theorem 7-4, which constitutes a "Structure Theorem" for right 
Artinian algebras over a field 

After this FIRST PART : PROOF OF THE STRUCTURE THEOREM 
(Paragraphs 1, 2, 3, 4, 5, 6 and 7), in the SECOND PART : ILLUSTRATION OF 
THE STRUCTURE THEOREM (Paragraph 8), we give a great number of 
Examples and Applications, in order to show how the notions and the theorical 
results of the FIRST PART are applicable in concrete situations. 
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F I R S T P A R T :  

PROOF OF THE STRUCTURE THEOREM 

1. CANONICAL DECOMPOSITION OF THE RIGHT SOCLE. 

All algebras considered are associative algebras over a field F. 
For any F- algebra A, let J = J (A) be the Jacobson Radical of A and let 

S = S(A) be the right Socle of A, that is the sum of all minimal right ideals of A. 
It is well known (See, for instance [4], [£J or [1] Ex. 9, p. 58) that S = S(A) 

is a semisimple right A-module and that the isotypical (or homogeneous) 
components of S are also two-sided ideals of A, called the right feet (pieds) of S or 
of A. 

These notions have been introduced in [4] and used in [2J by J. Dieudonn6 
for the study of the Structure of Hypercomplex systems. 

It is obvious that the Jacobson Radical J = J(A) is very important in the study 
of algebras, as for instance in the statement of the Wedderburn-Dickson-Malcev 
Principal Theorem (See for instance r 171 p. 209). 

Although the Jacobson Radical J = J(A) is more frequently used that the right 
Socle S = S(A), as in the previous work [10]. one of our aims is to show that the 
"Canonical Decomposition" of the right Socle gives one of the main tools for the 
proof of our Structure Theorem for right Artinian algebras over a field. 

For any F-algebra B, a two-sided B-module (See for instance [2] p. 167) or 
simply a B-bimodule is an abelian group M on which B operates on the left and on 
the right in such a way that (bm)b' = b(mb') and am = ma for all m e M, 
b e B, b' € B and a e F. For example, any two-sided ideal of a F-algebra B is a 
B-bimodule. 

With this Definition, it is immediate that for each statement of f 101 
(Definition, Lemma, Proposition, Theorem, Corollary and Remarks), it is possible 
to obtain the analogous statement by the replacement of "ring" by "algebra over a 
field F" or "F-algebra", of "ring homomorphism" by "F-algebra homomorphism", 
of "bimodule" by "F-algebra bimodule", of "ring extension" by "F-algebra 
extension", of "general ring extension" by "general F-algebra extension", of 
"singular ring extension" by "singular F-algebra extension", etc... 
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LEMMA 1-1 - For any F-algebra A, there exists a Canonical Decomposition: 
S = S(A) = M(A) © N(A) = M © N 

in which : 
(a) If /(S) is the left annihilator of S, the zero square proper two-sided 

ideal: 
M = M(A) = S(A) n Z[S(A)] = S n l(S) 

called the "zero-socle" of A, is the direct sum of the family ofnilpotent (or zero 
square) feet ofS or of A. 

(b) The idempotent two-sided ideal: 
N = N(A) = [S(A)]2 = S 2 

called the "one-socle" of A, is the direct sum of the family of idempotent feet 
ofS or of A. 

PROOF - This is a particular case of the Lemma 1-1 of flOI. 

LEMMA 1-2 - For any F-algebra B and any two-sided ideal T ofB, which 
verifies : T C S(B), the following conditions are equivalent: 

(a) The two-sided ideal T o / B is the direct sum of a family of idempotent 
feeto/B. 

(b) There exists a two-sided ideal T ofB such that: 
T C S(B) and T = T 2 

(c) The two-sided ideal TofB is idempotent: T = T 2 . 
(d) The two-sided ideal TofB is "right strongly idempotent" in the sense 

of [2] , that is : for every a € T, there exists (5G T, such that: a = oc|3. 
(e) The left annihilator /(T)) ofT verifies : T n /(T) = (0). 
(0 Every right ideal lofB verifies : IT = I n T. 
(g) The left B-module B/T is flat. 
(h) The right B-module T is projective and T is the direct sum of a family 

of feet ofB. 
Moreover, under these equivalent conditions, then : T C N(B). 

PROOF - This is a particular case of the Lemma 1-2 of [10]. 

DEFINITION 1-3 - For any F-algebra B, let V(B) be the set of proper two-
sided ideals TofB, which verify the equivalent conditions of the Lemma 1-2. 
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PROPOSITION 1-4 - Any algebra A over afield F verifies : 
(a) The F-algebra A is a semisimple Artinian F-algebra if and only if: 

S = S(A) = A 
(b) If the F-algebra A is not a semisimple Artinian F-algebra, that is if 

S = S(A) is a proper two-sided ideal of A, which determines the proper two-
sided ideals M = M(A) and N = N(A), the factor F-algebras : 

B = A/M C = A/N C = A/S 
appear in the following commutative and "exact" diagram : 

0 0 0 

S N> s>T 

N. r i" 

. \ v v 
0 >M> x- > A — í — » B >0 

0 >M> > c =s>C > 0 

0 0 0 

m which the surjective F-algebra epimorphism : 
x: A » B 

induces an isomorphism of multiplicative A-bimodules : 

X : N > » T 

from the idempotent proper two-sided ideal N = N(A) of A onto an idempotent 
proper two-sided ideal T o / B , which verifies : 

T C N ( B ) and T € *e(B) 

PROOF - This is a particular case of the Proposition 1-4 of [101. 
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REMARKS 1-5 -
(a) With the classical notion of "algebra extension" (See for instance [161 p. 

284) and whenever : S(A) * A, if M = M(A) * (0), the Proposition 1-4 exhibits in 
particular the singular F-algebra extension : 

(x) 0 >M>—-—> A — » B >0 

in which M = M(A) is a non null zero square proper two-sided ideal of A, and if: 
M = M(A) = (0), then the general F-algebra extension : 

CO 0 >S>^—>A——»C >0 

coincides with the general F-algebra extension : 

CO 0 >N>-^—>A——»C >0 

in which C = C and S = N = N(A) is an idempotent proper two-sided ideal of A. 
(b) Whenever A is a right Artinian F-algebra which is not a semisimple 

Artinian F-algebra and which verifies the condition : 
M = M( A) = (0) 

an adaptation of the Theorem 2-13 of [ 1 0 ] gives a "complete 
characterization" of the "one link" (x') = (x") determined by the general F-
algebra extension : 

(x') 0 > S —> A — — » C • 0 

and in particular a description of the Structure of the right Artinian F-algebra A, 
which is, in this case, a (right) almost semisimple right Artinian F-algebra, in the 
sense of the Definition 2-1 of [101. 

(c) Whenever A is a right Artinian F-algebra which is not a semisimple 
Artinian F-algebra and which verifies the condition : 

M = M(A)*(0) 
an adaptation of the Theorem 3-14 of [10] gives a characterization of the "zero-
link" (x) determined by the singular F-algebra extension : 

(x) 0 > M * A — » B > 0 

and in particular a description of the Structure of the right Artinian F-algebra A, 
which is not a (right) almost semisimple right Artinian F-algebra, by means of a 
T-essential singular F-algebra extension : 

(x, T) 0 > M >-^—> (A,N) — » (B, T) > 0 

characterized by an unique T-essential singular class : 
£ e Exte(B,T,M) 

which gives the "characterization" : 
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(A, N) = (B, T, M, 

which implies : 
S = S(A) = M(A) 0 N(A) = M © N 

In order to obtain a "complete characterization" of the "zero-link" 
(x), that is in order "to calculate the space1' : 

Extc(B,T, M) 
it will be sufficient to give a complete proof of the Lemma 3-6 and of the Theorem 
3-10 of [1Q]„ that is of the Lemma 3-6 and of the Theorem 3-10 of this present 
work. 

2. THE NOTION OF ALMOST SEMISIMPLE ALGEBRA. 
An old problem, set in 1964 by A.W. Goldie (See [£] p. 268), was : 

« ... the determination of artinian rings with a zero singular ideal ». 
In order to give a solution to this old problem (See [&] and [2]) it has been 

very useful to introduce the notion of (right) almost semisimple ring (See Def. 3-1 

of mi 

DEFINITION 2-1 - A ring (or an algebra) A is a (right) almost semisimple 
ring (or an almost semisimple algebra) if its right Socle S = S(A) is left faithful, 
that is verifies : /(S) = (0). 

Of course, any semisimple Artinian ring is a (right) almost semisimple ring. 
More generally, the Theorem 3-3 of [9J constitutes a Structure Theorem for 

(right) almost semisimple rings. 
In particular, it will be very useful to have the Theorem 4-3 of [£], which 

constitutes a Structure Theorem for (right) almost semisimple right Artinian rings 
(since they coincide with right Artinian rings with a zero right singular ideal, that is 
with right non singular right Artinian rings). 

LEMMA 2-2 - For any right Artinian algebra A, then : 
(a) The algebra A is a semisimple Artinian algebra if and only if: 

S = S(A) = A 
(b) The algebra A is a (right) almost semisimple right Artinian algebra if 

and only if: 

M = M(A) = (0) 
that is if and only if A is a right non singular right Artinian algebra, that is a 
right Artinian algebra with a zero right singular ideal [Zf(A) = /(S) = (0)], and 
under these equivalent conditions, then : 

6 



S = S(A) = N(A) = N 
is a non null idempotent two-sided ideal 

PROOF - The Proposition 1-4 implies the part (a). 
In a right Artinian algebra A, since the non null right Socle S = S(A) is a 

minimum essential right ideal, its left annihilator /(S) coincides with the right 
singular ideal Zf(A) of A and the conditions : 

/(S) = (0) and M = S n /(S) = (0) 

are equivalent. This implies immediately the part (b). 

NOTATIONS 2-3 -
(a) Let A be the class of right Artinian rings, let A a be the class of (right) 

almost semisimple right Artinian rings, let A o be the class of semisimple 
Artinian ring and let % be the class of skew fields, which verify the relation : 

A 0 c A a c A 

(b) For any field F, let «ft(F) be the class of right Artinian F-algebras, let 
A a(F) be the class of almost semisimple right Artinian F-algebras, let Ao(F) be the 
class of semisimple Artinian F-algebras and let 3C (F) be the class of 
F-skewfields, that is of skewfields which are F-algebras, which verify the relation : 

3C(F) C A 0 (F) C A a (F) C A(F) 

DEFINITION 2-4 - A concrete vertex set" A is an object of the 

form: 

A = [A ; (KJL), (PA)] = [A ; ( V * ) ] = [A ; (v£)] 

characterized by a finite and non empty set A (called the underlying abstract 
vertex set) and by one of the three equivalent previous data, connected by the 
conditions : 

(a) In the family (KjJ = (K\)\eA y e a c h is a F-skewfield : 

K^e 3C(F) 

(b) In the family (p\) = (px)Xe A ̂  each p\ is a non null integer : 
pXe N* 

(c) In the family (VJO = (V\)\eA , each V% i s a n o n nu^ an& finite 
dimensional right K\~vector space of dimension p\. 
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(d) In the family (V^) = (V^)^e A , each is a non null and finite 

dimensional left K\-vector space of dimension px , which may be considered 
as the dual space = X K^( Vx, Kx) of the right Kx-vector space Vx,. 

Of course, for this kind of objects the notion of isomorphism is obvious and as in 
the case of quivers, in the sense of the Definition p. 96 of [12], it is convenient 

(and harmless) to call two F-"concrete vertex sets" A and A 1 equal when 

they are only isomorphic. 

LEMMA 2-5 - Any F-"concrete vertex set" of the form : 

A = [A ; (Kx), (PX)] = [A ; (V*)] = [A ; (V*)] 

determines a semisimple Artinian F-algebra : 

R = R ( A ) = EI 
XeA 

characterized by the family (R^)XE A 0/simple Artinian F-algebras having the 
"realizations": 

R * = Jfi(Vx) = M?x(Kx) = [SB(V*)]° 

which imply that the right Kx-vector space Yx is a (R^-Kx)-bimodule 

V \ = RHVX)KX and also & (R-Kx)-bimodule = R ( V ^ ) K ^ , and that the left 

Kx-vector space , dual ofVx<> w a (Kx-RK)-bimodule = K^(V^)RX and 

also a (Kx-K)-bimodule = K^(V^)R , in such a way that the families : 

(V\)\eA and (Vj^XeA 

are respectively the set of isomorphism classes of simple left R-modules 
Vjt = R(VJO and the set of isomorphism classes of simple right R-modules 
V* = ( V ^ ) R of type X e A, identified with the underlying "abstract vertex set" 

A = V(R) of the quiver : 
r(R) = (V(R),0) 

of the semisimple Artinian F-algebra R = R( A ). 
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PROOF - The Wedderburn-Artin Structure Theorem for semisimple Artinian 
rings or algebras implies immediately the proof. 

LEMMA 2-6 - Any semisimple Artinian F-algebra : 
R € A 0 ( F ) 

determines an unique F- "concrete vertex set" : 

A = A (R) 

such that: 

R = R( A ) 

"up to an F-isomorphism ". 

PROOF - With the previous notations, this Lemma is a partial translation of the 
Wedderburn-Artin Structure Theorem for semisimple Artinian rings or algebras. 

COROLLARY 2-7 - [Technical version of the WEDDERBURN-ARTIN 
STRUCTURE THEOREM] -

With the previous notations, the Structure of any semisimple Artinian 
F-algebra: 

R € A 0 ( F ) 
is characterized, "up to an F-isomorphism", by a (or by its) F-"concrete 
vertex set" : 

A = [A ; (Kx), (px)] = [A ; (V*)] = [A ; (V*x)] 

such that : 

R = R ( A ) 

and therefore : 

X = A (R) 

In other words, the correspondences : 

A , > R( A ) and R i > A (R) 

are one-to-one reciprocal correspondences between the F- "concrete vertex 

sets " A and the isomorphism classes [R] of semisimple Artinian F-algebras 

R e & 0 ( F ) . 

9 



PROOF - This is a complete and technical translation of the Wedderburn-Artin 

Structure Theorem for semisimple Artinian rings or algebras. 

DEFINITION 2-8 - A pair (H, G) of semisimple Artinian F-algebras : 

H € Ao(F) and G G &o(F) 

verify the relation : <<G dominates H>> or « H is dominated by G> > 

noted: 

H < G 

if and only ifG has a F-concrete vertex set of the form : 

A ( G ) = A = [A ; (Kx), (PA)] = [A ; (Vx)] = [A ; (Vj)] 

and f/iere exists a non empty subset: 

A* C A 

JWC/I H /ia.5' a F-concrete vertex set of the form : 

A (H) = A ' = [ A ' ; (Kx), (qx)l = W ; (Ujt)l = [A'; (Uj)] 

or a "generalized F-concrete vertex set" of the form : 

A (H) = X ' = [A ; (KjO, (qx)] = [A ; (Ux)] = [A ; (u£)] 

w vv/nc/i: qx = 0, Ux = (0) and = (0)for all X G (A - A*), in SMC/I a way tfiaf 

semisimple Artinian F-algebra H /ms f/ie realization : 

H = R( A •) = J I S(Ux) = ^ I! M q (Kx) = ^ II ,[¡8 (U^)]° 
Ae A Ae A A AG A 

an J r/ie "generalized realization" : 

H = R ( X ) = II ¡6 (Ux) = n M q (Kx) = II. [SB (uj)]° 
AG A AG A * AG A 

LEMMA 2-9 - With the previous notations, any pair (H, G) of semisimple 

Artinian F-algebras, subject to the condition : 

H < G 

determines the canonical (H-G)-bimodule : 
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L = H L G - n % ( v x , u \ ) = n M p q (Kx) 
A G A Ae A A- A 

I/I which 5̂ (Vx, Ux) « f/ie abelian group of K\-linear maps from V\ into U\ 

and in which M p fq (Kx) is the abelian group of (p\ x q\)-matrices with 
A. K 

coefficients in the F-skewfield K\, and such that for every element: 
/ = (/A)€ L= n £(Vx,Ux) 

Ae A 

if 

h = (hX) G H = II SB(Ux) and g = (gx) € G = n S6(Vx) 
AG A AG A 

r/zen, ffttf conditions : 

h/ = (h^/x) flflrf /g = (/Xgx) 
characterize the structure of (H-G)-bimodule. 

P R O O F - This is obvious. 

LEMMA 2-10 - With the previous notations, for any semisimple Artinian 
F-algehra G, with the F-concrete vertex set : 

A (G) = A 

the semisimple Artinian F-algebras H, subject to the condition : 
H < G 

are characterized by the families of integers : 

(qjt) = (qx)jteA 

with a non empty support: 
A ' = {XG A ; q x * O } * 0 

in such a way that: 
(a) The canonical (H-G)-himodule L = H L G is a non null finitely generated 

right G-module with an isotypical decomposition of the form : 

L = e I > - n I > 
XGA XeA 

such that q\ is the length of the isotypical component of type X G A, 

characterized by the condition : 

L * = SB (Vx, Ux) = Ux ® Vx = M p , q (Kx) 
Kx K K 

in which Ux is a right K\-vector space of dimension qx. 
(b) The semisimple Artinian F-algebra : 
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H = n se(ux)= n A I M Q (Kx)= n aB(ux)= n M Q AK X ) 
AGA AGA A AGA AGA A 

is the F-algebra of endomorphisms : 

H = S G ( L G ) 

<?/ f/ẑ  no/i /zw// finitely generated right G-module L = LQ characterized by the 
canonical (H-G)-birnodule L = H LG , or by the family of integers (q\), with a 
non empty support. 

P R O O F According to the Definition 2-8, the Lemma 2-5 implies immediately the 
part (a) and the classical properties of the finitely generated semisimple modules 
(See for instance the Theorem 1 p. 15 of (JJ) imply easily the part (b) and complete 
the proof. 

E X A M P L E 2-11 - Any pair (H, G ) of semisimple Artinian F-algebras, subject 
to the condition : 

H < G 

determines the canonical (H-G)-bimodule L - H LG and therefore the Formal 
triangular matrix F-algebra : 

B = ( H L 1 = ( H = H < G ) 
[0 G ) 

with the right Socle S = S(B) defined by the Formal matrix relation : 

[OGj 

Then, it is easy to verify that B is a (right) almost semisimple right Artinian 
F-algebra which is not a semisimple Artinian F-algebra, that is : 

B G [ * a ( F ) - A 0 ( F ) ] 

F I R S T F U N D A M E N T A L C O N S T R U C T I O N 2 - 1 2 . 

This "First Fundamental Construction" determines a F-algebra : 
A G [A a (F) - A 0 ( F ) ] 

In fact, for any pair (H, G ) of semisimple Artinian F-algebras, subject to the 

condition : H < G, for any right Artinian F-algebra C G A ( F ) and for any 

"parameter" 4*, constituted by an injective F-algebra homomorphism : 

^ : C > > H 
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which defines a F-subalgebra : T ( C ) C H, simply noted : C C H, it is easy to 

verify that the right Artinian F-algebra A determined as the F-subalgebra of the 
previous F-algebra B constituted by the Formal triangular matrix F-algebra : 

A = Í C L I s Í ^ O L 1= ( C > — — - » H <1 G ) 

l o o j { 0 o j  

with a right Socle : 

S = í ° L ) = S ( A ) = S ( B ) 

I o g J 
is also a (right) almost semisimple right Artinian F-algebra which is not a 
semisimple F-algebra, that is : 

A € [& a (F) - *o(F)] 
Moreover, this F-algebra A appears in the exact sequence : 

0 > S > > A — » C > 0 

which means that A is a "general F-algebra extension" of the non null idempotent 

ideal S by the right Artinian F-algebra C. 

T H E O R E M 2 - 1 3 - For any F-algebra A, the following conditions are 
equivalent : 

(a) The F-algebra A is a (right) almost semisimple right Artinian 
F-algebra which is not a semisimple Artinian F-algebra, that is : 

Ae [A a(F) - jfto(F)] 
(b) The F-algebra A is a right Artinian F-algebra which is not a 

semisimple Artinian F-algebra and which verifies the condition : 
M = M ( A ) = (0) 

which implies that the F-algebra A appears in the general F-algebra extension : 

(X') 0 —4 S >-——> A — — » C 0 

in which S = S(A) = N(A) * (0) is a non null proper idempotent two-sided ideal 
and C = A/5. 

(c) The Structure of the right Artinian F-algebra A is determined by the 
previous "First Fundamental Construction11, that is characterized by : 

(a') A right Artinian F-algebra C. 

(fV) A pair (H , G) of semisimple Artinian F-algebras : 
H e &o(F) and G e A 0 (F) 

subject to the condition : 
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H < G 
and which defines S as the right Socle : 

of the Formal triangular matrix F-algebra : 

B = fH L ) = ( H = H < G) 

associated to the canonical (H-G)-bimodule L = H L G-
(y') A "parameter" *F constituted by an injective F-algebra 

homomorphism : 

¥ : C > > H 
such that the right Artinian ¥-algebra A is the Formal triangular matrix 
F-algebra: ^ _ 

with a right Socle : 

S = ( ° M = S ( A ) = S(B) 
[O G J 

Moreover, under these equivalent conditions, the Jacobson Radicals J(A) 
and J(C) verify the relation : 

A/J(A) = [C/J(C)] x G 

PROOF - Firstly, according to the Proposition 1-4, the Lemma 2-2 implies that 
the conditions (a) and (b) are equivalent. 

Secondly, the previous "First Fundamental Construction" 2-12 shows easily 
that the condition (c) implies the equivalent conditions (a) and (b), and also the last 
relation. 

Conversely, when the equivalent conditions (a) and (b) are verified, 
according to the Lemma 2-2, the Theorem 4-3 of [2] implies the existence of a pair 
(H, G) of semisimple Artinian F-algebras, subject to the condition : H < G, which 
determines the Formal triangular matrix F-algebra : 

B = fH L ] = ( H = H<1G) 

with a right Socle : 
fO L \ 

S = _ = S ( B ) 
{0 G J 
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such that the right Artinian F-algebra A verifies the relation : 

S(B) = S = S(A) C A C B 

This implies the existence of an unique F-subalgebra: 

A1 C H 

such that A is the Formal triangular matrix F-algebra: 

Thus, for the right Artinian factor F-algebra C = A/S, which is defined only 
"up to an F-isomorphism", there exists an unique injective F-algebra 
homomorphism : 

y¥:C> >H 

which is a "section", such that: 

C - ^ > ¥ ( C ) = A ' C H 

and this implies the characterization of the right Artinian F-algebra A given in the 

condition (c). 
Therefore, the equivalent conditions (a) and (b) imply the condition (c) and 

this completes the proof. 

3 . THE NOTION OF T-ESSENTIAL SINGULAR ALGEBRA 
EXTENSION. 

It is convenient to remark that for any right Artinian F-algebra A which 
verifies the condition : M = M(A) * (0), which implies automatically : 
S = S(A) * A and N = N(A) * A, according to the Proposition 1-4, the right 
Artinian factor F-algebra B = A/M appears in the singular F-algebra extension : 

( X ) 0 >M >——>A — » B >0 

in which the surjective F-algebra epimorphism x : A y> B, induces an 

isomorphism of multiplicative A-bimodules x : N > y> T, from the idempotent 

proper two-sided ideal N = N(A) of A onto an idempotent proper two-sided ideal 

T = x(N) of B, which verifies : T C N(B) and T e ^ ( B ) , in such a way that for 

the right Artinian factor F-algebra C = A/S = B/T, the singular F-algebra extension 
(x) induces on M a structure of C-bimodule. 

This justifies the introduction of the following notions. 
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DEFINITION 3-1 - For any pair (B, T) constituted by a ¥-algebra B and a 

proper two-sided ideal T ofB, which determines the factor F-algebra C = B/T 

and the canonical surjective F-algebra epimorphism (p : B » C, for any 

C-bimodule M, then : 

(a) A pair (A, N) constituted by a F-algebra A and a proper two-sided 

ideal N of A, characterizes a T-singular F-algebra extension ofM by (B, T) of 

the form : 

(a ,T) 0 >M>-^—>(A,N) — » (B,T) >0 

/fifte F-algebra A characterizes a singular F-algebra extension ofM byB of the 

form: 

(a) 0 > M > - ^ — > A — — » B >0 

in which the surjective F-algebra epimorphism : 

a : A » B 

induces an isomorphism of multiplicative A-bimodules : 

a : N > » T 

from the special proper two-sided ideal N of A, onto the proper two-sided 

ideal TofB, considered as an A-bimodule by means of a, in such a way that 

(a, T) induces on M the structure of C-bimodule. 

(b) Two T-singular F-algebra extensions : 

(a, T) 0 > M >——> (A, N) — » (B, T) > 0 

and 

( a \ T) 0 > M > > (A', N') » (B, T) > 0 

which induce on M i/ze structure of C-bimodule, are "equivalent" if there exists 

a F-algebra isomorphism: 

w : A > A' 

such that: i' = woi and ü = a'ow N* = w(N). 

Then, they belong to the "same class" noted : 
[a, T] = [a\ T] = [A, N] = [A1, N'] 

(c) The pair (B, T) an J i/?^ C-bimodule M determine the space : 

Ext (B, T, M) 

"classes" [a, T] of T-singular F-algebra extensions (a, T) ofM by (B, T), 

which induce on M r/ie given structure of C-bimodule. 
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(d) In particular, for every class : 
% € Ext (B, T, M) 

the "characterization" noted : 

(A, N) = ( B , T , M , 

means that the pair (A, N) appears in a T-singular F-algebra extension : 

( G , T ) 0 >M>—> (A,N) — » (B,T) >0 

unique, "up to an equivalence", such that : 
[A, N] = [ a , T] = £; e Ext (B, T, M) 

DEFINITION 3-2 - With the previous notations, a T-singular F-algebra 
extension: 

(a, T) 0 > M >-^—> (A, N) — — » (B, T) > 0 

VV/HC/J induces on M f/ze g/v£/i structure of C-bimodule, is called a T-essential 
singular F-algebra extension if and only if for every right ideal Cl of A, the 
conditions: 

i(M) n 0 = (0) and N n Cl = (0) 
imply : Cl = (0). 

LEMMA 3-3 - With the previous notations, if two T-singular F-algebra 
extensions (a , T) and ( a \ T) which induce on M the given structure of C-
bimodule, are equivalent, that is if: 

[a, T] = [a*, T] G Ext (B, T, M) 
then (a, T) is a T-essential singular F-algebra extension if and only if (&> T) is 
a T-essential singular F-algebra extension. 

PROOF - According to the Definition 3-1, the Definition 3-2 implies immediately 
the proof. 

This Lemma 3-3 justifies the following Definition. 

DEFINITION 3-4 - For any pair (B, T) constituted by a F-algebra B and a 
proper two-sided ideal T o/B, which determines the factor F-algebra C = B/T 
and the canonical surjective F-algebra epimorphism (p : B » C, any C-

bimodule M determines the space : 
Ext (B,T, M) 
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of "classes" [a, T] o/T-singular F-algebra extensions (a, T) ofM by (B, T), 

which induce on M the given structure of C-bimodule, and the "subspace" or 

"subset": 
Exte (B, T, M) 

of T-essential singular classes [a , T] of T-essential singular F-algebra 

extensions (a, T) ofM by (B, T), which induce on M the given structure ofC-

bimodule. 

LEMMA 3 - 5 - (G. HOCHSCHILD) - For any algebra B over a field F and 
any B-bimodule M, then : 

(a) Every factor set constituted by a 2-cocycle : 
f € Z 2 (B,M) 

determines the F-algebra : 

A = (B,M,f) 
and the singular F-algebra extension : 

(a) = a(f) 0 > M >-?—> A — — » B > 0 

w which the F-algebra A w defined by the F-vector space : 

A = M x B 

equipped with the multiplication characterized by the condition : 

(mi, bi) (m2, b2) = (mib2 + bim2 + f(bi, b2>, bib2> 

for all (mi, bi) = ai e A and (m2, b2) = a2 € A 
and in which : 

i(m) = (m, 0) and cr((m, b)) = b 
for all me M and be B. 

(b) 77i£ class o/singular F-algebra extensions : 
[a(f)] = [a] € Ext(B, M) 

a/so noted: 
[o(f)] = [a] = [A] = [B, M, f] = [B, M, 

depends only of the cohomology class : 

f = $ e H 2(B, M) 

(c) There exists an isomorphism of ¥-vector spaces : 

O: H 2 ( B , M ) ^ - > E x t ( B , M ) 

such that : 
^ ) = [o(f)] = [B,M,f] = [B,M, 

/or every f e £ e H 2(B, M). 
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PROOF - Since F is afield, any F-algebra is projective and any singular 
F-algebra extension is a F-split singular F-algebra extension. 

Thus, this Lemma summarizes the classical and fundamental properties of the 
Hochschild Cohomology Theory for associative algebras m i . [12]. IT31 (See 
also, for instance the Theorem 2-1, p. 295 of [2] or the Theorem 3-1, p. 285 of 

L E M M A 3-6 - For any pair (B, T) constituted by a F-algebra B and a proper 
two-sided ideal T ofBy which determines the factor F-algebra C = B/T and the 
canonical surjective F-algebra epimorphism : 

(p : B - » C 

and for any C-bimodule M, then : 
(a) The F-vector space noted : 

Z 2(B, T, M ) s Z2(BAT, M) = Z 2(C, M) 
of normalized 2-cocycles h from the F-algebra C in the C-bimodule M, 
determines the Second Hochschild Cohomology group noted: 

H 2(B, T, M ) = H2(C, M) = Z 2(C, M)/B 2(C, M) 
and which is in fact a F-vector space. 

(b) There exists a morphism of F-vector spaces : 
q>2 : Z 2 (B, T, M) s Z2(C, M) • Z2(B, M) 

characterized by the condition : 
h* = 92(h) = h o (q> x (p) 

(c) Every factor set constituted by a 2-cocycle : 
h € Z2(B, T, M ) = Z 2(B/T, M) = Z 2(C, M) 

determines the "pair" : 

[ ( A , N 7 = (B , T, M, h7 
and the T-singular F-algebra extension :  

( a , T) = a (h) 0 ^ M >— — -> (A, N) — » (B, T) > 0 

in which the F-algebra A is well defined by the condition : 
[A = (B, M, h*) 

which means that the F-algebra A is the F-vector space defined by the 
condition : 

(* ) A = M x B 

and equipped with the multiplication characterized by the condition : 
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(**) [(mi, bi) (ni2, b2) = (mib2 + h\m2 + h*(bi, b2), bib2) 

for all (mi, bi) = ai € A and (m2, b2) = &2 <= A ; w wftjcA : 
i(m) = (m, 0) and a((m, b)) = b 

for all m € M and b G B; an J w w/i/c/i tfte proper two-sided ideal N of A is 

well defined by the condition^ 

(***) |N = (0, T ) = { ( 0 , t) , t € T } 

(d) The class o/T-singular F-algebra extensions : 
[g(h)] = [a, T] G Ext(B, T, M) 

also noted: 
[o(h)] = [a, T] = [A, N] = [B, T, M, h] = [B, T, M, $] 

depends only of the cohomology class : 

h = % G H 2(B, T, M) = H 2(C, M) 

(e) There exists an isomorphism ofF-vector spaces : 

*F : H 2(B, T, M)) Ext(B, T, M) 

such that : 
TO = [g(h)] = [B, T, M, h] = [B, T, Mf 5] 

/or every-' 
h G £ G H 2(B, T, M) = H2(B/T, M) = H 2(C, M). 

PROOF - The Definition of the Hochschild Cohomology implies immediately the 
parts (a) and (b). 

The Lemma 3-5 shows that the F-algebra : 
~A = (B, M, h*) 

determines the singular F-algebra extension : 

a (h*) 0 — — - > M >~-̂ —» A — — » B > 0 

in which the F-algebra A is defined by the F-vector space : 

(*) A = M x B 

equipped with the multiplication characterized by the condition : 
(**) [(mi, bi) (m2, b2) = (mib2 + bim2 + h*(bi, b2), bib2) 

for all (mi, bi) = ai G A and (m2, b2) = a2 G A 

and in which : 
i(m) = (m, 0) and a((m, b)) = b 

for all m G M and be B. 
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For every ti e T and t 2 e T, the Definition : 

h* = (p2(h) = h o (cp x q>) 

implies the relations: 
h*(ti,b 2) = h*(bi,t 2) = 0 

and therefore, the condition (**) implies the relations : 
(mi, bi)(0, t 2 ) = (0, bit 2) and (0 , ti)(m 2, b 2) = (0, tib 2) 

since M is a C-bimodule, annihilated by T. 

These relations show that there exists a two-sided ideal N of A defined by : 

( . . . ) [N = (0, T) = { ( 0 , t) ; t € T J 

and that the surjective F-algebra epimorphism : 
a : A » B 

induces an isomorphism of multiplicative A-bimodules : 

a: N > » T 

from the special two-sided ideal N of A, onto the proper two-sided ideal T of B, 
considered as an A-bimodule by means of a. 

This proves the existence of the T-singular F-algebra extension : 

(a, T) = a(h) 0 > M >—1—> (A, N) — — » (B, T) > 0 

and completes the proof of the part (c). 
For every cohomology class : 

5 e H 2(C, M) = H2(B/T, M) = H 2(B, T, M) 

and two 2-cocycles: 

h e % and h' e £ 

which determine the two "pairs" : 
(A, N ) = (B, T, M, h) and (A1, N') = (B, T, M, h!) 

there exists a normalized l-cochain v e C*(C, M) such that: 
h' = h + 8 2v 

which implies : 
h'* = h* 4- 8 2v* 

and it is immediate that there exists a F-algebra isomorphism : 

w : A = (B, M, h*) -^-~> A = (B, M, h'*) 
characterized by the condition : 

w[(m, b)] = (m - v*(b), b) 
for all (m, b) = a e A, and which verifies the relations : 

i1 = w o i and a = a' o w and N' = w(N) 

2 1 



Thus, w characterizes an "equivalence" from (a , T) = g(h) onto 
( a \ T) = a(h'), which implies the relation : 

[A, N] = [o(h)] = [a, T] = [<j\ T] = [a(h')] = [A', NT] 

and completes the proof of the part (d). 
For any T-singular F-algebra extension : 

(a\ T) 0 > M > > (A\ N') — » (B, T) > 0 

which induces on M the given structure of C-bimodule, there exists at least one 
morphism of F-vector spaces u : B > A\ normalized by u(l) = 1, which is a 
section or a right inverse of a' and such that the restriction of u to T is an 

inverse of the isomorphism of multiplicative A'-bimodules (J1 : NT > y> T, 

induced by c\ 
It is possible to identify each m € M with i'(m) G A* so that i' : M — » A' is 

the identity injection. Then, it is easy to verify that the relation : 
a ,[u(bib2)] = bib 2 = a ,[u(bi)u(b 2)] 

implies the existence of an unique 2-cocycle : 
f e Z 2 (B,M) 

characterized by the condition : 

( 1 ) f(bi,b 2) = u(bi)u(b 2)-u(bib 2) 
for all bi e B and b 2 e B. 

Likewise, the description of the structure of B-bimodule on M can be written 
in terms of u as : 

u(b)m = bm and m u(b) ~ mb 
for all b E B and m € M. 

The existence of the isomorphism of multiplicative A'-bimodules : 

a' : Nf > >̂ T 

implies the relations : 

^[aiu(t2>] = a'(ai)t 2 and ô'[u(ti)a2] = ti<r'(a2) 

and therefore the relations : 
aiu(t2) = u[a'(ai)t2] and u(ti)a2 = u[ti a'(a2)] 

for all ai € A', a 2 € A', ti e T and t 2 G T. 
In particular, the conditions : ai = u(bi) and a 2 = u(b2), imply the relations : 
(2) u(bi) u(t2) = u(bit2) and u(ti) u(b2) = u(tib2) 

for all bi G B, b 2 G B, ti G T and t 2 G T. 

Thus, the condition (1) and the relations (2) imply the relation : 
(3) f(bi,t2) = f(ti,b2) = 0 
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for all bi G B, b2 G B, ti € T and t2 G T. 

This relation (3) implies immediately the existence of an unique 2-cocycle : 
h G Z 2(C, M) = Z 2(B/T, M) s Z 2 (B, T, M) 

characterized by the condition : 
(4) h* = 92(h) = f 

and which determines the T-singular F-algebra extension : 

(a, T) = g(h) 0 > M > (A, N) — » (B, T) > 0 

Then, the conditions (1) and (4) imply the existence of an "equivalence" of 

T-singular F-algebra extensions : 

w : (A, N) = (B, T, M, h) — ( A ' , N') 

characterized by the condition : 
w[(m, b)] = m + u(b) 

for all (m, b) = a G A, and this implies the relation : 
[A', N'] = [A, N] = [B, T, M, h] = [g(h)] 

Moreover, with obvious notations, the replacement of u by a u' of the same 
kind, implies the replacement of f by a f and also the replacement of h by a h\ 

Then, it is easy to verify that there exists v G C*(C, M) such that : 
u' = u + v*, and this relation implies : f = f + 8 2v*, that is : h'* = h* + 8 2 v*, 
which implies the relation : 

h' = h + 8 2 v 
Therefore, the T-singular F-algebra extension (a \ T) determines an unique 

cohomology class : 

h ' = h = Ç G H 2(C, M) = H2(B/T, M) s H 2(B, T, M) 

such that : 
[a \ T] = [A', N'] = [B, T, M, h] = [B, T, M, h'] = [B, T, M, %} 

This last property and the part (d) imply the existence of a bijection : 

V : H 2(C, M) s H 2(B, T, M) Ext(B, T, M) 

such that : 
= [g(h)] = [B, T, M, h] = [B, T, M, 

for every h G Ç G H 2(C, M) = H2(BA^, M) = H 2(B, T, M). 

Thus, there exists on the set Ext(B, T, M) a structure of F-vector space such 
that this bijection become an isomorphism of F-vector spaces and this 
completes the proof. 
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D E F I N I T I O N 3-7 - For any pair ( B , T ) constituted by a F-algebra B and a 
proper two-sided ideal T o / B , which determines the factor F-algebra C = B / T 
and the canonical surjective F-algebra epimorphism : 

9 : B » C 

and for any C-bimodule M, then , for any 2-cocycle : 
h G Z 2 ( B , T, M ) = Z 2 ( B / T , M ) = Z 2 ( C , M ) 

for which any element: 

ao = (mo, bo) e M x B 

determines the F-vector space : 
se(ao, h) = {b 6 B ; mob + h*(bo, b) = 0} 

and the right annihilator : 
rB(b0) = {b'e B ; b 0 b ' = 0} 

which is a right ideal of the F-algebra B , then, this 2-cocycle h belongs to the 
subset : 

Z * ( B , T, M ) = Z^BAT, M ) = zl(C, M ) 

o/T-essential 2-cocycles ifh verifies the condition : 

(E) « For every element: 
ao = (mo, bo) e M x /b(M) C M x B 

the conditions : 
(r) re(bo) C se(ao, h) and (s) bose(ao, h) n T = (0) 

imply : bo = 0 (which implies automatically : ao = 0, that is : mo = 0 and 
b 0 = 0) ». 

L E M M A 3-8 - For any pair ( B , T ) constituted by a F-algebra B and a proper 
two-sided ideal T ofB, which determines the factor F-algebra C = B / T and the 
canonical surjective F-algebra epimorphism : 

(p : B y> C 

and for any C-bimodule M, then, if two 2-cocycles : 
h e Z 2 ( C , M) and h' e Z 2 ( C , M ) 

are cohomologous, that is if: 

h = h' = £ G H 2 ( B , T, M ) S H 2 ( B / T , M ) = H 2 ( C , M ) 

then, h /\v T-essential if and only ifh' is T-essential, that is : 

h € Z ^ ( B , T, M ) if and only if h* € Z ^ ( B , T, M ) . 
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PROOF - This follows easily from the Definition 3-7 and this Lemma 3-8 
justifies the following Definition. 

DEFINITION 3-9 - In the case of algebras over a field F, for any pair 
(B, T) constituted by a F-algebra B and a proper two-sided ideal T ofBy which 

determines the factor F-algebra C = B/T and the canonical surjective F-algebra 
epimorphism cp : B » C, any C-bimodule M determines the F-vector 
space : 

H 2(B, T, M) = H2(B/T, M) = H2(C, M) = Z 2(C, M)/B 2(C, M) 
A 

of cohomology classes £ = h of 2-cocycles : 
h € Z 2(B, T, M) s Z2(BAT, M) = Z 2(C, M) 

and the "subspace" or "subset" ; 

H*(B, T, M) = H^B/T, M) = Z*(B, T, M)/B 2(C, M) 

A 
o/T-essential cohomology classes % = h o/T-essential 2-cocycles : 

h G Z*(B, T, M) = Z*(BAT, M) = Z*(C, M) 

which is only a set 

THEOREM 3-10 - In the case of algebras over afield Fyfor any pair (B, T) 
constituted by a F-algebra B and a proper two-sided ideal T o / B , which 
determines the factor F-algebra C = B/T and the canonical surjective F-algebra 
epimorphism : 

<p : B » C 

and for any C-bimodule M, the isomorphism of F-vector spaces : 

¥ : H2(C, M) = H 2(B, T, M) - ^ - > Ext(B, T, M) 
induces a bijection : 

¥ e : H^(B, T, M) ——-> Ext e (B , T, M) 

such that : 
V c ( 0 = № ) ] = [B, T, M, h] = [B, T, M, 

/ o r ^v^ry; 

h e ^ e H^B, T, M) = Z*(B, T, M)/B2(C, M) 
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PROOF - The Lemma 3-6 characterizes the isomorphism *F and shows that every 

2-cocycle: 
h e Z 2(C, M) = Z 2(B/T, M) = Z 2 (B, T, M) 

determines the "pair": 
(A, N) = (B, T, M, h) 

and the T-singular F-algebra extension : 

(a ,T) = g(h) 0 > M>—-—> ( A , N ) — ^ _ » ( B , T ) >0 

in which the F-algebra A is defined by : 
(5) A = (B,M,h*) 

and in which the proper two-sided ideal N of A is defined by : 
N = (0,T) = {(0, t ) ; t € T} 

and the proper two-sided ideal Mf = i(M) of A is defined by : 
M' = (M, 0) = {(m, 0 ) ; m e M} 

Then, according to the Lemmas 3-3 and 3-8, in order to complete the proof, it 
is sufficient to prove that the condition : 

(6) h e Z^(B, T, M) s Z^BAT, M) = z£(C, M) 

is equivalent to the condition : 
(7) « The T-singular F-algebra extension ( a , T) = a(h) is a T-essential 

singular F-algebra extension » ; 
that is to the condition : 

(8) « For every ao = (mo, bo) e A, the conditions : 
(9) M ' n a o A = (0) and (10) N n a o A = (0) 

imply : ao = 0, that is : mo = 0 and bo = 0 ». 
The Lemma 3-5 and the relation (5) imply that two elements : 

ao = (mo, bo) € A and a = (m, b) € A 

verify the relation : 
( 1 1 ) aoa = (mo, bo) (m, b) = (bom + mob + h*(bo, b) , bob) 

In particular, if bo £ /B(M), there exist mi € M and m2 € M such that: 
bomi = m2 ± 0, and therefore the elements ai = (mi , 0) e A and a2 = (m2, 0 ) e A 
verify : ai * 0 and a2 * 0, and also the relation : 

aoai = (mo, bo)(mi, 0) = (bomi, 0) = (m2, 0) = a2 e M' 

which imply the relation : 

M' n ao A * (0) 

Thus, in the condition (8) it is sufficient to consider any element: 

ao = (mo, bo) e M x /B(M) C M X B 
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for which the relation (11) gives the relation : 
(12) aoa = (mo, bo)(m, b) = (mob + h*(bo, b), bob) 

which implies the relations : 
(13) M' n aoA = {(m 0b + h*(b0, b), 0 ) ; b € rB(b0)} 

and 
(14) N n aoA = {(0, bob); bob e T and b G SB(ao, h)} 

Then, it is immediate that the condition (9) is equivalent to the condition : 

(r) rB(b 0) C sB(ao, h) 

and that the condition (10) is equivalent to the condition : 
(s) bos B(ao,h)nT = (0) 
Thus, the condition (8) is equivalent to the condition (E) that is to the 

condition (6) and this completes the proof. 

NOTATIONS 3-11 - For any pair (B, T) constituted by a right Artinian F-
algebra B and a proper two-sided ideal T e ??(B), which determines the right 
Artinian factor F-algebra C = B/T and the canonical surjective F-algebra 
epimorphism : 

<p : B » C 

the semisimple Artinian ¥-algebra : 
B' = B/J(B) 

and the canonical surjective F-algebra epimorphism : 
q>': B » B' = B/J(B) 

which determine the proper two-sided ideal: 
cp,(T) = T € ^ ( B 1 ) 

the semisimple Artinian factor F-algebra : 
C = B'/T = B/(T+J(B)) 

and the canonical surjective F-algebra epimorphism : 
9 l : B' - » C = B'/T' 

then : 
(a) Let cM(B, T) be the class of non null C-bimodules M such that the 

right Q-module M = Mc is semisimple and Artinian {or of finite length, or finitely 
generated). 

(b) Let t M / ( B \ T) = JVt'(C) be the class of non null finitely generated 

right C-modules M' = M'c which determine the semisimple Artinian F-

algebras of endomorphisms : 
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and the canonical (H'-C^-bimodules : 

M' = H-M'C 

LEMMA 3 - 1 2 - With the previous Hypothesis and Notations, then : 
(a) The F-algebra C = BYT verifies the relation : C = C/J(C), so that the 

canonical surjective F-algebra epimorphism : 
<p" : C » C = C/J(C) 

verifies the relation ; <pi o <p' = cp" o (p. 

(b) Any non null C-bimodule : 
M €= JVt(B, T) 

is characterized by a non null right C-module : 
M' = M ' C € JVt '(C) = «M, '(B\ T) 

and by a "parameter" constituted by a F-algebra homomorphism : 

4 j M e MorptC, H'] 

such that the C-bimodule M is defined by the characterization : 

M = [ M ' ; XV% : C > H ' ] 

which means that the non null C-bimodule M = q Mq derives from the non null 
canonical (H'-C')-bimodule M' = H' M'C , by the "scalar restrictions" defined 
by the F-algebra homomorphisms : 

v p ' : c — > H f and q>": C » C 

PROOF - The general properties of the Jacobson Radical imply easily the part 
(a). Then, the part (b) follows from the general properties of semisimple modules. 

SECOND FUNDAMENTAL CONSTRUCTION 3 - 1 3 . 
This "Second Fundamental Construction" determines a F-algebra : 

A € [ * ( F ) - * a ( F ) ] 
In fact, for the data constituted by : 

(a) A right Artinian F-algebra B. 

(p) A proper two-sided ideal T e 7?(B), which determines the right 

Artinian factor F-algebra C - B/T and the canonical surjective F-algebra 
epimorphism : 

(p:B » C 

(y) A non null C-bimodule : 
M € JVt(B, T) 

determined by the "characterization" : 
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M = [M* :C >H'] 

defined by a non null right C-module : 
M' = M'c € CM,'(C) s JVt'(B\ T) 

and by a "parameter" ^'constituted by a F-algebra homorphism : 
¥ ' e Morp[C, H'] 

A 
(8) A "parameter" £ = h constituted by a T-essential cohomology 

class : 

k = h e H*(B, T, M) « Exte(B, T, M) 

these data give the construction of a pair (A, N) by the "characterization" : 

(A, N) = (B , T, M, h) = (B , T, M, 

which determines, according to the following Theorem 3-14, a T-essential singular 
F-algebra extension :  

(T, T) = q(h) 0 > M > — - > (A, N) - » (B, T) > 0 

in which A is a right Artinian F-algebra, which is not a (right) almost semisimple 
right Artinian F-algebra, that is : 

A G [ * ( F ) - * a ( F ) ] 

with a right Socle : 
S = S(A) = M(A) 0 N(A) = M e N 

More precisely, according to the Lemma 3-6 this "Charaterization" 
means that in the T-singular F-algebra extension (x, T) = g(h), the F-algebra A is 

well defined by the condition :^ 

A = (B, M, h*) 

which means that the F-algebra A is the F-vector space defined by the condition : 

(*) A = M x B 

and equipped with the multiplication characterized by the condition : 

(**) | (mi, bi).(m2, b2) = (mib2 4- bjm2 + h*(bi, b2), bjb2T 

for all (mi, bi) = ai g A and (ni2, b2) = &2 € A ; in which : 
i(m) = (m, 0) and a((m, b)) = b 

for all m g M and b g B; and in which the proper two-sided ideal N of A is well 

defined by the condition : 

( . . . ) | N = (0 , T) = { ( 0 , t) ; t g T) 
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T H E O R E M 3-14 - For any ¥-algebra A, the following conditions are 
equivalent : 

(a) The F-algebra A is a right Artinian F-algebra which is not a (right) 
almost semisimple right Artinian F-algebra, that is : 

A e [ A ( F ) - A a ( F ) ] 

(b) The F-algebra A is a right Artinian F-algebra which verifies the 
condition : 

M = M(A) * (0) 
which implies that the F-algebra A and the proper two-sided ideal : 

N = N(A) 
characterized by the canonical decomposition of the right Socle : 

S = S(A) = M(A) © N(A) = M © N 
determine the "pair" (A, N) which characterizes a T-essential singular 
F-algebra extension : 

(x, T ) 0 > M >-i—> (A, N) — » ( B , T ) > 0 

for the factor F-algebras: 
B = A/M and C = B / T = A/S 

an J /or proper two-sided ideal T = x(N) = x(N) 0 / B , which verifies : 
T G ? ? ( B ) 

and which induces on M a structure ofC-bimodule such that : 
M G c№(B, T ) 

(c) 77ie Structure of the right Artinian F-algebra A is determined by the 
previous "Second Fundamental Construction", that is characterized by : 

( a ) A right Artinian F-algebra B . 
(p ) A proper two-sided ideal T e V(B), which determines the right 

Artinian factor F-algebra C = B / T and the canonical surjective F-algebra 
epimorphism : 

cp : B » C 

(y) A non null C-bimodule : 
M e «M ,(B, T ) 

determined by the " characterization" : 
M = [M' ; ¥ ' : C >Hf] 

defined by a non null right C-module : 
M = M ' c G cM XO s JVt ' ( B \ T) 

with the semisimple Artinian F-algebra of endomorphisms : 

H' = $ c ( M ' c ) 
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and by a "parameter" constituted by a F-algebra homomorphism : 
H" € Morp[C, FT] 

A 
(8) A "parameter" £ = h constituted by a T-essential cohomology 

class ; 

5 = h G H*(B, T f M) « Exte(B, T, M) 

which give the construction of the pair (A, N) fry f/te "characterization" : 

(A, N) = (B , T, M, h) = (B , T, M, 5) 

which implies : 
S = S(A) = M(A) © N(A) = M 0 N 

so that the pair (A, N) is completely and well defined by the previous 
conditions (*), (**) and (***) of the Lemma 3-6. 

Moreover, under these equivalent conditions, the Jacobson Radicals J (A) 
and J (B) determine the same semisimple Artinian ¥-algebra : 

A / J ( A ) = B / J ( B ) | 

PROOF - According to the Lemma 2-2 and the Proposition 1-4, the Remarks 
before the Definition 3-1 show that the condition (a) is equivalent to the first part of 
the condition (b), which implies the existence of the T-singular F-algebra extension 
(x, T), in which : T e *£(B), and the relation : 

M = M(A) C S(A) = S 

implies that M is a semisimple and Artinian right A-module M = M A which derives 
from a non null semisimple and Artinian right C-module : 

NT = M ' c € JVtXC) = JVlXB', T) 
and it is easy to verify that (T, T) induces on M a structure of C-bimodule such 
that: 

M G t№(B, T) 

Moreover, since in the right Artinian F-algebra A, its right Socle : 
S = S(A) = M(A) ® N(A) = M © N = i(M) © N 

is a "minimum essential right ideal", in particular, for any non null right ideal Cl of 
A, which verifies necessarily : S n Cl * (0), there exists at least one minimal right 

ideal Cl' of A such that: Cl' C Cl, and which verifies necessarily : ft1 C M or 

CT C N, which imply : M n Cl # (0) or N n Cl * (0), and therefore the Definition 

3-2 shows that (x, T) is a T-essential singular F-algebra extension. 
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This proves that the condition (a) implies the condition (b). 
According to the Theorem 3-10 and the Lemma 3-6, the Lemmas 3-3 and 

3-12, the Definition 3-4 and the Definition 3-1 show that the condition (b) implies 
the condition (c). 

Now, let A be a F-algebra determined by the condition (c), in which, 
according to the Definition 3-1, the "characterization" : 

(A,N) = ( B , T , M , h ) = ( B , T , M , £ ) 

implies that the pair (A, N) appears in a T-essential singular F-algebra 
extension : 

(a, T) == a(h) 0 > M > (A, N) — » ( B , T) > 0 

unique, "up to an equivalence", such that : 

£ = h e H ^ B , T, M ) ^ Exte(B, T, M ) 

In particular, in the singular F-algebra extension : 

( a) 0 ——> M >—l—* A — — » B > 0 

since the right A-modules B = B A and M = MA are Artinian, the right A-module AA 
is Artinian and therefore the F-algebra A is a right Artinian F-algebra. 

The condition : M € JVt ( B , T), implies that M is a semisimple right 

A-module, which verifies necessarily the relation : 

M s i(M) C S(A) 

According to the Definition 1-3, the Lemma 1-2 implies that the ideal : 

T € 7?(B) , verifies : T C N ( B ) C S ( B ) , which shows that T is a semisimple right 

B-module, and according to the Definition 3-1 which shows that the T-essential 
singular F-algebra extension ( a , T) induces an isomorphism of 

multiplicative A-bimodules a : N > » T, it follows easily that N is a 

semisimple right A-module, which verifies necessarily the relation : 

N C S(A) 

and therefore, it follows the relation : 

S = M © N = i (M) © N C S(A) 

For the T-essential singular F-algebra extension ( a , T), the 

Definition 3-2 shows that for any right ideal Cl of A, the conditions : 

i (M) n Cl = (0) and N n Cl = (0) 

imply : Cl = (0), and this property implies that the two-sided ideal S = M © N is 

an essential right ideal of A, and therefore : 
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S = M © N = i(M) © N = S(A) 
which implies easily : M = M(A) * (0) and N = N(A). 

This proves that the condition (c) implies the condition (a), and the property 
of the Jacobson Radicals is obvious in any singular F-algebra extension. 

PROPOSITION 3-15 - For any pair (B, T) constituted by a F-algebra B and 
a proper two-sided ideal T ofB, which determines the F-algebra C = B/T and 
for any C-bimodule M, ifT verifies : 

T e V(B) 

then : 
(a) The subset : 

z^c, M) = Z;:(BA\ M) = z*(B, T, M) 

6>/T-essentiaI 2-cocycles is constituted by the 2-cocycles : 
h G Z 2 (C, M) = Z 2(B/T, M) s Z 2 (B , T, M) 

which verify the condition : 
(E') « For every element : 

ao = (m0, bo) G M x [ / B ( M ) - T ] C M x B 

the conditions : 

(r) rB(b0) C sB(ao, h) 

and 
(s) b 0 s B (ao ,h )nT = (0) 

imply : bo = 0 ». 
(b) In particular, if the C-bimodule M verifies : 

fe(M) = T 

then : 

0 = 0 € H 2(B, T, M) = H 2 (B, T, M) 

and in this case the space H£(B, T, M) is non empty. 

PROOF - At first, any C-bimodule M verifies the relation : 

T C AnnB(M) = /B(M) n rfl(M) 

which gives a sense to the condition (E') and which shows that the Definition 3-7 

implies the relation : 

T C sB(ao, h) 
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Secondly, for every element: 

ao = (m 0, b o ) € M x T C M x B 

according to the Definition 1-3, the Lemma 1-2 shows that the hypothesis : 
T e V(B), implies that there exists p € T such that : bo = bop, so that the 

condition (s) implies: 
b 0 = b 0 p G b0sB(ao, h ) n T = (0) 

that is : bo = 0, which proves that the conditions (E) and (E') are equivalent and this 
proves the part (a). 

Then, the part (a) and the Definition 3 - 9 imply immediately the part (b), and 
this completes the proof. 

4. C L A S S I C A L INVARIANTS F O R RIGHT ARTINIAN 
ALGEBRAS. 

One of the most important classical invariants for any right Artinian F -
algebra A, is its quiver : 

r(A) = (V,E) = (V(A), E(A)) 
in the sense of the Definition of the page 97 of H 7 L for which it is convenient (and 
harmless) to call two quivers equal when they are only isomorphic, that is, there is 
a bijection between their vertex sets that maps the edge sets bijectively. 
PROPOSITION 4-1 - Any right Artinian F-algebra : 

A e A ( F ) 

determines a semisimple Artinian F-algebra: 
A/J(A) = R e & 0 ( F ) 

and a classical invariant constituted by the F-"concrete vertex set" : 

A (A) = A (R) = A = [A ; (KJO, (p*)] = [A ; (V*)] = [A ; (V*)] 

such that: 

R = R( A ) 

in which the underlying "abstract vertex set" A coincides with the common 

vertex set: 
A = V(A) = V(R) 

of the quivers : 
T(A) = (V(A), E(A)) and T(R) = (V(R), 0 ) 

of the F-algebras A e cft(F)am/Re A Q ( F ) . 
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PROOF - The first assertion is obvious since the right Artinian F-algebra R, 

without Radical, is semisimple. 

The fact that the mapping P i—> P/PJ(A) defines a bijective correspondence 

between V(A) and V(R) (See for instance the Proposition p. 93 of [171) gives the 

relation : 

A = V(A) = V(R) 
according to the previous convention. 

At last, if two right Artinian F-algebras A and A' are isomorphic, it is 
obvious that the semisimple Artinian F-algebras A/J(A) = R and Ayj(A') = R' are 
isomorphic, so that the Corollary 2-7 gives the relation : 

A (A) = A (R) = A (Rf) = A (A') 

which completes the proof. 

5. CANONICAL RESOLUTION OF RIGHT ARTINIAN 
ALGEBRAS. 

Now, our aim is to define some new invariants for right Artinian F-algebras. 

DEFINITION 5-1 - For any F-algebra B with a right Socle S(B) having the 
canonical decomposition : 

S(B) = M(B) 0 N(B) 
the Mspecial ideal" ofB, noted Q(B) is the (two-sided) ideal defined by the 
conditions : 

Q(B) = M(B) if M(B)*(0) 

Q(B) = N(B) if M(B) = (0) 
which show that Q(B) is a non null ideal if and only if S(B) is non null. 

LEMMA 5-2 - For any right Artinian F-algebra B e &(F), the "special ideal" 
Q = Q(B) is a non null ideal ofB, which is a "proper ideal" ofB if and only ifB 
is not a semisimple Artinian F-algebra, that is if and only if : 

B € [A(F) - Ao(F)] 

PROOF - Since the hypothesis : B e A ( F ) , implies : S(B) * (0), this follows 

immediately from the Lemma 2-2 and the Definition 5-1. 
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THEOREM 5 - 3 - For any right Artinian F-algebra: 
A e A ( F ) 

there exist an unique integer m € N, a (finite right) Canonical Resolution, of 

the form : 

31(A) == [A = A m — A m _ i ... Ai ^-» Ai-i ... Ai — — » Ao\ 

and a (finite right) strictly descending Fundamental Sequence of proper (two-
sided) ideals, of the form : 

A (A) = (Cio, c u , A 2 , c i i , c i m . i , A M = (o» 
associated by the conditions : 

A| = A ^ . for all i e I = {0, 1, 2, m} 

and characterized by the following conditions : 
(a) If A is a semisimple Artinian F-algebra : A e cffco(F), then : m = 0, and 

&(A) = [A = Ao] and d(A) = (Clo = (0)) 
are respectively the trivial (finite right) Canonical Resolution and the trivial 
Fundamental Sequence. 

(b) If A is not a semisimple Artinian F-algebra: A g &o(F), then : 1 < m, 
and the F-algebra Ao is a semisimple Artinian F-algebra: 

A 0 € A 0 (F) 
such that for every integer i e I* = {1, 2, m}, the right Artinian F-algebra: 

A[ G A ( F ) 
is not a semisimple Artinian F-algebra: 

Ai e A 0 (F) 
and the i-th "link" : 

Ai Aii 

of the Canonical Resolution 91 (A) is the surjective F-algebra epimorphism x-x 

associated to the exact sequence or "F-algebra extension" : 

(xi) 0 > Qi > > Ai — » Ai.i > 0 

characterized by the condition : 
KerTi = Qi = Q(Ai) 

equivalent to the equivalent conditions : 
A n = Ai/Qi = Ai/Q(Ai) and Cli-i/Cli = Q(A/Cli) 

PROOF - The Theorem 5-4 of I" 101. applied in the case of F-algebras, implies 
immediately the proof. 
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COROLLARY 5 - 4 - For any right Artinian F-algebra: 
A G A (F) 

with the Notations of the Theorem 5-3, there exists a (finite right) Canonical 
Sequence p(A), characterized by the following conditions : 

(a) If A is a semisimple Artinian F-algebra : A G Ao(F), then p(A) is the 
empty or trivial Canonical Sequence ; p(A) = 0 . 

(b) If A is not a semisimple Artinian F-algebra : A € Ao(F), then, the 
Canonical Sequence : 

P(A) = (pi, p2, Pi, Pm) 
is the finite sequence of integers with values in {0, 1}, characterized by the 
following conditions : 

(bo) For every integer j G I* = {1 , 2, m}, the condition : 

Pj = o 

is equivalent to the equivalent conditions : 

Qf = [Q(Aj)]2 = (0) 

and 
Ker Xj = Qj = Q(Aj) = M(Aj) = Mj * (0) 

which mean that the j-th "link": 

Aj S—» Aj_i 

of the Canonical Resolution 91(A) is a "zero-link"associated to the singular 
F-aIgebra extension :  

(Tj) 0 » Mj > > Aj S - » Aj-i • 0 

in which the right Artinian F-algebra : Aj e A(F), /* not a (right) almost 

semisimple right Artinian F-algebra: 
Aj e [A(F) - Aa(F)] 

[with a Structure characterized by the Theorem 3-14]. 
(bi) For every integer k e I* = {1 , 2 , m } , the condition : 

Pk = 1 

is equivalent to the equivalent conditions : 
( ^ = [ Q ( A k ) ] 2 = Q(A k) = Q k # ( 0 ) 

and 
Ker x k = Qk = Q(Ak) = N(Ak) = S(A k) = S k * (0) 

which mean that the k-th "link" : 

Ak » Afc.i 
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of the Canonical Resolution 91(A) is a "one-link" associated to the general 
¥-algebra extension :  

(Tk) 0 -> S k > » A k

 T k » A k-i > 0 

in which the right Artinian ¥-algebra : A k € & ( F ) , is a (right) almost 
semisimple right Artinian ¥-algebra : A k G A a (F) , which is not a semisimple 
Artinian ¥-algebra: 

A k e [ * a ( F ) - A 0 (F)] 
[with a Structure characterized by the Theorem 2-13]. 

PROOF - This is an immediate consequence of the Proposition 1-4, of the 
Definition 5-1 and of the Theorem 5-3 which characterizes the Canonical 
Resolution 91(A) of a right Artinian F-algebra A. 

DEFINITION 5-5 - The right Resolutive Dimension of a right Artinian F-
algebra: 

A G A(F) 

is the natural integer : 
m = p dim(A) 

characterized in the Theorem 5-3 and in the Corollary 5-4 as : 
1 - The length m of the finite right Canonical Resolution 91(A). 
2 - The length m of the finite right Fundamental Sequence Cl(A) of two-

sided ideals. 
3 - The cardinal number m of the finite right Canonical Sequence p(A) 

associated to the right Artinian ¥-algebra A. 
For instance, in the finite right Canonical Resolution 91(A), each right 

Artinian F-algebra : A* G A(F), verifies the relation : 
i = p dim(A0 for all i G I = {0, 1, 2 , m } 

THEOREM 5-6 - For two right Artinian ¥-algebras A and A', if there exists 

a ¥-algebra isomorphism u : A > A\ then : 
(a) The right Resolutive Dimensions are equal: 

m = p dim(A) = p dim(A') = m' 
In other words, the finite right Resolutive Dimension p dim(A) is a 

numerical invariant for right Artinian ¥-algebras. 
(b) The finite right Canonical Sequences are equal: 
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p(A) = p(A') 
In other words, the finite right Canonical Sequence p(A) is a sequential 

invariant for right Artinian F-algebras. 
(c) The finite right Fundamental Sequences of two-sided ideals : 

Cl(A) = (Cl 0 ,Clb.. . , Clj, . . . , U m = ( 0 ) ) 
and 

ft (A1) = (Cl'o, ft'b ft'j, Cl'm = (0)) 
verify the relations : 

u(Uj) = ft j for all = {0, 1, 2 , m } 
In other words, the finite right Fundamental Sequences ft (A)and ft (A1) 

are canonically isomorphic. 
(d) There exists an unique F-isomorphism of Resolutions : 

&(u):f t (A)—^->&(A') 

which is an extension of the F-algebra isomorphism u : A > A'. 
In other words, the finite right Canonical Resolutions £R> (A) and £H (A1) 

are canonically isomorphic. 
(e) In particular, for each index i G I* = {1 , 2 , m } the i-th "link": 

A i — — » A M 

of the Canonical Resolution 31(A), is "unique up to an F-isomorphism" and 
constitutes the i-th "resolutive invariant" of the right Artinian F-algebra A. 

PROOF - The Theorem 5-7 of [10]. applied in the case of F-algebras, implies 
immediately the proof. 

6. NEW INVARIANTS FOR RIGHT ARTINIAN ALGEBRAS. 
The following Notions are introduced in order to describe the Structure of the 

Canonical Resolution 91(A) of any right Artinian F-algebra A. 

DEFINITION 6-1 - For any integer m e N, which determines the sets : 

I = {0, 1, 2, m} and I* = {1 , 2, m} 

a «Complete Decomposition of m» or a Combinatorial Type of dimension m», is 

an object of the form : 

characterized by a disjoint union of the from: 
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a*) i*=i ;±Lij 

so that: I* == l\ u ij and l\ n ij = 0 , w/to .* Ii = { 0 } JLL l\ andl\ = \\ n I*, 

which determines also the set: 

I 2 = { k € l i ; ( k + l ) € l J } 

swcft r/ia^ I/IQ * 0 , w if I2 * 0 , f̂lc/i integer j e IQ determines the integer 

k(j) = k € I2 defined by the condition : 
k(j) = Sup {k' E Ii ; k' < j} = Sup {k" G L 2 ; k" < j} 

and eac/i k € I2 determines the non empty subset: 

I * = { j e I * ; k = k(j)} 

in a partition of the form : 

T* - l i Tk 

with an obvious convention whenever IQ = 0 #r I2 = 0 and I = Ii. 

REMARKS 6-2 - A Combinatorial Type (I) of dimension m, may be represented 
by a Combinatorial Table, constituted by a first column and possibly by some 
rows, in which the ordered set I = {0, 1, 2, m} is described by the 
"lexicographic order" in such a way that the subset Ii is represented by the first 
column (which always contains the integer 0) and that if IQ * 0 , that is if I2 * 0 , 

each integer k e I2, which appears in the first column, is also the first element of 

the row which represents the union of {k} and of the non empty subset IQ, which 

appears in the partition of the set IQ , represented by the set of integers which are 

not in the first column. 

See, for instance, the following Combinatorial Table. 
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DEFINITION 6-3 - A "Structured vertex set" is an object of the form : 
[A ; X] 

in which A is a finite and non empty set (called the underlying "abstract vertex 

set") equipped with a "Combinatorial Structure" L, noted : 

I = [ A ; m , ( I ) ; { A i } , , A', , (A'j), , (A'j)] 

or more precisely: 

I = [ A ; m , ( I ) ; {A t } , (A*), A\ (A*), (A'j), (A"j), (A'j)] 

and characterized by the following data : 
(a) A finite and non empty set A. 

(b) An integer m G N and a Combinatorial Type (I ) of dimension m, of the 

form: 

a) I = I , l i i ^ i . i i n i 
i k e i 2 j 

with an obvious convention whenever IQ = 0 or I 2 = 0 and I = Ii. 

(c) An exhaustive and ascending filtration of A by non empty sets Aj, of the 

form : 

{Ai} = {Ai} i G i = { 0 * A 0 C Ai C ... C A j C ... C Am_i C A m = A} 

which verifies the relation : 



l j = { j € I*;Aj.i = Aj} 

and which is equivalent to a partition of A, of the form : 

A = 11 A k 

k€li 

for a family o/non empty subsets : 

(Ak) = (Ak)t g I l 

connected by the equivalent conditions : 

A 0 = A 0 for 0 e Ii = { 0 } J l l\ 

A k = Ak - Ak-i for all k € I j 

Ai = . 11 A k forallxe I 
i>keli J 

(d) A subset: 

A' C A 

subject to the conditions : 

A'° = A ' n A ° = 0 for 0 eli = {0}JUL Ii 

A' k = A ' n A K * 0 for alike l\ 

that is a subset : A' C A, connected to a family : 

(A , k ) = ( A , k ) k e I ; 

of non empty subsets : A'k C A k, by the condition : 

A'= J l . A * 
kelj 

(e) Whenever IQ * 0 or I2 * 0 , a double family of subsets : 

such that for each index k e I2, the family : 

is a "descending sequence" of subsets : 
A"* C A k = A k0) 
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subject to the condition that ifOe I2, then : 

A"5*AO = Ao 

and which determines the family : 
(A"j) = (A"j)jGfo 

o/non empty subsets: 

A ' jC Ak(j) = Aj 

defined by the conditions : 

A"j = A k ( j ) - A'f» = Aj - A"J® for all j e ij 

(f) WTî never IQ * 0 (?r I2 * 0 , a family : 

(A ,

j) = (A ,

j) j e io 

o/non empty subsets: 

A'j C A"j C Aj 

DEFINITION 6 - 4 - For any field F, a F- "Completely structured vertex 

set" is an object of the form : 

A = { A ; Z ; ( K x ) , ( p x ) v ( q x ) , ( i 4 ) } 

defined by the following data : 
(a) A "combinatorial data" constituted by a "Structured vertex set" of 

the form : 
[A ; X] 

in which the underlying "abstract vertex set" A is equipped with a 
"Combinatorial Structure" X, noted : 

I = [ A ; m , ( I ) ; { A i } , , A\ , (AMjf), , (A'j)] 

or more precisely: 
E = [A ; m , (I ) ; {Aj}, (A*), A', (A*), (A"\), (A"j), (A'j)] 

(b) A "numerical data" : 

v={(PX),(QX),(A)} 

compatible with Z, m rite .ye/ug f/iaf tfie families of integers : 

(PX) = (PX)XGA ; (qx) = (qx)xGA 

and 
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( n i ) = ( ni)jel0,A.€A 

verify the conditions : 
A = Supp[(px)] ; A' = Supp[(qx)] 

and 

A j = Supp^nj^Xe A] far all j € i j 

(c) An "algebraic data" constituted by a family : 

(KX) = (KX)XeA 
of ¥-skew fields : 

K\ G 3C(F) forallXe A 

REMARKS 6-5 - For this kind of objects, the notion of isomorphism is 
obvious. 

Like in the case of quivers or of F-Concrete vertex sets, it is convenient (and 
harmless) to call two Completely structured vertex sets" equal when they 
are only isomorphic. 

This Convention is included in the previous Definition 6-4. 

A 

LEMMA 6-6 - Any F-Completely structured vertex set A characterizes the 
following objects : 

(a) A V-Concrete vertex set of the form : 

A = [A ; (Kx), (px)] = [A ; (V*)] = [A ; (vj)] 

(b) A V-Concrete vertex set of the form : 

A • = [A1 ; (K X ), (qx)l = [A'; (U*)] = [A' ; (Uj)] 

and a Generalized V-concrete vertex set of the form : 

A/ = [A ; (K X), (qx)] = [A ; (Ux)] = [A ; (Uj)] 

whenever A' ̂  0 or Ij ^ 0 . 

(c) A family ofF-Concrete vertex sets of the form : 
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A j = [A'j ; (KX), (4)] = [A'j ; (W^)] = [A'j ; (W^)] 

for all} G IQ and a family of Generalized F-concrete vertex sets of the form : 

A'j = [A ; (Kx), (4)] = [A ; = [A ; (W?)] 

/or a//j G IQ, whenever IQ ^ 0 . 

PROOF - According to the Definitions 6-3 and 6-4, this follows immediately 

from the Definitions 2-4 and 2-8. 
• * 

More precisely, this means that for each A e A and possibly for each j e IQ, 

the right K\-vector spaces : 
v x Ux w [ 

and the left K^-vector spaces : 

are respectively of the finite dimensions : 

PA, q\ A 
A 

defined by the numerical data of the F-Completely structured vertex set A. 

A 

COROLLARY 6-7 - Any F-Completely structured vertex set A 

characterizes, "by restriction to the corresponding subsets", the F-Concrete 

vertex sets of the form : 

A i = (A/AO = [Ai; (Kx), (px)] = [Ai ; (Vx)] = [Aj; (V x)] /ora/ / i e I 

A k = (A/Ak) = [A* ; (Kx), (px)] = [Ak ; (Vx)] = [Ak ; (V^)] for all k e Ii 

A * = (A 7A*) = [A* ; (Kx), (qjOl = [A'k ; (Ux)] = [A* ; for all kel\ 
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A "j = (A/A"j) = [A"j; (Kx), (px)] = [A"j ; (Vx)] = [A"j; (V^)] for all j e ij 

PROOF - This follows immediately from the Definitions 2-4, 6-3, 6-4 and the 
Lemma 6-6. 

LEMMA 6 - 8 - For any right Artinian F-algebra A e &(F)jhe data 
constituted by its Resolutive Dimension m = pdim(A) and by its Canonical 
Sequence : 

p(A) = (pi, p 2 , pi, p m ) = (Pi)i€l* 
are equivalent to its Combinatorial Type : 

i(A) = (i) i = i 1 i i i j = i 1 JLLf J i # 
l k e l 2 J 

of dimension m, connected by the equivalent conditions : 
l\ = {ke I* ; p k = 1} and lj = {j e I* ; P j = 0 } 

PROOF - This follows from the Theorem 5-3, the Corollary 5-4 and the 
Definitions 5-5 and 6-1. 

THEOREM 6 - 9 - The Structure of any right Artinian F-algebra : 
A e A(F) 

is characterized by its Combinatorial Type : 

1(A) = (I) I = J l l j = li il^IL^lgj 

of dimension m = pdim(A) and by its Canonical Resolution : 

91(A) = [A = A m — ^ ! L » A m . i ... Ai A n ... Ai — » Ao] 

in which the Structures of the right Artinian F-algebras : 
Ai e A(F) for all i E I = {0, 1, 2 , m } 

which are determined by an "ascending iterative conduction" starting from the 
semisimple Artinian F-algebra : 

A 0 € A 0 (F) 

are characterized by the following conditions : 
(a) The F-algebra Aq is a semisimple Artinian F-algebra : 

A 0 = RO = G 0 G A 0 (F) 
and more generally, each F-algebra A[ is connected to a semisimple Artinian 
F-algebra: 
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Ai/J(Ai) = Rie &o(F) 
by a canonical surjective F-algebra epimorphism : 

q>'i : Aj » Rj = Aj/J(Ai) 

(b) Whenever Ij * 0,for each index k e I j , the Structure of the right 

Artinian F-algebra Ak is characterized by the previous "First Fundamental 
Construction", that is described by the Characterization :  

a * - № ? i - { , * ' k < A k i ) u i - <*-» > — - H * < ™ 
v 0 G k ; ^ 0 G k J 

determined by a pair (Hk, Gk) of semisimple Artinian F-algebras subject to the 
condition : Hk ^ Gk, which determines the canonical (H^-Gy^-bimodule 
Lk = H K L c k , and by a "parameter" *Pk constituted by an injective F-algebra 
homomorphism : 

¥ k :Ak.i> . H k 

Moreover, this Characterization implies the relation : 

A k / J ( A k ) = R k = R k . i x G k = (Ak.i/J(Ak.i)) x G k 

(c) Whenever I Q ^ 0 0r I2 * 0yfor each index j G I Q , associated to the 

index k(j) = k G I2, the Structure of the right Artinian F-algebra Aj is 

characterized by the previous "Second Fundamental Construction", that 

is described by the Characterization :  

(Aj, Nj) = (Aj.i, Tj.i, M j y hj) = (Aj,! , Tj.i , Mj , Çj)  

determined by an ideal Tj_i e V (Aj_i) which defines the right Artinian 

F-algebra Cj.i = Aj-i/Tj-i , a non null Oy\-bimodule : 

Mj G JVt(Aj_i , Tj.i) 

A 

and a "parameter" Çj = hj constituted by an unique Ty\-essential 

cohomology class : 

£j = hj G H^(Aj4, Tj.i, Mj) - Extc(Aj-i, Tj.i, Mj) 

Moreover, this Characterization implies the relation : 

Aj/J(Aj) = Rj = Rj.i = A M / J ( A M ) 

Furthermore, in fact the ideal Tj.i G ^(Aj-i) may be characterized by 

some ideal Tj.i G T?(Rj-i) = ^(Rk) connected by the conditions : 
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Tj-i = (pj-i(Tj.i) and Tj.! = N(Aj_!) n (p j ! i ( T J- l ) 

so that the non null Cy\-bimodule : 
M j e JVt(Aj.i,Tj.i) 

is determined by a characterization of the form : 
Mj = [M'j; ¥ ' j : Cj.i »H'J] 

in which the non null right C'y\-module : 
M'je JVt , (C j . i) = «M.*(Rj-i,T,j.i) 

with the semisimple Artinian F-algebra of endomorphisms : 

is also the canonical (H'i-C'yi)-bimodule associated to a pair (H'J, Cj-i) of 
semisimple Artinian F-algebras, subject to the condition : H'J < C j . j , and in 
which the "parameter" *Pj is constituted by a F-algebra homomorphism : 

4"j € MorpICj.i, H'J] 

PROOF - According to the Lemmas 2-10 and 6-8, the conditions (a), (b) and the 
first part of the condition (c) follow easily from the Theorems 2-13, 3-14, 5-3 and 
the Corollary 5-4. 

Furthermore, whenever IQ * 0 or I2 * 0 , for each j G IQ and for the 

canonical surjective F-algebra epimorphism : 
<Pj-1 : Aj.i » Rj.i = Aj.i/J(Aj„i) 

the two-sided ideal Nj_i = N(Aj-i) of Aj.i is the direct sum of the idempotent right 
feet P of Aj.i, for which the Lemma 1-2 of [£] shows that they verify the relation : 

P £ t(P) = P n r(P) = P n J(Aj_i) 
which implies that they are in one-to-one correspondence with the non null two-
sided ideals: 

P = (p'j.i(P) = P/PnJ(Aj.i) 
of the semisimple Artinian F-algebra : Rj.i = Rk, which are exactly the idempotent 
right feet P' of Rj-i = Rk which verify the condition : 

V C N ' H = 9 j - l ( N H ) 

and for which, conversely : 

P^^NCAj.Oncp'^CF) 

These properties imply easily that the conditions : 
T = cp'j.l(T) and T = N(Aj.i) n $yl{T) 

determine an one-to-one correspondence between the proper two-sided ideals : 
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T e 7?(Aj.i) 
and the proper two-sided ideals : 

T e «(Rj. i) 

subject to the general condition : 

T C N' j.i=q> ,

j_1(Nj.i) 

and to the supplementary condition : 
T * N'j.i = N' k 

whenever : (j-1) = k = 0 € I2. 

According to the Notations 3-11 and the Lemma 3-12, this implies 
immediately the last assertion and completes the proof. 

THEOREM 6-10 - Any right Artinian F-algebra : 
A e A ( F ) 

A 

determines an unique "complete invariant" A ( A ) constituted by the 

F-Completely structured vertex set of the form : 
A(A) = A = {A ; I ; (Kx), (px), (qx), (4)) 

equipped with the Combinatorial Structure : 

X ( A ) = I = [A ; m, (I ) ; {A*} , ( A * ) , A', (A*), (A"f), (A"j), (A'j)] 

and characterized by the following conditions. 
(a) The right Artinian F-algebra A € «ft(F) determines the semisimple 

Artinian F-algebra A / J ( A ) = R G A Q ( F ) and the classical invariant 

constituted by the F-concrete vertex set : 

A ( A ) = A (R) = A = [A ; (Kx), (px)l = [A ; (Vx)l = [A ; (V*)] 

such that: 

R = R ( A ) = II R* 
X G A 

for the family (R^)XeA of simple Artinian F-algebras R^ having the 
realizations : 

= SB(Vx) = M p (Kx) = [$(V*)]° 

and in which the underlying abstract vertex set A coincides with the common 

vertex set : 
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A = V(A) = V(R) 

of the quivers : 
r(A) = (V(A), E(A)) and T(R) = (V(R), 0 ) 

of the F-algebras A G &(F)andRG &o(F). 
(b) 77ie Canonical Resolution 91 (A) determines the Resolutive 

Dimension m = pdim(A) and the Combinatorial Type (I) = 1(A) of dimension 
m, defined in the Lemma 6-8. 

(c) The filtration {A\} is characterized by the conditions : 

R( A i) = Ri = Aj/J(Ai) for allie I 

equivalent to the conditions : 

Ri= II R*= n S(VJO= n M p .(Kx) foralliel 
AG Ai XeA{ XeAi K 

which imply in particular the relations : 

Ao = Ro = R( A o) = G 0 and A/J(A) = R = R( A ) 

(d) The subset : A' C A, connected to the family (A' k), and the families 

of integers (p\) and (q\) are defined, with the previous Notations of the 
Corollary 6-7 and of the Theorem 6-9, by the conditions : 

A k = A (G k) for k G Ii and A * = A (H k) jbr k G lj 

(e) Wten^ver Iq*0 or I2& 0 , tfie double family (A"^) w defined, with 

the previous Notations of the Theorem 6-9, by the conditions : 
T H = 0 n k R* jbr a//j G ij am/k = k(j) 

A j 
which imply, with the previous Notations of the Corollary 6-7, the relations : 

C'j-i = R( A "j) = II forallj e i j 
A j 

(0 Whenever IQ * 0 or I2 * 0 , ffte family (A j) and family of integers 

(n^) are defined, with the previous Notations of the Lemma 6-6 and of the 

Theorem 6-9, by the conditions : 

A'j = A(H'J) for all] G ij 
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P R O O F - The Proposition 4-1 implies the part (a), which gives in particular the 
determinations of the "algebraic data": 

( K X ) = ( K X ) X E A 
A A 

of the F-Completely structured vertex set A(A) = A and also of the first family of 

integers (PA) = (px)XeA of the "numerical data": l)(A) = x> = {(px), (qjt), (4,)} of 
A A 
A(A) = A. 

The Theorem 5-3 and the Corollary 5-4 give the characterization of the 
Canonical Resolution 91(A), which is unique up to an F-isomorphism, according 
to the Theorem 5-6. 

This implies immediately that the data described in the Theorem 6-9 are 
unique up to an F-isomorphism. 

Firstly, according to the Lemma 6-8, this Theorem 6-9 implies the part (b). 

Secondly, the Theorem 6-9 gives the relations : 

Rk = Gk x Rk-1 for all k e Ij and Rj = Rj_i for all j € IQ 

which imply immediately, with the convention : Ro = Go, the relations : 

Ri = II G k for all i G I and A/J(A) = R = R m = II Gk 
i > k e l i k e l i 

Then, this last relation implies the existence of a partition of A, of the form : 

A = li A* 
kGli 

such that: 

G k = n R * = R ( A > ) 
AG AK 

that is such that : 

A ( G k ) = A k = (A/A*) 
for all k G Ii. 

Moreover, with the Notations and the conditions of the Definition 6-3 it is 
immediate that the previous conditions are equivalent to the conditions : 

Ri= El G k = 11 R* 
i>kG Ii X e A { 

that is to the conditions : 

A(R0= Ai = (A/A0 
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for all i € I, which characterize the exhaustive and ascending filtration 

{A{} = {Ai}ie i of A, by non empty sets Au of the form : 

{Ai} = {Ailiel = ( 0 * AO C Ai C. . .C Ai C. . .C Am_i C A m = A} 

which verifies the relation : 

l j = { j € I*;Aj.i = Aj} 
equivalent to the conditions of the Lemma 6-8. 

This implies the part (c) and the first conditions of the part (d). 
Thirdly, according to the Theorem 6-9 which gives the conditions : 

H k « G k 

for all k € I j , and according to the Lemma 2-10, with the Notations and the 

conditions of the Definition 6-3, it is immediate that the subset: A1 C A, connected 

to the family (A'k), and the family of integers (q\) = (qx)XeA may be defined by 

the conditions: 

A ( H k ) = A * = (A VA*) 

for all k € Ij, whenever Ij * 0 , that is whenever A' * 0 . 

This completes the proof of the part (d). 

Fourthly, whenever IQ * 0 or I2 * 0 , for each index k € I2 and every j € IQ, 

the parts (b) and (c) imply the relations : 
R k = ... = Rj.i = Rj 

and 
(p ,

j.10Xj = (p ,

j 

in such a way that the Theorems 3-14 and 6-9 show that the Tj_i-essential singular 
F-algebra extension (Xj, Tj_i) gives the relation : 

and the isomorphism of multiplicative Aj-bimodules : 

Tj: Nj > » Tj.i C Nj.i 

which imply the relation : 

N j = cp'j(Nj) = cp j-l(Tj-i) C cp j-l(Nj-i) = N'j.i 

for all j e IQ. 

Then, the Theorem 6-9 and more precisely the last part of its proof imply that 
each ideal Tj„i e V(Ayi) is connected by the conditions : 
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T'j.l = <P j-l(Tj-i) and Tj.i = N(Aj.i) n Q-^ÇTj-l) 

to some ideal Tj_i e *£(Rj-i) s ^(Rk) of the semisimple Artinian F-algebras : 

Rj . l=R k = R ( A k ) = Il R* 
À€ A k 

subject to the general condition : 

T j . iCN' j . i=(p' j . i (N j . i ) 

and to the supplementary condition : 

T'j.i * N'j.i = N'k 

whenever : (j-1) = k = 0 e I2, in such a way that : 

N'j = T'j.i = <p j-i(Tj.i) C <pj-i(Nj.i) = N'j.i = T'j.2 

for all j e ij, such that : k < (j-2) < (j-1). 

This implies immediately that for each k e I2 and every j e IQ, the ideal 

T'j.i e ^(Rj-i) = 'g(Rk) is of the form : 

T'j.i = © t  J XeA'* 

for a family : 

( A t H k 

which is a "descending sequence" of subsets : 

A1* C A k = Ak(i) 

subject to the condition that if 0 € I2, then : 

A"J^A° = A 0 

Thus, with the Notations and the conditions of the Definition 6-3, this implies 

immediately the part (e). 

At last, whenever IQ * 0 or I2 * 0 , according to the Theorem 6-9 which 

gives the conditions : 

H'J < Cj-i 

for all j e IQ and according to the Lemma 2-10, it is immediate that the family (A'j) 

and the family of integers (njj defined by the conditions : 

(A' j )= A(H'J) 
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for all j G IQ, verifies the conditions of the Definition 6-3 and this completes the 

proof. 

R E M A R K S 6 - 1 1 - The last part of the Theorem 6 - 9 may be completed by the 
following Remarks. 

(a) Whenever l\ * 0 , with the Notations of the Theorems 6 - 9 and 6 - 1 0 , for 

every index k € Ij , the Formal triangular matrix F-algebra : 

I 0 G K J 

associated to the canonical (Hk - Gk)-bimodule L k = Hk L and its right Socle: 

Sk = (°̂ kl = S(B k ) = S(A k) 

are characterized by the conditions : 

B k = II 
XeA k 

and 

s k = n , s ^ = e , s ^ 
by means of the family of (right) almost simple right Artinian F-algebras: 

( B ^ G A 

with a family of right Socles : 

( S % G A 

characterized by the conditions : 
= = for a lU e (A-A1) 

and by the conditions : 

B X = ( u l l X 1 ^ S X = (° L M for all A. e A' 
{OR^j [OR^J 

in which is the simple Artinian F-algebra defined by : 

H*- = X (Ux) = M q ? i(Kx) = [SB (Uj)]° for all X € A' 

and in which is the canonical (H^-R^)-bimodules defined by : 

I > = X ( V X , Ux) = M P x , q j L(Kx) = ux ® v£ 

for all A, € A', with the Notations of the Lemma 6-6 . 
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(b) Whenever IQ * 0 or I2 * 0 , for each index j G I Q associated to the index 

k(j) = k G I2, the last part of the Theorem 6-9 shows that in fact, the ideal 
Tj.i G ^(Aj.i) may be characterized by some ideal Tj.i G ^(Rj-i) = ̂ ?(Rk) 
connected by the conditions : 

Tj.i = q>'j-l(Tj-i) a n d T J- l = N ( A J - l ) n 9 jV T J- l ) 

and defined, according to the Theorem 6-10, by the condition : 
T'j.i = © v RX  

J X G A ' J 

Then, if we consider the surjective F-algebra epimorphisms : 

4 : Aj.i » A k 

defined by the conditions : 

xl = IdAk i f ( k + l ) = J G l * 

and 

4 = x k +i o ... o Tj-i if (k+1) < j G IQ 

by means of some elements of the Canonical Resolution 91(A), and which verify 
the relations: 

9 j - l = 9 ' k o x i 

it is easy to verify that the ideal Tj.i G V(Ay\) may be characterized by some ideal 

T\ G ^(Aje) = ^(Bfc) connected by the conditions : 

T l = i(TJ-l) and TH = N<AH) n NJ"1 (Tl) 

and defined, according to the Theorem 6-10 and the previous Notations, by the 
condition: 

K XGA"? 

which constitutes the translation of the conditions : 

Tj.i = (p'k(T"t) and T ' ^ ^ A ^ n c p ' ^ r j . i ) 

which follow easily from the relations : (pj.i = (p'k o x£, for all k G I2 and j G IQ. 

5 5 



REMARKS 6-12 - Any right Artinian F-algebra : 
A e A ( F ) 

determines its Canonical Resolution : 

91(A) == [A = A m — A m - i ... Ai A^i ... Ai — » AQJ 

which is unique up to an F-isomorphism, and the previous unique "complete 
invariant" : 

A A 
A(A) = A 

in which the adjective "complete" has been chosen in order to explain that this 
invariant contains, at the same time, three kinds of invariants, namely : 

( 1 ) The Combinatorial Invariant X(A) = X. 

(2) The Numerical Invariant \)(A) = x> = , (qx), (n^)} compatible 

with E. 
(3) The Algebraic Invariant constituted by the family of F-skewfields 

/"V-' ^ V / / ~ V ^ 

(K\) = (K\)\e A defined by the F-Concrete vertex set A (A) = A (R) = A . 
Nevertheless, this adjective "complete" does not mean that this "complete 

A A 

invariant" A(A) = A is sufficient in order to describe the Structure of the right 

Artinian F-algebra A. 
Indeed, the Theorem 6-9 shows that the Structure of the Canonical 

Resolution 9 1 (A) depends explicitely from the knowledge of a set oj 
"parameters": 

n = n[SH(A)] = { ( ¥ k ) , ( ^ j ) , ^ j ) } 

constituted by the three families of "parameters": 

which are only some "semi-invariants", in a suitable sense, which is possible to 
define more precisely. [See for instance, the part 8-(E)]. 

The converse problem is examined in the next section. 

1. STRUCTURE OF RIGHT ARTINIAN F-ALGEBRAS. 
Now, our aim is to show that conversely, for any field F, in the case of 

F-algebras, for any ¥-"Completely structured vertex set": 
A 
A 

and any choice of a set of "parameters" : 
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n = {OFk), (^j ) , (Êj)} 

constituted by three families of "parameters" : 

( V k W (^j)jeIo (^j)jeIo 

A 

compatible with A in the sense of the following Definition 7-2, it is possible to give 

the Description of a Systematic Method of Construction of a right Artinian 

F-algebra : 
A € A ( F ) 

by means of a finite number of Fundamental Constructions, which are of two 

different kinds, is such a way that : 
A A 

A(A) = A 

that is, having the given "complete invariant" and also the given "semi-

invariants" constituted by the given "parameters" which determine a Canonical 

Resolution 91(A) of the right Artinian F-algebra A. 

A 

CONSTRUCTIONS 7 - 1 - For any F-Completely structured vertex set A, the 

Lemma 6-6 characterizes the F-Concrete vertex set : 

A = [A ; (K X), (px)] = [A ; (Vx)] = [A ; (vj)] 

the F-Concrete vertex set : 

A • = [A1 ; (Kx), (qx)] = [A' ; (Ux)] = [A' ; (Uj)] 

and the Generalized F-concrete vertex set : 

A/ = [A ; (Kx), (qx)] = [A ; (Ux)] = [A ; (uj)] 

whenever A V 0 or 1 ^ 0 , and the F-Concrete vertex sets : 

A'j = [A'j ; (Kx), (ri)] = [A'j ; (W\)] = [A'j ; (W?)] 

and the Generalized F-concrete vertex sets : 
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A/j = [A ; (KJO, (n[)] = [A ; (W\)] = [A ; (W?)] 

for all j e IQ, whenever I 0 * 0 . 

These data determine the simple Artinian F-algebras : 

= SB (VJO = M p j l(Kx) = [SB (Vj)]° for all X e A 

= SB (Ux) = M q x (Kx) = [SB (u£)]° for all Xe A' 

H\ = SB(Wi) = Mn[(Kx) = [SBCW )̂]0 for all j e ij and X e A'j 

and also the canonical (H^-R^)-bimodules : 

I > = SB (Vx, ux) = M P X , qx(KX) = u x ® V £ 

for all XG A 1 and the canonical (H\-R^)-bimodules : 

L \ = $ (Vx, W[) = M p x , n [ (Kx) = W { <& 

for all j e IQ and X e A'j. 

Then, according to the Corollary 6-7, there exist the semisimple Artinian 
V-algebras : 

Ri = R( A 0 = 11 R* for all i e I 
Xe Aj 

G k = R ( A k ) = II R*- for all k e l i 
XeA k 

H k = R ( A ' k ) = II , H * for alike IT 
XeA' k 1 

C'j.i = R( A "j) = II R* for all j e ij 
AG A j 

H'J=R(A' j )= II H'{ f oraUje lJ 
AG A j 

and also the canonical Q\-Gk)-bimodules : 

L K = II L* = n _ S ( V x , U x ) forallkG I J 
A G A R A G A K 

and the canonical (H'i-C''yi)-bimodules : 
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M'j = LJ = II L'i = n X(VX, W{) for all j € £ 
A G A J 

A last, the conditions : 

T H = 0 f f k R* for all j € ij and k = k(j) 
A j 

characterize the proper two-sided ideals : 
T j . i € 7?(Rj . i ) S ^(Rj) = ^ ( R k ) 

such that: 

C j-i = Rj-i/Tj.i for all j € ij 

A 

Thus, these data characterize the "geometrical objects" defined by A. 
Now, with all these "geometrical objects" and for any choice of a set of 

"parameters": 
n = { № , 0 ^ ) , ^ ) } 

constituted by three families of "parameters" : 

A 

compatible with A, it is possible to give the Description of a Systematic Method of 

Construction of a right Artinian F-algebra : 
A e A ( F ) 

with the "complete invariant" : 
A A 
A(A) = A 

and characterized by its (finite right) Canonical Resolution : 

91(A) = [A = A m —^->> Am-i ... A* — 5 - » A M ... Ai AQ] 

in which the right Artinian F-algebras At are constructed by a recurrence on the 
integer i G I = {0, 1, 2 , m } , characterized by the following conditions. 

The semisimple Artinian F-algebra Ao G AQ(F) is defined by the condition : 

AQ = RO = R ( A Q ) = . R ( A 0 ) = GQ 

and when the right Artinian F-algebras Ao, A i , A j are constructed, such that: 

MAo) = Ao = (A/AoX A(Ai) = Ai= (A/AO ... A(Aj) = Ai = (A/AO 
if i < m , the right Artinian F-algebra : Ai+i G A ( F ) , is obtained by one and 

only one of the two following "Fundamental Constructions". 
(a) FIRST FUNDAMENTAL CONSTRUCTION. 

This "First Fundamental Construction" occurs in the case where : 
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(i + 1) = k € l\ 

Then, the Theorem 2-13 shows easily that the existence of a "parameter" 
*F k, constituted by an injective F-algebra homomorphism, of the form : 

H' k :A i = A k . i > >H k 

A 

that is compatible with A, implies the existence of a right Artinian F-algebra 
Ak G A(F), defined by the condition : 

A k = A i + 1 = f A i L k ) . [*«H> * ) = (A, A H k < G k ) 
l ° G k j { 0 Gkj  

with a right Socle : 

S k = S i + i = ( ° n ^ ) = S ( A k ) = S (A i + 1 ) 
\0 G K J 

and which appears in the general F-algebra extension, of the form : 

(Ti+l) 0 > S i + i > > A m — » Aj > 0 

in which : Si+i = S(Ai+i) = N(Ai+i) = Q(Ai+i) and Ai = Ai+i/Si+i, so that the 
right Artinian F-algebra Ak = Ai+i has the ''complete invariant": 

A(Ak) = Ak = (A/Ak) 
A 

induced by A on the subset: Ak C A. 

(b) SECOND FUNDAMENTAL CONSTRUCTION. 
This "Second Fundamental Construction" occurs in the case where : 

(i + 1) = j e IQ 

Then, by means of the canonical surjective F-algebra epimorphism : 

: Ai » Ri = Ai/J(A0 = R ( A 0 = Rj-i 
the proof of the Theorem 6-9 implies that the conditions : 

Tj.i s Ti = N(A0 n (p^fT'j-l) and T{ = T>i = (p'i(Tj.i) = cp'i(Ti) 

determine a proper two-sided ideal: 
Tj . i sT i€ « ( A 0 s « ( A j . i ) 

such that: 
Cj.i= Q = Ai/Tj and Cj.i = Rj-i/T'j.i = C J . I / J ( C J . I ) 

so that the existence of a "parameter" 4*'j constituted by a F-algebra 
homorphism : 
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€ MorptCj. i , H'J] s Morp[Ci, W] 

A 

that is compatible with A, determines the non null Ci-bimodule : 
M i + i = Mj e JVt(Ai, TO = «M(Aj.i , Tj.i) 

defined by the characterization : 

M i + i s Mj = [M'j; : Q -» H'J] 

and therefore, the Theorem 3-14 shows easily that the existence of a "parameter" 
A 

= hj constituted by a T-essential cohomology class : 
% ^ € H^Ai, Ti, M i + 1 ) s H2(Aj.i, TJ . I , Mj) 

A 

that is compatible with A, implies the existence of a right Artinian F-algebra 
Aj € & ( F ) , defined by the condition : 

(Aj+i, Ni + i ) = (Aj, Tj , Mj+i, hj+i) = (Aj, Tj, Mj+i, 

or ^ _ 

(Aj, Nj) = (Aj,i, T H , Mj, hj) = ( A H , Tj.i, Mj, fr) 

which determines a Tj-essential singular F-algebra extension of the form :  

(Ti+l, Tj) 0 » Mj+i > > (Aj+i, Njfi) - - » (Aj, Tj) > 0 

with the relation: 
Si+i = S(A|+i) = M(A i + i ) 0 N(A| +i) = M i + i © N i + i 

in which : M i + i = M(Ai+i) = Q(A i + i ) = Q(Aj) * (0) and Ai = A i + i /M i + i , so that 
the right Artinian F-algebra Aj = Aj+i has the "complete invariant" : 

A A A 
A(Aj) = Aj = (A/Aj) 

A 
induced by A on the subset: Aj C A. 

D E F I N I T I O N 7 - 2 - For any F-"Completely structured vertex set11 : 
A 
A 

a set of "parameters" : 
n = { 0 F k ) . CP'j), 

constituted by three families of "parameters" : 

(Vk)keh C*"j)jeIo (^j)jefo 

A 

is compatible with A if the "parameters" have the previous characterizations 

used in the Constructions 7-1, which permit the Construction, by degrees, that 
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is the ascending iterative construction, of a Canonical Resolution 3 1 (A) of a 

right Artinian F-algebra A. 

DEFINITION 7-3 - For any F-"Completely structured vertex setM : 
A 
A 

and for any set of "parameters" : 

n = { ( ¥ k ) , ( ^ j ) , ( ^ ) } 

A 
compatible with A, let : 

A = A m = D[A ; FI] = D[A ; Q F k ) , , (Çj)] 

be the right Artinian F-algebra defined by the Constructions 7-1. 

THEOREM 7-4 ("STRUCTURE THEOREM") 

For any field F, the Structure of any right Artinian F-algebra : 

A € rft(F) 
is defined, "up to an ¥-isomorphism", by a (or by its) F - " Completely 
structured vertex set" : 

A={A;Z;(Kx),(px),(<»L),(i4)} 

equipped with a "Combinatorial Structure" X, noted : 

I = [ A ; m , ( I ) ; { A i } , A , ( A " j c ) , ( A ' j ) ] 

or more precisely : 

I = [A ; m , (I) ; {A¡} , (A*), A', (A*) , (A"J) , (A"j) , (A'j)] 

and by a set of "parameters" : 

n = { ( V k ) , ( 4 " j ) , ( ^ j ) } 
constituted by three families of "parameters" : 

№ = TOkel! OF'j) = OF j ) j G ¿ (Çj) = ( S j ) j e ¿ 

A 
compatible with A, in such a way that the right Artinian F-algebra A has a 

realization of the form : 

A = D[A ; O] = P [ A ; Q F k ) , QF'j) , (Çj)] 

A A 

in which A = A(A) is a "complete invariant", escorted by some "semi-invariants" 

constituted by a set of "parameters" n , which determines a Canonical 

Resolution îk(A) of the right Artinian F-algebra A. 
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Moreover, with the previous notations, the underlying F-vector space IAI 

of the right Artinian F-algebra A is characterized by one of the following 

equivalent conditions : 

( i s ) I A I = [ e s c v o l e r e A i « ( v x , u x ) l e r e j © . « ( v x . w ^ i l 
[A€ A J L.A€ A J Ljelo AG A j J 

or 

(16) IAI = [ , f A M P X ( K X ) ] © [ X © A , M P l , u ( K x ) ] © [ j f ^ M p x ^ H 

f/ie "multiplication" 0 / ^ 0 right Artinian F-algebra A being determined by the 

three families : 

( V k J k e l ! (^j)jElO (Sj)j€=¿ 

of "parameters". 

PROOF - The Definition 7-3 and the Constructions 7-1 imply that any F-algebra 

A, which has a realization of the form : 

A = D[A ; n ] 

is a right Artinian F-algebra. 

Conversely, the Theorems 6-9 and 6-10 imply that any right Artinian 

F-algebra A has a realization of this form : 

A = D[A ; n ] 

A A A 

in which A(A) = A and n is a set of "parameters" compatible with A and which 

determines a Canonical Resolution &(A) of the right Artinian F-algebra A. 

This completes the proof of the first assertion. 
Moreover, in the case of F-algebras, for each index k € ijf, the "one-link" : 

0 > Sjc > > Ak » Ak-i > 0 

is an exact sequence of F-vector spaces, which gives : 

(17) lAkMAk - i i eSk 

and for each index j e l£, the "zero-link": 

0 _ >Mj> > A j — 3 L » AJ_I >0 

is an exact sequence of F-vector spaces, which gives : 

(18) |Aj| = | A H l © M j 
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Then, in the Canonical Resolution 3 1 ( A ) , the relations (17) and (18) imply 

the relation : 

(19) IAI = iAmi = IAOI©r © . s k ] e r e . 

The Constructions 7-1 imply the relation : 

(20) I Aol = IRol = © ^S(VX) 

Xe Ao 

The Constructions 7-1, the Remarks 6-11 and the Definition 6-3 imply the 

relations : 

XeA* [ X e A * J [Xe A' k J 

and therefore the Constructions 7-1 imply the relations : 

(2 , ) s * = [ x ® A k * ( v o ] e [ X ^ T ! 8 ( V x . u x ) ] 

The Constructions 7-1 imply the relation : 

(22) Mj=M'j= e L\= e £(vx,wi) 

According to the Definition 6-3 which gives the relation : 

(23) À'= IL A* 

and the relation : 

(24) A = A o i i r 11, A k 

it is immediate that the relations (19), (20), (21) and (22) imply the relation (15) 

which is equivalent to the relation (16), according to the Constructions 7-1. 

The last assertion is obvious and completes the proof. 

REMARKS 7-5 -

(a) In the previous Theorem 7-4 the F-skewfields Kj\, € 3C (F) are not 

necessarily of finite dimension over F. 

(b) In the previous Theorem 7-4, if each F-skewfield K\ € 3C(F) is of finite 

dimension over F : 

(25) lr^ = d i m F [ K x I 1 for all X e A 

then the relation (16) implies the relation : 
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(26) r = X (rx x px x px) + . £ ( a x px x qx) 
AG A AG A 

JGIOL^GAJ 

which gives the formula : 

(27) r = E ( r \ x px) px + qx + n\ 
\<=A [ J G I O J 

which characterizes the finite dimension over F : 
(28) [7=dim F [A] 

of the right Artinian F-algebra A. 

REMARKS 7-6 

The Theorem 7-4 of the previous paper r 101. gives a "Construction 
Theorem" for right Artinian rings and the previous Theorem 7-4 gives a "Structure 
Theorem" for right Artinian F-algebras, in the sense that any right Artinian ring or 
right Artinian F-algebra A has a realization of the form : 

A = D [ A ; n ] = D [ A ; C P k ) , Q¥)), 
for an unique "Completely structured vertex set" or F-"Completely structured 
vertex set" : 

A A 

A = A(A) 
These results constitute a generalization of the "Construction Theorem" for 

semisimple Artinian rings, given by the Wedderburn-Artin Structure Theorem, 
which implies that any semisimple Artinian ring R has a realization of the form : 

R = R ( A ) 

for an unique "Concrete vertex set": 

A = A (R) 

Likewise, according to the Theorem 6-9, the Theorem 6-10 gives a new kind 
of partial "Classification" of right Artinian F-algebras, by means of the "complete 

A 

invariant" A( ), in the sense that for two right Artinian F-algebras A and A1, the 

existence of an isomorphism u : A > A\ implies : 

A(A) = A(A') 
or equivalently, the condition : 
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Â(A)*À(A') 

implies that the F-algebras A and A' are not isomorphic. 
This result constitutes a generalization of the "Classification" of semisimple 

Artinian F-algebras, by means of the "classical invariant" A ( ), described in the 

Proposition 4-1 and which is given by the Wedderburn-Artin Structure Theorem. 
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SECOND PART 7  

ILLUSTRATION OF THE STRUCTURE THEOREM 

8 . EXAMPLES AND APPLICATIONS. 

Let F be any field and let K be any F-skewfield : K € 3C(F). 

(A) CANONICAL RESOLUTION. 

(a ) . For any non null integer n € N*, let M n(K) be the F-algebra of (n x n) 

square matrices with coefficients in K. 
Firstly, this semisimple Artinian F-algebra: 

A = Mn(K) 
is characterized by its concrete vertex set" : 

A (A) = A = [A = {1} ; (Ki = K ) , (pi = n)] 
Secondly, this right Artinian F-algebra A has the trivial finite right 

Canonical Resolution : 
31(A) = [A = Ao] 

and verifies the relations : 

m = pdim(A) = 0 and p(A) = 0 

which give the «Complete Decomposition of m = 0 » : 

(I) = I(A) 1 = ^ 1H = r J i ^ J i l ! 

in which : I = Ii = { 0 } and I* = IQ = Ii = 12 = 0 ; and the ^-''Completely 

structured vertex set" : 

A(A) = A = {A = { 1 } ; X = Z(A); (Kt = K), (pi = n), (qi = 0 ) , (t{) = 0 } 

(since 1^ = 0 ) , with the "Combinatorial Structure": 

Z(A) = 1 = [A = { 1 } ; m = 0 , (I); {Aj} = { A 0 } , (A*) = (A 0 ) , A' = 0 , 0 , 0 , 0 , 0 ] 

in which: 
{1} = A = Ao = A° forOe IandO€ Ii 

and: 

(A* k ) k e i ; = 0 ; (A'f)k ei 2 = 0 ; (A"j)jeto = 0 ; (Aj)jeto = 0 

since Ij = 0 , 1 2 = 0 and 1^ = 0 . 
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A 
Of course, this example is trivial since all the informations contained in A(A) 

are already contained in A (A), but it shows how the General Structure Theorem 

for right Artinian F-algebras is applicable, for instance, to simple Artinian 

F-algebras. 
(b) For any non null integer n e N*, let T n(K) be the F-subalgebra: 

T n(K) C M„(K) 

of upper triangular matrices. 
The obvious relation: 

( ^\ 
T n(K) . 

T n + l (K) = 

[ K 

\ 0 . . . O K / 
is equivalent to the relation: 

T n + 1 ( K ) = (T n(K) C M n(K) < Mi(K)) 

that is, according to the Theorem 2-13, to the general F-algebra extension: 
0 > S n + i (K) > > T n + i (K) » T n(K) • 0 

in which S n+i(K) is the idempotent right Socle of the (right) almost semisimple 
right Artinian F-algebra T n+i(K). 

Firstly, for any m € N, the right Artinian F-algebra : 

A = T m + i ( K ) 
characterizes its concrete vertex set": 

A(A) = A = [ A ; ( K X ) , (px)] 
in which : A = {0, 1, 2 , A , , m } and : 

(KX) = (KX)xeA = (Ko, Ki, K 2 , K X , K m ) 
with: 

K = K 0 = Ki = K 2 = ... = KX = ... = K m 

and 

(PX) = (PX)Xe A = (PO = 1» PI = 1, PX = 1, Pm = 1) 
and which determines the semisimple Artinian F-algebra : 

A , J ( A ) = R = R ( A ) = II M p (Kx) = n Kx = Ko x Ki x ... x K m 

AG A K A e A 

Secondly, for any m e N, the right Artinian F-algebra : 
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A = T m + i ( K ) 

has a finite right Canonical Resolution : 

91(A) = [A = A m — ^ - » A m . i . . . A k — ^ - » A k . i . . . Ai — ^ - » AQ] 

characterized by the following conditions: 

A 0 = Ti(Ko) = Mi(Ko) = G 0 = Ko m K 

Ai = T 2 (Ki) = (A 0 = Ti(Ko) Ä Mi(Ki) = Hi < Gi = Mi(Ki)) 

A 2 = T 3 (K 2 ) = (Ai = T 2(Ki) Ä M 2 (K 2 ) = H 2 < G 2 = Mi(K 2)) 

A k = T k + 1 ( K k ) = (Ak.i = T k (K k . i ) > ^ - > M k (K k ) = H k < G k = Mi(Kk)) 

in which: 

K s Ko = Ki = K 2 = ... = K k = ... = Km.i = K m 

and in which the "parameters": 

Vl , V2, .... . . . .Vm 

are the canonical injective F-algebra homomorphisms: 

: Ak-i = T k(K k_i) > > M k (K k ) = H k 

resulting from the conditions : K k .i = K k , for all k e {1, 2 , m } . 

Thus, this right Artinian F-algebra A = T m + i ( K ) verifies the relations : 

m = p dim(A) and p(A) = (pi = 1 , p k = 1 , p m = 1) 

which give the «Complete Decomposition of m» : 

d )= i (A) i = i o U i i = r i u m ii 

l k e l 2 J 
in which : I = Ii = {0, 1,2 m}, I* = \\ = {1 , 2, .... m} and l£ = I 2 = 0 ; 

and the F-"Completely structured vertex set" : 

A(A) = A = {A = {0, 1,.... m} ; I = 1(A) ; (Kx), (px), (qx), O^)} 

in which: 

(PA) = (PX = 1). (QX) = (qx = and (n[) = 0 ; 

with the "Combinatorial Structure": 
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1(A) = I = {A ; m, (I) ; {Aj} , (A*), A', (A*), 0 , 0 , 0 } 

in which : 
A = {0, 1, 2, X, m} 
Ai = {0, .... i} forall i€l 
A k = {k} for ail k € Ii 

A* = {k} for ail k€ Ii 

A' = {1, 2, m} 
and : 

( A ' f )k G I 2 = 0 î (A"j) j ei; = 0 ; (Aj)jeto = 0 

since I2 = 0 and IQ = 0 . 

This example, shows the difference between the F-''concrete vertex set" 

A (A) which gives only informations about R = A/J(A) and the Completely 
A „ 

structured vertex set" A(A) which, with the family of "parameters" 0Fk)keIi> 

characterizes the Structure of the right Artinian F-algebra A = Tm+i(K). 
Moreover, it is possible to remark that if in the family of F-skewfields : 

(Kx) = (Kx)XeA = (Ko, Ki, K 2 K X , K m ) 
the condition : 

K ^ K 0 = Ki = K 2 = ... = Kx = ... = K m 

is replaced by the existence of F-algebra monomorphisms : 
K 0 C K i C K 2 C ... C K\ C ... C K m 

the previous conditions characterize a "generalized upper triangular matrix 
F-algebra": 

/ K o K i KX Km-i K m \ 
0 Ki KX K m . i K m 

T m + i ( K 0 C K i C ... C K j t C ... C K m ) = 

K m - i K m 

V O 0 . . . 0 K m / 
with the same "Combinatorial Structure" and with the same "numerical 
invariants". 

(c) For any integer m e N, let : 
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p=m 

A = D m (K) = K[X]/ ( Xm+l) = K[x] = {a = Z apxP ; a p € K ; = 0} 

p=0 
be the Artinian local F-algebra factor of the F-algebra K[X] of polynomials with 
coefficients in K by the ideal generated by X m + 1 , that is the F-algebra generated by 
K and by a central element x such that x m + 1 = 0. 

For m = 0, then A = Do(K) = K is a F-skewfield. 
For m = 1, then A = Di(K) is the F-algebra of "dual numbers" over the 

skewfield K: 
Di(K) = K[X]/ ( X2) = K[x] = {a = ao + aix ; a i e K ; x2 = 0} 

For m > 1, it is immediate that: 
J(A) = 7Tl=(x) ; A/J(A) = R = K ; N(A) = (0) 

and: 

[J(A)] m = S(A) = M(A) = M = ( x m ) = K x m * (0) 

which give the "exact sequence": 
(x) 0 > M > > A B > 0 

in which: 
p=m-l 

B = A/M = Dm .i(K) = {b= X b pxP;bp€ K ; x m = 0} 
p=0 

and: 
M = M m = K x m = {amxm = x m a m ; a m € K} 

is the B-bimodule characterized by the conditions: 
b . (a m x^) = (b 0am)xm and (&mxm)V = (amb^x* 

for every b € B and every bf € B. 

In fact, since : N(A) = N = (0), the proper two-sided ideal: 
T s ( 0 ) € « ( B ) 

and the singular F-algebra extension (x) determine the T = (0)-essential 

singular F-algebra extension : 

(x, T) 0 > M > > (A, (0)) — » (B, T) > 0 

which is characterized, according to the Theorem 3-14, by an unique T s (0)-

essential cohomology class : 

h m = U e H^B, T, M) C Hap, (0), M) ^ H2(B, M) 

such that: 
(A, N) = (B, T, M, U ) = (B, (0), M, h m ) 

that is: 
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A = ( B , M , U ) = ( B , M , h m ) 
for the T s (0)-essential 2-cocycle : 

h m e z£(B, T, M) C Z2(B, (0), M) = Z2(B, M) 

characterized by the conditions: 
/p=m-l x 

hm(b,b') = X bpb'm.p x«* i f m > 2 
V p=i y 

and 
hi(b, b') = 0. x = 0 ifm = l 

for every b € B and every b'e B. 
Then, firstly, for any m e N, the right Artinian F-algebra: 

A = Dm(K) 
characterizes its F- "concrete vertex set" : 

A (A) = A = [A = {1} ; (K X) = (Ki = K ) , (px) = (pi = 1)] 

which determines the semisimple Artinian F-algebra : 

A/J(A) = R = R ( A ) = n M«. (Kx) = Mi(Ki) = Ki m K 
Xe A K 

Secondly, with the previous notations, this right Artinian F-algebra: 
A = Dm(K) 

has a finite right Canonical Resolution : 

31(A) = [A = A m — ^ - » A m . i ... Aj 2_» Aj.i... Ai — ^ - » Ao] 

characterized by the following conditions : 
(A 0 , N 0 ) = (D 0(K), (0)) = (G 0, (0)) = (K, (0)) 
(Ai, Ni) = (Di(K), (0)) = (Ao, T 0 , Mi, %i) = (D 0(K), (0), Mi, hi = 0) 
(A 2 , N 2) = (D 2(K), (0)) = (Ai, Ti, M 2 , \ 2 ) = (Di(K), (0), M 2 , h 2 ) 

(Aj, Nj) = (Dj(K), (0)) = (Aj.i, Tj.i, Mj, ̂ j) = (Dj„i(K), (0), Mj, hj) 

(A m , N m ) = (Dm(K), (0)) = (A m . i , T m . i , M m , U ) = (Dm-l(K), (0),Mm , h m ) 

for the Ty\-essential cohomology classes : 

hj = $j G H^Aj.i, TJ. i , Mj) C H2(Aj.i, Mj) = H2(Dj.i(K), Mj) 

defined by the Tj.i = (0)-essential 2-cocycles : 

hj e Z^Aj.i, Tj.i, Mj) C Z2(Aj.i, Mj) = Z2(Dj.i(K), Mj) 
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characterized by the conditions : 

hj(b, b') = ^ 2 bpb^pj xi if j > 2 

and 
hi(b,'bf) = 0. x = 0 if j = 1 

for every b € B and every b' € B, and in which, with the general notations, the 
non null Cj-i-bimodules: 

Mj€ At(Aj.i,Tj.i) 
have the characterizations: 

Mj = [M'j; V'j : Cj.i >H'J] 
in which: 

C j . ^ A j . ^ ^ A j . i ; M'j = K - K x i ; H'J = K 

and the "parameters" constitued by the F-algebra homomorphisms : 
4"j € Morp[Cj-i, H'J] 

are determined by the conditions : 

V ' / c = ? 2 C P X P 1 = C 0 

V P=0 ) 
for every c eCj-i. 

Thus, this right Artinian F-algebra A = Dm(K) verifies the relations : 
m = pdim(A) and p(A) = (pi = 0 , p j = 0 , p m = 0) 

which give the « Complete Decomposition of m »: 

(D = K A ) i = l i i! = r ii ig\LLii 

l k e l 2 J 
in which: I = {0, 1, 2 , m } , Ii = I 2 = { 0 } , lj = 0 a n d 

I* = \^ = = {1, 2 , m } ; and the V-"Completely structured vertex set" : 

A(A) = A = {A = {1} ; Z = 1 ( A ) ; (KJO = (Kj = K), (px) = (pi = 1), 

(qx) = ( q i s 0 ) , (nl) = ( n \ s l ) } 

with the "Combinatorial Structure": 

1(A) = X = {A = {1} ; m, (I); {Aj} , (A*), A' = 0 , (A 1*), (A"j), (A'j)} 

in which: 
Aj = A = {1} for all i e I 

A k = A<> = A o = { l } fork = 0 e l 2 

A' = 0 
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(A'k) = (A'k)k€ Ii = 0 since Ii = 0 

A , ,j c = A"? = 0 fork = 0 € I 2 a n d j € = ig 

and 

Awj = A,j = A = { l } for all j e ig = I* 

This example, shows also the difference between the F-''concrete vertex 

set" A (A) which gives only informations about A/J(A) = R = K = Ki and the 
A 

F-''Completely structured vertex set" A(A) which, with the two families of 

"parameters" (*¥ j)jGlo=l* and (£j)jeIo=I* , characterizes the Structure of the right 

Artinian F-algebra A = Dm(K). 

(B) ESSENTIAL COHOMOLOGY. 
(a) For the F-algebra Do = Do(F) = F, whenever F is considered as a 

(F-F)-bimodule or as a Do-bimodule F = Mi, for the proper two-sided ideal: 
T 0 ^ ( 0 ) e tf(F)s«(Do) 

according to ithe relation : 
/ D 0 ( M I ) = / F ( F ) = (0) = T 0 

the Proposition 3-15 and the obvious relation : 
H 2 ( D 0 , M I ) = H 2 ( F , F ) = {0} 

imply the relation: 

Ul = 0 } = {0} =U2

e (D 0, T 0 , Mi) = H*(F, (0), F) = H2(F, F) 

A 

in which ^ i = 0 is the unique To = (0)-essential cohomology class from 
Do = F into Mi = F, which determines the unique To-essential singular class : 

[ai, T 0 ] € Exte(D0, T 0 , Mi) = Exte(F, (0), F) 
characterized by the To = (0)-essential singular F-algebra extension : 

(<?i, T 0 ) 0 > (F ̂  Mi) > - ^ - > (Di, Ni = (0)) _ ^ L » ( D 0 , T 0 ) > 0 

in which the "pair" (D\, Nj = (0)) is defined by the condition : 

(Di, Ni) = (D 0, T 0 , Mi, & = (F, (0), F, 0 ) 

which determines, in particular, the singular F-algebra extension: 

(ai) 0 > (F = Mi) >-^—> (Di = Di(F)) — — » (Do = F ) — — > 0 
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in which the right Artinian F-algebra Di is defined by the condition : 

Di = (Do, Mi, £1) = ( F , F , 0) = Di(F) 

in such a way that the non null element: 

il(l) = x € J(Di) 

which characterizes the isomorphism of F-vector spaces : 

n : p = Mi - ^ U J(Di) = M(Di) 

determines a "realization" of the F-algebra Di, as the F-algebra of "dual 

numbers": 

Di = Di(F) = F [ X ] / ( X 2 ) = F[x] = {a = ao + aix ; x 2 = 0, ai e F } 

which has also the "matrix realization" : 

D i ^ D ^ J ^ j J a J ^ " 1 ! a i e F } 
0 [F] J I L 0 aoJ J 

It is convenient to remark that when the F-algebra Di is given, the previous 

"realization" depends of the choice of a non null element x G J ( D I ) , which is not 

uniquely determined, but only "up to an F-automorphism": 

cop, € AutF<Di) ^ F * 

such that: 

co^(x)= x' = îx and co^(a) = co^ao + aix) = ao + ai^ix = ao + aix' 

for the associated element |i G F * ^ AutF(Di) and for every a e Di. 

(b) For the F-algebra Di = Di(F), whenever the factor F-algebra : 

Dl/Mi = D i ( F ) / J ( D ( F ) ) = = | a = ^ ° a 0 € F [ = F = M 2 
1 1 0 0 1 LO.aoJ J 

is considered as a (Di-Di)-bimodule or as a Di-bimodule F = M 2 , it is easy to 

prove the relations: 

B2(Di,M2) = B2(Di(F), F ) = {0} 

and 

Z2(Di, M 2 ) = Z?(Di, F ) = {fy € C2(Di, F ) ; f^(a, a') = jiaia'i and ¿1 € F } = F 

which imply the relation : 

H2(Di, M 2 ) = H2(Di, F ) = {fy G C 2(Di, F ) ; f^(a, a') = ^taia'i and \ i e F } = F 

Thus, for the proper two-sided ideal: 

T i s ( 0 ) € V(Di) 

and for any cohomology class : 

f ^ = \ i e F = H2(Di, M 2 ) = H 2(Di, F ) 
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according to the obvious relations : 
/ D 1 ( M 2 ) = {b" = b"o + b"ix ; b"i G F and b"0 = 0} 

and 

ro^b") = {b f = b'o + b'ix ; b'i e F and b"ib'0 = 0} 

for every element: 

a" = (a"2, bM) G M 2 x / D L ( M 2 ) C M 2 x Di 

which determines the F-vector space : 
s D l (a ' \ fjj = {b = (b 0 + bix) G Di; a"2b + £(b", b) = 0} 

= {b = (b 0 + bix) G Di; a" 2b 0 + |ib"ibi = 0} 
the Definition 3-7 considers the condition (E), in which the conditions (r) and (s) 
become the condition: 

(r") ro/b'OCsD^a",^) 

and the condition: 
(s") b"s D l (a",f^)nTi = (0) 

such that, since Ti = (0), this last condition (s") is automatically verified. 
Then, whenever |i = 0, since the special and non null element: 

a" = (a"2, b") = (0, x) G M 2 x / D L ( M 2 ) C M 2 x D i 

verifies the condition (r"), the Definition 3-7 shows that the 2-cocycle fo = 0 is not 

a T\-essential 2-cocyle : 

f0 s 0 € zJ(Di, Ti, M 2 ) C Z2(Di, Ti, M 2 ) 

A A 

and therefore, the Definition 3-9 shows that the cohomology class f o = 0 = 0 / 5 

not a Tinessential cohomology class : 

f o = 0 £ H£(DI , Ti, M 2 ) C H2(Di, Ti, M 2 ) 

On the contrary, whenever [i * 0, that is whenever |i G F* = F - { 0 } , since 
the condition : b" * 0, that is b"i * 0, implies the relations : 

x G rDjfl)") and x £ SDj(aM, fy) 

the condition (r") implies necessarily : b" = 0, which gives : 
r D ^ ^ D ^ S D ^ a " , ^ ) 

and in particular : 1 G SDj(a", f)> which implies : a"2 = 0, and this proves that the 

condition (r") implies : a" = (a"2, b") = 0, in such a way that the Definition 3-7 
shows that, for [i G F*, the 2-cocycle is a T\-essential cocycle : 
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€ zJ(Di, T b M 2 ) C Z2(D b T b M 2 ) 

and therefore, the Definition 3-9 shows that, for G F*, the cohomology class 
A 
f ^ = fi is a T\-essential cohomology class : 

f ^ = \L e H^Di, T I , M 2 ) C H2(DI, T I , M 2 ) 

These two last results characterize the "space": 

H ^ T ! ^ ) 

of T\-essential cohomology classes from Di into M 2 , which is only a set, by 
the relation: 

H^(Di, Ti, M 2 ) = F* C F =H2(D b T b M 2 ) = H 2(Di, M 2 ) 

and the Theorems 3-10 and 3-14 imply that every Ti = (0)-essential cohomology 

class: 

f ^ l i e F * = H 2 ( D 1 , T I , M 2 ) 

determines the unique Tinessential singular class : 
[a 2 , Ti] € Exte(Di, Ti, M 2 ) = Exte(Di(F), (0), F) 

characterized by the Ti s (0)-essential singular F-algebra extension : 

( a 2 , Ti) 0 — > (F s M 2) >--^__> (B^, N 2 = (0)) — ^ - » (Di, Ti) — > 0 

in which the "pair" (B^, N 2 = (0)) is defined by the condition : 

(B^, N 2 ) = (Di, Ti, M 2 , [I) = (D(F), (0), F, f^) 

which determines, in particular, the singular F-algebra extension : 

( G 2 ) o — > (F = M 2 ) >~^—> (B^ = B^F)) — ^ - » (Di = Di(F)) — > 0 

in which the right Artinian F-algebra B^ is defined by the condition : 
B̂ t = (Di, M 2, l̂) = (Di(F), F, f^) = B^(F) 

which implies easily the existence of a F-basis (1, ei, e 2 ) , which determines a 
"realization" of the F-algebra B^ of the form : 

B^ = B^(F) = {a = ao + aiei + a 2 e 2 ; eie 2 = e 2ei= ê  = 0, ej = jie 2 ; ai G F} 

such that: 
<?2(a) = a 2(ao + aiei + a 2 e 2 ) = (ao + aix) G Di = D\(F) 

for every a e B^ and such that: 

i 2 (a 2 ) = a 2 e 2 for all a 2 G F =M 2 

and also the "matrix realization" : 

11 



IF] HIFI F r r "i ^ 
L A ^ L J \ * ao | i a i a2 

Bp, = B^CF) = 0 [ F M F ] = ] a = O a o a i a 4 e F • 

0 0 |Fl ^ L O O a o J 

in which appears the "parameter" |i e F * = H£(Di, Ti, M2). 

(c) For the previous F-algebra = B^(F), whenever the factor algebra : 

H o 0 1 r 0 0 ] 

Bn/j(B ) = 0 1 H 0 = ] a = 0 ao 0 a ° e F r = F = M 3 

0 0 [ F ) I L 0 0 a o J 

is considered as a (B^-Bjx)-bimodule or as a B^-bimodule F = M3, it is easy to 

prove the relation: 
H2(B^, M 3) = H2(B U , F ) 

= { g v G C 2(Bn, F ) ; g v(a, a1) = v(aia*2 + a2a'i) and v e F } s F 
Thus, for the proper two-sided ideal: 

T 2 = (0 )e 7?(B U ) 

as in the previous example, it is possible to prove that the "space" : 

H 2 ( B U , T 2 , M 3 ) 

of T2-essential cohomology classes from into M3, which is only a set, is 
characterized by the relation : 

H ; ; ( B ^ T 2 , M 3 ) = F * C F = H2(B^, T 2 , M 3 ) = H2(B^, M 3 ) 

Then, the Theorems 3-10 and 3-14 imply that every T 2 = (0)-essential 

cohomology class: 

g V = V € F * ^ H 2 ( B H , T 2 , M 3 ) 

determines the unique Ti-essential singular class [ a 3 , T 3 ] , defined by : 

( a 3 , T 2 ) 0 — > (F = M 3 ) >-^-> (B^v, N3 ^ (0)) - 3 » (B^, T 2 ) — > 0 

in which the "pair" (B^y, N 3 = (0)) is defined by the condition : 

(IV,v, N 2 ) = (B^, T 2 , M 3 , v) = (B^(F), (0), F, g v ) 

which determines, in particular, the singular F-algebra extension : 

« J 3 ) 0 > (F = M 3 ) >-^-> (B^v = B^v(F)) - S > % = B^(F)) — * 0 

in which the right Artinian F-algebra B ^ V is defined by the condition : 

7 8 



B U ) V = (B|i, M 3 , V) = ( B U ( F ) , F , g v ) = B U , V ( F ) 

which implies easily the existence of a F-basis (1, e i , e2, e3) , which determines a 

"realization" o f the F-algebra B ^ v = B U > V ( F ) o f the form : 

f ' 2 2 
e i e3=e3e i=e 2 =e2e3=e3 e 2=e3 = 0 

B u , v = B U , V ( F ) = < a=ao+aie i+a2e2+a 3 e3 , > 

e ? = j t e 2 , e i e 2 = e 2 e i = v e 3 , a i e F 
V. x J 

such that: 

(73(a) = a3(ao+aiei+a2e2+a3e3) = (ao+aiei+a2e2) e = B ^ F ) 

for every a € B^ > v and such that: 

¿3(33) = a3e3 for all a3 e F = M 3 

and also the "matrix realization" : 

\^X^\^k F r ""ao vai va2 a 3 ~ 

B U , V ( F ) =
 L - X ^ v ; =i a = nZ . ai e F f 

0 0 ]F1 [Fj 0 0 ao ai 

_ 0 0 I L O 0 0 aoJ J 

in which appear the "parameters" |X € F * = H e ( D i , T i , M2) and 

V e F * = H ^ B ^ , T 2 , M 3 ) . 

(d) At last, for the right Artinian F-algebra : 

B = ( D i ( F ) C M 2 ( F ) <3 F ) 

which has the "matrix realization": 

H j l F f | " b 0 b i / i l bi € F 

B = B ( F ) = 0 IS F = < b = 0 b 0 /2 , /j 6 F • 

O O F I L 0 0 gi J g i e F ; 

and its idempotent right Socle : 

S(B)=N(B) = T e ^ ( B ) 

with the "matrix realization" : 

~ ° 0 F ] f f"0 0 hi bi = 0 " 

S(B) = N(B) = T = ° 0 F = j t = 0 0 / 2 , /j € F » 
O O F L LO 0 gi J gl e F . 

which determines the right Artinian F-algebra : 

B/T = C = Di(F) 
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and the general F-algebra extension : 

(T') 0 > T >-^—> (B = B(F)) — — » (C = Di(F)) > 0 

and for the C-bimodule or Di-bimodule M1 = M3 = M2 = F, the Example ( B ) - (B) 

gives the relation: 
H 2(B, T, M') = H 2(C, M1) = Z 2(C, M') =Z 2(Di, M') 
= {h^ € C 2 ( D b F ) ; h^(a, a') = ^aia'i and [ie F} = F 

Then, for the proper two-sided ideal: 
T G V(B) 

and for any cohomology class : 

h^ = |i G F s H 2(B, T, M') = H 2(C, M') 

according to the obvious relation : 
/B(M') = {b'G B ; b ' 0 = 0} 

for every element: 

a' = (m\ b') G M' x /B(M') C M' x B 

which determines the F-vector space : 
SB(a\ hpL) = {b € B ; m'b + h*(b', b) = 0} = {b G B ; m fb 0 + Jib'ibi = 0} 

the Definition 3-7 considers the condition ( E ) , in which the conditions (r) and (s) 
become the condition: 

(r f) rB(b') C s B (a\ h^) 

and the condition: 
(s') b'sB(a\ hjx) n T = (0). 
If the element b' G /B(M') verifies : b'i * 0, the element: 

to € T C SB (a', h^) 

defined by the conditions : l\ = gi = 0 and / 2 = 1 , verifies the relation : 
O^b'toG b'sB(a', h ^ ) n T 

Therefore, the condition (s') implies : b'i = 0 , that is : b' G T, and the 
Lemma 1-2 implies the existence of an element t' G T such that: b' = b't\ which 
verifies: 

b' = b't' G b'sB(a', h ^ ) n T = (0) 
that is : b' = 0, which gives : rB(b') = B, so that the condition (r') implies : 
S B h ^ ) = B, and in particular the relation : b" G s B (a \ h^), for the element 
b" G B defined by the conditions : b"i = /"1 = /" 2 = g"i = 0 and b M

0 = 1, which 
imply : m' = 0, that is : a' = (m\ b1) = 0, in such a way that the Definition 3-7 
shows that, for |i G F, the 2-cocycle is a T-essential cocycle : 
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e Z*(B, T, M') s Z2(B, T, M') = Z2(C, M') 

and therefore, the Definition 3-9 shows that, for \i e F, the cohomology class 
A 
h = |i is a T-essential cohomology class : 

h H = fi G F = H*(B, T, NT) s H 2(B, T, M') = H 2(C, M') 

This proves that the "space" : 

H2(B, T, M') 

of T-essential cohomology classes from B into M\ which is in general only a 
set, is characterized by the relation : 

H*(B, T, M') = F s H2(B, T, M') = H2(C, M') 

Moreover, the Theorems 3-10 and 3-14 imply that every T-essential 
cohomology class: 

h^ = \i = F = H^B, T, M') = H*(B, T, M 3 ) 

determines the unique T-essential singular class : 
[a \ T] e Exte(B, T, M') = Exte(B, T, M 3 ) 

characterized by the T-essential singular F-algebra extension : 
1 ' IT* 

(a\ T) 0 > (M* = F) > > (B'^, N') » (B, T) > 0 

in which the "pair" (B^, N') is defined by the condition : 
(B^, N') = (B, T, M\ \i) = (B(F), T, F, h^) 

which determines, in particular the singular F-algebra extension : 

(a-) o—>(M' = F) >—-> ( B ^ = B^(F)) » (B = B(F)) — > 0 

in which the right Artinian F-algebra B'^ is defined by the condition : 

B ^ = (B, M\ \L) = (B(F), F, h*) = B^(F) 

which implies easily that this F-algebra B ^ has the "matrix realization" of the 
form: 

B V = B V ( F , J E °Ua = h °1] 
L 0 F J I L 0 g i J J 

completely characterized in the following |TABLE № l|, in which the 
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coefficients ai, /j and g i are in F, in such a manner that the relations : 
N' = N(BV) = (0, T) = {a e B'jt ; ao = ai = a 2 = 0} 

and 
M* = M(B'n) = (F, 0) = {a € B'^ ; ao = ai = /1 = / 2 = gi = 0, a 2 6 F} 

characterize the right Socle : 
S' = S(B'n) = M(B^) © N(B^) = M' © N' = {a G B ^ ; a 0 = ai = 0} 

(C) FIRST EXAMPLE. 
Firstly, with the previous notations, every ^ € F determines the right 

Artinian F-algebra : 

A = AH = AH(F) = (B^(F) C M 6(F) < F) 

which has the "matrix realization" of the form : 

A = AH = AH(F) = [ E F l = { a = h ^ l l 
_ 0 F j I L 0 g 2 J J 

completely characterized in the following TABLE № 2 , in which the coefficients 

aj, /j and gk are in F, in such a manner that its idempotent right Socle is 
characterized by the relation : 

S = S(A) = S(AH) = {a G A = A^ ; ao = ai = a 2 = /1 = /2 = gl = 0} 
and determines the right Artinian F-algebra : 

A/S = A^/S = B'^ = B^(F) 
and the general F-algebra extension : 

(a) 0 — > S >-^—> (A = A^ = AKF)) — — » ( B ^ = By(F)) > 0 

For any field F and every |i e F, this construction gives an example of right 
Artinian F-algebra : 

A = AH = AKF) 
of finite dimension over F : 

dimp [A] = r = 13 
with a finite right Canonical Resolution : 

31(A) = [A = (A4 = AH) (A 3=B ,j l) - ^ 5 » 

(A 2=B) — ^ - » (Ai=Di) - J — k > (Ao=F)] 

which gives the finite right Resolutive Dimension : 
p dim(A) = m = 4 

that is : 
I = { 0 , 1 , 2 , 3 , 4 } I* = { 1 , 2 , 3 , 4 } 

and the finite right Canonical Sequence : 
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TABLES OF MATRIX REALIZATIONS 

TABLE № l] | TABLE № 2 
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p(A) = (pi = O, p2 = 1, P3 = O, P4 = 1) 

equivalent to the conditions : 

lj = { j € I*;pj = 0} = { l , 3 } ll = { k € I * ; p k = l } = { 2 , 4 } 

which give a « Complete Decomposition of m = 4» of the form : 

(I) = 1(A) I - I J U I ^ I U J J U II 

in which : Ii = {0, 2, 4 } , I 2 = {k e Ii ; (k + 1) e lj} = {0, 2 } , i j = { 1 } and 

I o = { 3 } -

In order to complete the characterization of the Completely structured 
vertex set" : 

A(A) = A = {A ; Z ; (KX), (px), (qx), (i^)} 

equipped with its "Combinatorial Structure" : 

Z(A) = Z = [A ; m = 4, (I) ; {Ai}, (A*), A', (A*), (A"J), (A"j), (A'j)] 

in which the relations : 
A = { 1 , 2 , 3 } 

(KjO = (Ki = F, K 2 = F, K 3 = F) and (pX) = ( P l = 1, p 2 = 1, p 3 = 1) 

are obvious, it is possible to prove the relations : 

A o = { l } = A i C A 2 = { 1 , 2 } = A 3 C A4 = { 1 , 2 , 3 } = A; 

A 0 = { 1 } ; A 2 = { 2 } ; A 4 = { 3 } ; 

A1 = { 2 , 3 } ; A'O = 0 ; A'2 = {2} ; A ' 4 = { 3 } ; 

A"? = 0 A"| = {2} 

A"i = A'i = A 0 = {1} A"3 = A'3 = A 2 - A"? = {1} 

and also the relations : 

(qx) = (qi = 0 , q 2 = 2 , q 3 = 6) 

(n[) = (nj = l , nj = 0 , n j = 0 ) 

(n^) = (n5=l, n| = 0 , n | = 0) 
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which imply in particular the relation : 

Ao = Bo = Go = Ro= 11 R^= R 1 = Ki = F 
Xe Aq 

and the relation: 

An(A, = R = R4= 11 R^ = K i x K 2 x K 3 = F x F x F 
/ J w XeA 

Moreover, with the Constructions 7-1, the Theorem 7-4 shows that the 
Structure of the right Artinian F-algebra A is characterized by its F-" Completely 

A A 
structured vertex set" A = A(A) and by the three families of "parameters": 

characterized by the following conditions : 

(ci) For j = 1 € IQ, the "parameter" *¥'\ is the F-algebra homomorphism : 

¥' l = WK1 : C 0 = Ki = F > FT1 = Ki = F 

which determines the non null Q)-bimodule : 
Mi = [M'i ; *F'i : C 0 > H' 1 ] = F 

and the "parameter" £i is the unique To= (0)-essential cohomology class : 

Si = o € H*(AO, T 0 , M I ) = yl\ ( D 0 , T 0 , M O = H * ( F , (0), F ) 

which give the characterization : 

(Di, Ni SE (0)) = (Ai, Ni) = (A 0, T 0 , Mi, £i) = (F, (0), F, 0) 

(bi) For k = 2 G I j , the "parameter" *F 2 is the canonical injective 

F-algebra homomorphism: 
y 2 : Ai = Di = Di(F) > > H 2 = M 2 (K 2 ) = M 2(F) 

which gives the characterization : 

B = A 2 = (Ai H 2 < G 2 ) = (Di(F) C M 2(F) < F) 

(C2) For j = 3 e IQ, which implies the relation : 

T 2 = T"?= 0 , = S 2 = T = S(A 2) = S(B) 
L XeA"] 

the "parameter"NK3 is the canonical F-algebra homomorphism: 

* ' 3 : C2 = A 2 /T 2 = B/T = C = Di(F) » H'3 = Ki = F 

which determines the non null C2-bimodule : 
M3 = [ M ' 3 ; ¥ ' 3 : C 2 » H'3] =M' = F 
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and the "parameter" £3 is the T2 = T^essential cohomology class : 

= = il € F s H*(A2, T 2 , M 3 ) = H2(B, T, M') 

which give tlie characterization : 
(B'n, N') = (A3, N3) = (A 2, T 2 , M 3 , $3) = (B(F), T, F, h^) 

( b 2 ) For k = 4 e l\9 the "parameter" ¥ 4 is the canonical injective 

F-algebra homomorphism: 
¥ 4 : A3 = B'n = B'^(F) > > H 4 = M 6 (K 3 ) = M 6 (F) 

Thus, this description gives a first illustration of our Structure Theorem. 

(D) SECOND EXAMPLE. 
Secondly, with the previous notations, for my field F, every pair (|i, v) of 

elements |1 e F* and v e F*, determines an example of right Artinian F-algebra : 

A = B ,̂v = B^v(F) 
of finite dimension over F : 

dimp[A] = r = 4 
with a finite right Canonical Resolution : 

31(A) = [(A = A3 = B^,v) — 3 » (A 2 = B ^ ) - S » ( A i = Di) - 2 » (A 0 = F)] 

which gives the finite right Resolutive Dimension : 
pdim(A) = m = 3 

that is: 
I = { 0 , 1 , 2 , 3 } I* = { 1 , 2 , 3 } 

and the finite right Canonical Sequence : 

p(A) = ( p i = 0 , p 2 = 0 , p 3 = 0) 

equivalent to the conditions : 

l j = { j € I * ; P j = 0 } = I * = { l , 2 , 3 } i; = { k € l * ; p k = l } = 0 

which give a «Complete Decomposition of m = 3» of the form : 

(I) = 1(A) I = lj li II = ̂ lUjjj Ii II 

in which : I = {0, 1, 2, 3} , Ii = I 2 = { 0 } , l\ = 0 and I* = lj = $ = {1 , 2, 3 } . 

In order to complete the characterization of the ¥-" Completely structured 
vertex set" : 
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A(A) = A = {A ; Z(A) ; (KJO, (px), (qx). (4)} 

equipped with its "Combinatorial Structure" : 

1(A) = Z = [A ; m = 3, (I) ; {Aj}, (A*), A', (A*), (A"k), (A"j), (A'j)] 

in which the relations : 

A = {1} 

(K X ) = ( K i = F ) (PX) = (P1 = D 

are obvious, it is possible to prove the relations : 

Ai = A = {1} for alii € I 

A k = A<> = A o = { l } fork = 0 e l 2 

A' = 0 

(A*) = (A* k ) k G i* = 0 since ij = 0 

A"jc = A"j) = 0 fork = 0 e l 2 a n d j e lj = 

1° = I* = { 1 , 2 , 3 } 

A"j = Aj = A = { l } for all j e ig = I* 

and also the relations : 

(qx) = (q i=0) 

(nj) = (n{ = 1 , n? = 1 , n? = 1) 

which imply in particular the relation : 

A 0 = B 0 = Go = Ro = I l R x = R 1 = Ki = F 
Xe Ao 

and the relation : 
A / J ( A ) = R = R3 = R2 = Ri = Ro = Ki = F 

which shows that the right Artinian F-algebras : 

A = A3 , A2 , Ai , Ao = F 

are local F-algebras. 

Moreover, with the Constructions 7-1, the Theorem 7-4 shows that the 

Structure of the right Artinian F-algebra A is characterized by its F-"Completely 
A A 

structured vertex set" A = A(A) and by the two families of "parameters" : 

(¥j)jeIo=I* 3 0 ( 1 (Çj)jeIo=I* 
characterized by the following conditions : 
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(ci) For j = 1 e IQ, the "parameter" *¥'\ is the F-algebra homomorphism : 

T'l = I d K l : Co = Ki = F > H'1 = Ki = F 

which determines the non null Co-bimodule : 

Mi = [M'i ; ¥ ' i : C 0 • H'»] s F 

and the parameter %\ is the unique To = (G)-essential cohomology class : 

Çl = Ô € H*(Ao, T 0 , Mi) = H2(D 0 , To, Mi) = H*(F, (0), F) 

which give the characterization : 

(Di, N1 = (0)) = (Ai, Ni) = (A 0, T 0 , Mi, Çi) = (F, (0), F, 0) 

(C2) For j = 2 G IQ, the "parameter" ¥ '2 is the canonical surjective 

F-algebra epimorphism : 

4" 2 : Di = Ai = Ci » H'2 = Ki = F = Di/J(Di) = Ai/J(Ai) 

which determines the non null Ci-bimodule : 

M 2 = [M'2 ; V 2 : Ci — > H'2] = F 

and the "parameter" ^2 = 1̂  is a Ti = (0)-essential cohomology class : 

& = f ^ G F* = H^CAi, T I , M 2 ) = H^Di, T I , M 2 ) = H*(Di(F), (0), F) 

which give the characterization : 

(B^, N 2 ^ (0)) = (A 2, N 2) = (Ai, Ti, M 2 , fe) = (Di(F), (0), F, f^) 

( C 3 ) For j = 3 G IQ, the "parameter" is the canonical surjective 

F-algebra epimorphism : 

H"3 : B^ = A 2 = C 2 » H'3 = Ki = F = B^/J(B^) = A2/KA2) 

which determines the non null C2-bimodule : 

M 3 = [M'3 ; 4" 3 : C 2 > H'3] = F 

and the "parameter" £3 = v is a T2 = (0)-essential cohomology class : 

= gv = v e F * E H2(A 2 , T 2 , M 3 ) = H^CBu, T 2 , M 3 ) = H*(BU(F), (0), F) 

which give tlie characterization : 

(Bu,v, N3 = (0)) = (A3, N3) = (A 2 , T 2 , M 3 , Ç3) = (Bji(F), (0), F, g v ) 

Thus, this description gives a second illustration of our Structure Theorem. 

(E) THE ROLE OF THE PARAMETERS. 
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The previous example shows that for any field F, every pair : 

(¡1, v) € (F* x F*) 

determines a right Artinian F-algebra : 

A = B^v = B^v(F) 

with a finite right Canonical Resolution : 

31(A) = [(A = A 3 = B^, v) —
3 » (A 2 = B^) - 2 » (Ai = Di) - ^ » (Ao = F)] 

and a Structure characterized by its F-''Completely structured vertex set": 

A A 

A = A(A) 

and by two families of "parameters": 

= O P ' l , ^ ^ ' 3 ) and (^j)jElo = ( ^ l = 0 ^ 2 = f j i = ^ ^ 3 = g v = v ) 

In particular, with the Notations of the Example (A) - (c), for my field F, 

the particular pair: 

(1, 1) € (F* x F*) 

determines the right Artinian F-algebra : 

A = B u = B i , i ( F ) = D 3 = D 3(F) 

with a finite right Canonical Resolution : 

&(A) = [(A = A 3 = D 3(F)) - ^ » (A 2 = D 2(F)) - ^ » (Ai = Di) (Ao = F)] 

and a Structure characterized by the same F-"Completely structured vertex set" : 

A - A A 

A(A) = A = A(A) 

and by two families of "parameters": 

( ^ j ) J G Io = ( ^ 1 , ^ 2 , ^ 3 ) and (5j)je fo = ( ^ l = 0 , 5 2 = f l = 1 ^ 3 = gl = D 

Thus, it is not impossible that the right Artinian F-algebras : A and A, be 

isomorphic. 

In fact, it is easy to verify that the F-algebra automorphism : 

co^ e AutF(Di(F)) « F* 

defined by the condition : 

co^a = ao + aix) = a = ao' + aip,x for all a € Di(F) 

the F-algebra isomorphism: 

c^x: A 2 = B^(F) A 2 = D 2(F) 

defined by the condition : 
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co (̂a = ao + aiei + a 2 e 2 ) = a = ao + aî ix + a 2 p c 2 

for all a € A3 = B^v(F) and the F-algebra isomorphism : 

co^,v : A3 = B^vCF) — ^ A3 = D 3(F) 
defined by the condition : 

CD^ v ( a = ao + a l e l + a 2 e 2 + a 3 e 3 ) = a = ao + aijix + a 2p,x 2 + a3V~lp,2x3 

for all a e A3 = Bj^vCF), determine an isomorphism of Resolutions : 

©: R(A) R(A) 

characterized by the following commutative diagram : 

A = A3 = B^v(F) — ^ - » A 2 = B^(F) — ^ - » Ai = Di(F) — ^ - » A 0 = F 

i«H,v l<*\i |C0H | W F 

A = A3 = D 3(F) — ^ - » A 2 = D 2(F) — — » Ai = Di(F) — — » A 0 = F 

Now, it is possible to compare the "iterative constructions" of the 

F-algebras A = B^ V (F) and A = D 3(F) = B U ( F ) . 
With obvious notations, in the first step, starting from the same F-algebras : 

Ao = F = Ao 

which give : *F'i = MK'i, and therefore : Mi = Mi, the same "parameters" : 

^ l 4 l = 0 e H^Ao, TO, M I ) = H^Ao, T 0 , Ml) = H 2(F, (0), F) 

determine the same algebras : 

Ai=Di(F) = Ai 
with the same canonical F-algebra epimorphisms : C\ = x \ . 

Then, in the second step, starting from the same F-algebras : 

Ai=Di(F) = Ai 

which give : ¥ ' 2 = cri = X\ = ¥ 2 , and therefore : M 2 = M 2 , this gives the same 

"spaces": 

F* = H^Ai, T I , M 2 ) = H^Ai, f 1, M 2 ) = H2(Di(F), (0), F) 

From here, the choice of different "parameters": 

& = f \L = \ i € F* SE H^Ai, T I , M 2 ) = H2(Di(F), (0), F) 
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and 

^ 2 = f l = l e F * E HjCAi, T l f M 2 ) s H2(Di(F), (0), F) 

determines two (0)-essential singular F-algebra extensions : 

( G 2 , Ti) 0 ~ ^ ( F E M 2 ) ^ (B^(F), N 2 = (0)) — 2 » (Ai,Ti) — • 0 

and 

(x 2 , f i) 0 — - > (F SE M 2 ) > > (D 2(F), N 2 s (0)) (Ai, f i) —-»0 

which are "equivalent" if and only if : £ 2 = £ 2 , that is if and only if: |X = 1. 

Thus, whenever 1 * (i e F*, the two previous (0)-essential singular 

F-algebra extensions ( a 2 , T 2 ) and (x 2 , Ti) ar£ no/ equivalent, but /A^j 

are isomorphic by means of the following exact and commutative diagram : 

(02) 0 > (F = M 2 ) A (A 2 = B^(F)) - 3 » (Ai = Di(F)) —-> 0 

(X2) o > (F HE M 2 ) >il> (A 2 = D 2(F)) — ( A i = Di (F) ) — > 0 

in which the isomorphisms of F-vector spaces : 
i 2 : (F = M 2 ) > » M(A 2) = M(B^(F)) = Fe 2 

and 

T 2 : (F s M 2 ) > » M(A 2) = M(D 2(F)) = F x 2 

are defined by: 

12(^2) = a2 e 2 and i 2 ( a 2 ) = a 2 x 2 

for all a 2 G F = M 2 and all a 2 e F = M 2 , in which : 

co^ : F = M 2 ^ > F = M3 

is the isomorphism of Di(F)-bimodules defined by : 

G>'^(a2) = | ia 2 for all a 2 G F = M 2 

and in which co^ and cô  are the previous F-algebra isomorphisms. 

It seems that this curious phenomenon results from the fact that the group of 

F-automorphisms : 

AutF(Di(F)) = F* 

operates on the space of (0)-essential cohomology classes : 
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H2(Di(F), (0), F ) 

by an "action": 

Aut F(Di(F)) x H2(Di(F), (0), F ) > H2(DI(F) , (0), F ) 

A A A 
(oy , f) > oy[f ] = f' 

characterized by the condition : 

for every f € Z^(Di(F), (0), F ) and every |T € F * s AutF(Di(F)), in such a way 

that the relation: 
A A 
^ = %[fi] 
A - A 

shows that the "parameters" £2 = f p. = H and £2 = f 1 = 1 are connected by the 
relation: 

^2 = C0^[^2] 
determined by the F-algebra automorphism : 

CO^G Aut F(Di(F)) = F * 

and which implies the existence of the F-algebra isomorphism : 

: (A 2 = B ^ ( F ) ) (A 2 = D 2 ( F ) ) 

Then, in the third step, starting from the isomorphic F-algebras : 

A 2 = B ^ ( F ) and A 2 = D 2 ( F ) 

by means of the F-algebra isomorphism co ,̂ which gives : 

¥ 3 = ai o(T2 and ¥ 3 = 1 1 0 X 2 

and therefore: 

4" 3 = ^ 3 o e5 u 

it is possible to compare the structures of the A2-bimodule M3 and of the 

A2-bimodule M3, and also the (0)-essential cohomology classes : 

^3 = gv = v e F* = H*(A2, T 2 , M 3 ) = H2(BU(F), (0), F) 

and 

^3 = g 1 = 1 e F* = H2(A2, T 2 , M 3 ) = H2(D2(F), (0), F) 

9 2 



for which there exists a connection analogous to a previous relation. 

This example shows that for the right Artinian F-algebras : 

A = B^v = B^v(F) and À = B u = B U ( F ) = D 3 = D 3(F) 

having the same F-''Completely structured vertex set" : 

A A A — 

A(A) = A = A(A) 

their "parameters" verify in particular the relations : 

¥ ' l = ¥ ' i ¥ ' 2 = ^ ' 2 V'l = V'3 o % 

and 

Sl=Il ^2 = 0 ) ^ 2 ] 
which show how they are connected, by means of the "iterative construction" of 

the F-algebra isomorphisms : 

CDp. € AutF(Di(F)) and : A2 > Â2, which determine the F-algebra 

isomorphism : œ^ v : A > A. 

These observations explain the reasons for which, in the Remarks 6-11 of 

[10]. we have said that the "parameters" are some "semi-invariants" of the 

Structure of right Artinian rings or F-algebras. 

Moreover, it is convenient to remark that the rôle of the parameters is 

necessaryy as this is shown by the last example following the Theorem 8-1. 

(F) LOCAL RIGHT ARTINIAN F-ALGEBRAS. 

For any field F, let A /(F) be the class of local right Artinian 

F-algebras, that is of right Artinian F-algebras : 
A € dfc(F) 

which are local in the sense that the semisimple Artinian F-algebra A/J(A) = R is a 

F-skewfield : 

A / J ( A ) = R = K G 3C(F) 

called its "residue class F-skewfield", this last condition being equivalent to the 

fact that A has a F-''concrete vertex set" of the form : 

A (A) = A = [A = {1} ; (Kx) = (Ki ^ K), (px) = (pi = 1)] 

For a finite right Resolutive Dimension : 

pdim (A) = m 

which gives : 

I = {0, 1,2, m} I* = {1 , 2,. . . , m} 
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the condition : A = { 1 } , determines a finite right Canonical Sequence of the form: 

p(A) = (pi = 0, p2 = 0 , p j = 0 , p m = 0) 

equivalent to the conditions : 

C = { j € I*;pj = 0 } = I * í = { k € l * ; p k = l } = 0 

which give a «Complete Decomposition of m» of the form : 

© = K A ) i=i^i i i i=ri i T i;̂ JULii 
KG I? 

V L ) 

in which : I = { 0 , 1 , 2 , m } , I, = I 2 = { 0 } , I* = 0 

and 

I* = í = I¡¡ = { l , 2 , . . . , m } 

In order to complete the characterization of the Completely structured 

vertex set" : 

À(A) = A = {A ; I = 1(A) ; (KX), (px), (qx), (n[)} 

equipped with its "Combinatorial Structure" : 

2(A) = I = [A ; m, (I) ; {Ai}, ( A k ) , A', (A*), (A"k), (A"j), (A'j)] 

it is possible to prove that the conditions : 

A = { 1 } (Kx) = ( K i s K ) (px) = (Pl = D 

imply automatically the relations : 

Ai = A = { l } fora l l i e l 

A k = AO = A o = { l } fork = 0 G l 2 

A' = 0 

(A'k) = ( A * ) k 6 1 * = 0 since l\ = 0 

A"k = A"? = 0 fork = 0 e l 2 a n d j e I¡$ = 

lg = I* = { l , 2 , m } 

A"j = A'j = A = { 1 } forallje lg = I* 

and also the relations : 

(qx) = (qi = 0 ) 

(nj) = (n'j h ni = nj > 1 ) = (nj)j £ ¿ 1 * 

for non null integers nj e N*, indexed by j e I* = { 1 , 2 , m } . 
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Morever, it is convenient to remark that with the general notations, the 
previous conditions imply automatically the relations : 

T"| ,s(0) and T j . ! s ( 0 ) € «(Aj.i) 

which give the relations : 
Aj-i/Tj-i = Cj.i s Aj-i for all j € I* 

and that for each index j € 1̂  = I*, which determines the right Aj_i-module : 

M'j = V\ = X(Vi, W\) = W\ = KjJ = KnJ = WJ 

and its F-algebra of endomorphisms : 
H'J = $ A H ( M ' J ) = seovj) = M n j (K) 

the characterization of a non null Cj-i-bimodule: 
M j = [ M ,

j ; V ,

j : C j - i — > H ' J ] 
is determined by a "parameter" Vj constituted by a F-algebra homomorphism: 

4"j : Cj.i EE Aj.i > H'J SE ^B(WJ) = M n.(K) 

Thus, for a local right Artinian F-algebra: 
A e A/(F) 

the knowledge of its F-"Completely structured vertex set" : 
A A 
A(A) = A 

is equivalent to the knowledge of its F- "Local completely structured vertex set", 
of the form : 

Q(A) = Q = [ m f ( I ) , K , ( n j ) J € r ] 
in which m is an integer : m e N which determines I = {0, 1, 2 , m } , in which 
K is a F-skewfield : K € 3C (F) and in which (nj)jG i* is a family of non null 
integers : nj € N*, indexed by j € I* = {1, 2 , m } . 

Then, the translation of the Constructions 7-1 and of the Theorem 7-4 gives 
the following result. 

THEOREM 8 - 1 (STRUCTURE THEOREM IN THE LOCAL CASE). 
For any field F, the Structure of any local right Artinian F-algebra: 

A € A/(F) 

is characterized "up to an F-isomorphism" by a (or by its) F-"Local completely 

structured vertex set": 

n = [m, (I ) ,K, (nj ) J G i* ] 

and by two families of "parameters" : 
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in such a manner that in its finite right Canonical Resolution : 

31(A) == [A = A M — > > A m . i ... Ai — ^ » A n ... Ai — » Ao = K] 

the Structures of the local right Artinian F-algebras : 
A | e A/(F) for all i € I 

are determined by an "ascending iterative construction" from the F-skewfield 
AQ = K € 3C (F), to the local right Artinian F-algebra : A = A M , characterized 

by the following conditions : 
(a) The local right Artinian F-algebras A[ verify the relations : 

A I/J(A i)= Rj = K for all i e I 

which give in particular the relation : 
A/J(A) = R = R m = K 

(b) For each index j G I*, the Structure of the local right Artinian 
F-algebra : 

Aj e A/(F) 

is characterized by : 
(a) The local right Artinian F-algebra : 

Aj.i € A/(F) 
constructed by an ascending iterative construction from Ao = K e 3C(F). 

(P) The proper two-sided ideal: 
T H ^ ( 0 ) € ^(Aj.1) 

which determines the local right Artinian F-algebra : 
Aj.i/Tj.i = Cj.i s Aj.i 

with the canonical surjective F-algebra epimorphism : 
<Pj-l = WA j . j : Aj.i > » Cj.i 

which is an isomorphism, and also the canonical surjective F-algebra 
epimorphism. : 

<p"j.l = (xi 0 . . . 0 Tj. i): Cj.i ^ Aj.! » Cj.i = Cj_i/J(Cj_i) = K 

(y) A "parameter" 4* j constituted by a F-algebra homomorphism : 
H"j: Cj.i ^ Aj.! > H'J = 3B (WJ) = M „ . ( K ) 

which determines, by the characterization : 
Mj = [M'j = WJ = Knj ; V'j: Cj.i — > H'J] 

the non null Cy\-bimodule or Ay\-bimodule : 
Mj€ At(Aj . i ,Tj . i s (0) ) 

(8) The "parameter" £j constituted by an unique Tj.i = (O)-essential 
cohomology class: 
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hj = % € H2(Aj.i, T J . I , Mj) = H2(Aj.i, (0), Mj) 

such that : 
(Aj, Nj = (0)) = (Aj.i, Tj.i, Mj, hj) = (Aj.i, Tj.i, Mj, ^j) 

which gives the "iterative cohomological characterization" : 

Aj = (Aj.t, Mj, hj) = (Aj.! , Mj, $j) 

by means of the "parameters" : 
CFj) j e i* and 

(c) Moreover, the underlying F-vector space IAI of the local right Artinian 
F-algebra A is characterized by the conditions : 

IAI = K © [ © WJl = K©r © K njl = Ks 
| je l* J | je I* J 

in which : 

s = 1 + Z ni 
j€l* J 

the "multiplication" of the local right Artinian F-algebra A being determined by 
the two families : 

(4"j) j ei* I* 
of "parameters". 

PROOF - This is a particular case of the Theorem 7-4. 

For instance, this general Theorem 8-1 may be illustrated by the SECOND 
EXAMPLE: 

A = B^v = B^,v(F) 
and also by the following particular example. 

In the case where : m = 1, a ¥-"Local completely structured vertex set" of 
the form : 

a = [m,(I),K,(nj) J Gi*] 

is completely determined by a F-skewfield : 
Ao = K e 3C(F) 

and by a non null integer: 
nj = ni e N* 

Thus, if we choose : nj = ni = 1, the local right Artinian F-algebra A is 
completely determined by the two "parameters" constituted by a F-algebra 
homomorphism : 

9 7 



T'i e MorptCo, H'1] H Morp[K, K] 
and by a To = (0)-essential cohomology class : 

h i = 4l € H2(A 0 , T 0 , M O = H j ( K , (0), M i ) 

which give the "cohomological characterization" : 
A = ( A O , M T , $ I ) 

In particular, for any F-automorphism : 

a e AutF(K) = Gal[K : F] 

the Proposition 3-15 shows that the choice of the "parameters" : 
¥' l = a e Autp(K) = Gal[K : F] 

and: 

$1 = 0 € H*(K, (0), M i ) = H2(K, (0), a K i ) 

characterizes a local right Artinian F-algebra : 

A a = (A 0 ,Mi ,$ i ) = ( K , o K i , 0 ) 

having the "matrix realization" : 

A = A A = A E \ K = { a = a o ] , a i € K > 
0 ]K] J I L 0 ai J 

In this last example, whenever the F-skewfield K € 3C (F) is commutative 
and the Galois group Autp(K) = Gal[K : F] is not trivial [for instance : F = IR and 
K = C], it is immediate that the local right Artinian F-algebra A a is non 
commutative if and only if : 

a * 1 € Autp(K) = Gal[K : F] 

It follows that the structures of the F-algebras A a with the same complete 
A A 

invariant : A(A0) = A, depend explicitely of the "parameter" *¥\ = a, which 

is necessary in order to describe the "multiplication" of the F-algebra A^, and this 

gives an example of the necessity of the role of the parameters. 

(G) A LAST EXAMPLE. 
A 

For any field F and any Completely structured vertex set" A, a natural 

problem is the problem of the existence and of the choice of "parameters", in 

order to construct a right Artinian F-algebra : 
A e A ( F ) 
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subject to the condition : 
A A 

(Y) A(A) = A 
Our aim is to discuss this problem on an example, in which the given 

Completely structured vertex set" : 

A = { A ; I ; ( K X ) , ( p x ) , ( q x ) , ( n i ) } 

and its "Combinatorial Structure": 
X = [A ; m , (I ) ; {Aj} , (A*), A', (A*) , (A"*), (A"j), (A'j)] 

are defined by the following conditions: 
(ai) A = { 1 , 2 , 3 ,4 , 5, 6, 7, 8, 9} 
(0:2) For the integer m = 4, which gives : 

I = {0, 1 , 2 , 3 , 4 } ; I* = { 1 , 2 , 3 , 4 } 
the equivalent conditions: 

I ^ = { 2 , 3 } ; I I = { 1 , 4 } ; I i = {0, 1,4} 

give the « Complete Decomposition of m = 4 », of the form : 

a) i=i;iii!=fii i j m i i 
l k e l 2 J 

in which : 

I 2 = { k € l i ; ( k + l ) e l o } = { l } and l£ = ij = IQ = {2, 3} 

(cc3) A 0 = { 1 , 2 } 
A 1 = A 2 = A 3 = { 1 , 2 , 3, 4, 5, 6 ,7} 

A 4 = A = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } 

(04) AO = Ao = { l , 2 } 
A l = A i - A 0 = { 3 , 4 , 5, 6 ,7 } 
A 4 = A 4 - A 3 = { 8 , 9 } 

( a 5 ) A'= {5, 6, 7, 8} 
A'l = { 5 , 6 , 7 } 

A'4 = {8} 

(06) A"J = { 4 , 5 , 6 , 7 } 

A"J = { 5 , 6 , 7 } 

(a7) A"2 = A1-A , ,J = { 1 , 2 , 3 } 
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A"3 = Ai-A"5 = { l , 2 , 3 , 4 } 

(<xg) A ,2 = A"2 = { 1 , 2 , 3 } 
A'3 = A"3 = { 1 . 2 , 3 , 4 } 

(Pi) (Kx) = (KX)XeA = (Ki, K 2 , K 3 , K4 , K 5 , K*,, K 7 , Kg K 9 ) 
in which each Kx is a F-skewfield: Kx € 3C(F) 

(P2) (PX) = (PX)Xe A = (Pl=l, P2=l, P3=l, P4=l, P5=1.P6=1. P7=l» P8=l, P9=l) 
(P3) (qx) = (qx)Xe A = (qi=0, q2=0, q 3=0, q4=0, q5=l, q6=l, q7=l, q8=q, q9=0) 
in which q8 = q e N*, is considered as a "numerical parameter". 

(P4 ) (n{) = ( nX^Xe A = ( n H n 2 = 1 > n 3 = 1 > n H n 6 = 0 > n H n 8 = ° ' n 9 = 0 ) 

( n X> = (nx)XE A = ( n l = 1 > n 2 = 1 > n 3 = 1 ' n 4 = 1 > n 5 = ° ' n 6 = 0 >
 n H n 8 = 0 > n 9 = 0 > 

Thus, our objective is to construct a right Artinian F-algebra : 
A € A ( F ) 

subject to the condition : 
A A 

(Y) A(A) = A 
which implies the existence of a finite right Canonical Sequence: 

p(A) = (pi = 1, p2 = 0, p3 = 0, p4 = 1) 
and the existence of a finite right Canonical Resolution of the form : 

91(A) = [A = A4 — — » A3 — — » A 2 — — » Ai ——» Ao] 

in which the Structures of the right Artinian F-algebras : 
Ai G A ( F ) for all i e I 

are determined by an "ascending iterative construction" from the semisimple 
Artinian F-algebra : AQ e AQ(F) , to the right Artinian F-algebra : A = A4, 

A 

characterized, by means of the "geometrical objects" determined by A in the 
Constructions 7-1, by the Theorem 7-4, that is by the following conditions :: 

(a) Since the conditions (P2) imply : 
= £ (Vx) = Mpx(Kx) = Mi(Kx) = Kx for all A, € A 

for every k e Ii = {0, 1 ,4}, the conditions : 

and the conditions (04) imply the relations: 

Ao = B 0 = Go= ,11 II Kx = K i x K 2 

Ae A u A€ A° 

Gi = J T I R* = n. K X = K 3 x K4X K 5 x K6X K 7 

AeA 1 AeA 1 
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which give in particular the first characterization : 

A 0 = Ki x K 2 

and for all i € I = {0, 1, 2, 3 , 4 } , the conditions : 

A/J(A0 = Ri= n R* 
Xe Aj 

and the conditions (0:3) imply the relations : 

R 0 = FI R* = II K^ = K i x K 2 

Xe Ao Xe Ao 

R 1 = R 2 = R 3 = FI R* = n Kx = Ki x K 2 x K 3 x K4X K 5 x KéX K 7 

Xe A 3 Xe A3 

R = R 4 = FI R*- = II Kx = Ki x K 2 x K 3 x K4 x K 5 x K<s x K 7 x Kg x K9 
Xe A4 Xe A4 

which give in particular the relation : 

A/J(A) = R = Ki x K 2 x K 3 x K4 x K5 x K<5 x K7 x Kg x K9 

which means that the F-algebra A is a "reduced right Artinian F-algebra" in the 

sense that : 

A/J(A) = R 

is a finite product of F-skewfields. 

(a') Since the conditions (0:5) imply : 

H* = £ (Ux) = M q x (Kx) for all X e A' = { 5 , 6 , 7, 8 } 

the condition ( p 3 ) implies the relations : 

H5 = X (U 5) = Mq 5(K 5) = Mi(K 5) = K 5 

H6 = X(U6) = M^CKô) = Mi(K6) = Ké 

H 7 = tf(U7) = M q ? (K 7 ) = Mi(K 7) = K 7 

and the relation : 

H8 = ^ ( U 8 ) = M q 8 (K 8 ) = M q (K 8 ) 

so that, for all k e l\ = {1,4}, the conditions : 

H k = n„ 
X e A k 

and the, conditions (0:5) imply the relation : 

Hi = El, H* = H 5 x H 6 x H 7 = K 5 x K6 x K 7 

XeA' 1 

and the relation : 
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H4 = Il . H* = H» = $(Ug) = M q (K 8 ) 
Xe A'4 

Moreover, there exists a family of (right) almost simple right Artinian 

F-algebras : 

( B * ) = (B*)TEA 

with a family of right Socles : 

(S*-) = ( S % € A 

characterized by the conditions : 
= S* = R* = Kx for all A. e A-A'= {1 , 2, 3, 4, 9} 

and by the conditions : 

BX = H X l > a n d s X = OL^ for a U x e A , = 6 > 7 > g } 

J R ^ J L 0 R*- _ 

which give the relations : 
B S J K S K S ] B 6 = R K 6 K 6 L B 7 = r K 7 K 7 ] 

L O K 5 J L O K 6 J L O K 7 J 

S 5 = [ ° K 5 ] S 6 = f° K 6 l S 7 = r ° K ?l 
Lo K 5 J Lo K 6 J Lo K 7 J 

and the relations : 
: K 8 ~ | [~o 0 : K 8 ~ 

* W j 8

 0 j * 8 

B = : K 8

 S = 0 0 : K 8 

_o 0 - - - 0 : K 8 _ _o 0 . . . 0 : K 8 _ 

For the index k = 0 e Ii, the condition (0:4) determines the semisimple 

Artinian F-algebra : 

B 0 = 11 B* = IT = Go = R̂ - = Ro = Ki x K 2 

XeA<> XeA<> XsAo 

with a right Socle : 

s 0 = s ( B 0 ) = n n s* = e n s* = e R * = Ki e K 2 

XeAO XeA» XsA0 

For the index k = 1 e Ii, the pair (Hi, Gi) of semisimple Artinian F-algebras : 

Hi = K 5 x KO x K 7 and Gi = K3 x K4 x K5 x K<5 x K 7 

which verifies automatically the condition : 
Hi < Gi 

determines the (right) almost semisimple right Artinian F-algebra : 
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B k = B i = f H l L l 1=(H! =Hi < Gi)= 11 B^- = B 3 X B^x B 5 x B^x 
V 0 Gi J XeA1 

with a right Socle : 

s k = si = f ° L l l = s(Bi)= n s*= e , ŝ  = s 3 e s 4 e s 5 e s 6 e s 7 

which has a "matrix realization" of the form : 

B k = B l = [ H l L l l JK5 0 ] 
L o d J L o K 7 J 

completely characterized in the following TABLE № 3 , which gives a "matrix 

realization" of the right Socle, of the form : 

Lo d J Lo K 7 . 

completely characterized in the following TABLE № 4 . 

Likewise, for the index k = 4 e Ii, the pair (H4, G 4 ) of semisimple Artinian 

F-algebras: 
H4 = Mq(K8) and G 4 = Kg x K 9 

which verifies automatically the condition : 

H4 < G 4 

determines the (right) almost semisimple right Artinian F-algebra: 

B k = B 4 = f H 4 L 4 ) = ( H 4 = H 4 < I G 4 ) = II B^ = B 8 x B 9 
[ 0 G4J XeA 4 

with a right Socle : 

S k = S 4 = f° L 4 1 = S ( B 4 ) = n S * = 0 susses? 
1̂ 0 G 4 J X € A 4 XeA4 

which has a "matrix realization" of the form : 

B k = B 4 J H 4 U l j N V K g ) 0 " 
L 0 G 4 J L 0 K 9 . 
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completely characterized in the following TABLE № 5 , 

which gives a "matrix realization" of the right Socle, of the form : 

S k = S 4 J o u ] J o 0] 
LO G K J LO K 9 J 

completely characterized in the following TABLE № 6 . 

(t>i) For the index k = 1 e I ] , which determines the (right) almost 

semisimple right Artinian F-algebra: 

B , = f H l L l ) 
(0 Oi) 

in which the F-algebra Hi verifies the relation : 

Hi = K 5 x K 6 x K 7 

from the F-algebra Ao which has the first characterization : 

A 0 = Ki x K 2 

the Structure of the right Artinian F-algebra : 
A k = A i € A ( F ) 

is characterized by "a first parameter" ¥ 1 constituted by a injective F-algebra 

homomorphism : 

¥ l : A 0 = Ki x K 2 > > Hi = K 5 x K6 x K 7 

which defines a F-subalgebra : 

A o C H i 

which gives the second characterization :  

Ai = F A ° L 0 = ( A o > - - - > H i < G O 
l 0 G L J  

which implies: 

S ' = ( o G I ) = S < A l ) = S ( B l ) 

It is very important to remark that there may exist several OBSTRUCTIONS 
to the existence of this "parameter" *¥i. 

For instance, the existence of ¥ 1 , which is in particular a monomorphism 

of F-vector spaces, imply that the F-dimensions verify necessarily the relation : 

[Ki : F] + [K 2 : F] < [K 5 : F] + [K<5: F] + [K 7: F] 

Therefore, the condition: 

[Ki : F] + [K 2 : F] > [K 5 : F] + [K^ : F] + [K 7 : F] 
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is an OBSTRUCTION to the existence of the "parameter" *Fi, and for instance, 
this OBSTRUCTION is realized in the particular case : F = R ; K 5 = K6==K7 = (E 
and Ki = K 2 = H (quaternions). 

Now, in the general case, we choose the F-skewfields Kx,, in such a 
manner that there exist three (injective) F-algebra homomorphisms : 

¥1*5 : K 1 C K 5 ; : K i C K6 ; ^ : K 2 C K 7 

which are some "auxiliary parameters". 
With this hypothesis, it is possible to choose the injective F-algebra 

homomorphism : 

¥ 1 : Ao = Ki x K 2 > > Hi = K 5 x K6 x K 7 

defined by the condition : 

¥l[(ai , a 2)] = (ai, ai, a 2 ) € (K 5 x K6 x K 7 ) 

for every (ai, a 2 ) G ( K I X K 2 ) . 

This choice implies immediately that the right Artinian F-algebra : 
A k = A ! G A(F) 

has a "matrix realization" of the form : 

L 0 Gi . 

completely characterized in the following | TABLE № 7| , which means that each 

element a G A I is represented by a (8 x 8) square matrix, in which the coefficients 

verify the conditions: 

ai e Ki C K 5 /5 G K 5 

ai e Ki C K6 /6 G K 6 

a 2 G K 2 C K7 /7 G K7 

a3 G K3 M G K4 a5 G K5 a6 G K$ dq G K7 

the addition and the multiplication in the F-algebra Ai being the classical addition 
and multiplication of matrices. 

In this "matrix realization \ the idempotent right Socle S\ = S(Ai) = 

S(Bi) has an isotypical decomposition : 

S i = e s* = s 3 e s 4 e s 5 e s 6 e s 7 = Ni = N(Ai) 
X G A 1 
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in which each idempotent foot is represented by the elements a e Ai, in which 
the columns, different from the (A,+l)-th column, are null. 

(C2) For the index j = 2 € 1^, associated to the index k(j) = k = 1 € I2, the 

condition : 

T l = X e ® „ , S * forj = 2 e l J 

and the condition (OCÔ) determine the proper two-sided ideal : 

r'J = s4 e s5 e s 6 e s7 

which verifies : 

T"?€ « ( B ! ) s « ( A i ) 

and for the surjective F-algebra epimorphism : 

%{ = x\ = I d A l : Aj.i = Ai » A k = Ai 

the condition : 

T j - i = T i = N i n ^ 2 j - l ^ T " î j 

characterizes a proper two-sided ideal : 
T j . i = T i e Ç ( A i ) s Ç ( A j . i ) 

defined by the condition : 

Ti = s4 e s5 e s 6 e s7 

which determines the right Artinian F-algebra : 

A 1 / T 1 = Ci e A(F) 

and the canonical surjective F-algebra epimorphism : 

(pi : Ai » Ci = Ki x K2 x K3 

which associates, to any element a e Ai, the matrix : 

~ a i 0 0 ; 0 ~ 

0 a t 0 ; 0 

<P,(a)= 0 0 a 2 ! 0 = ( a , , a 2 , a 3 ) e (K f K f K ^ = C 1 

0 0 0 ! a 3 

and also the canonical surjective F-algebra epimorphism : 

<p"l = Id Cj : Ci » C i = Ci/J(Ci) = C i = K i x K 2 x K 3 

Moreover, for j = 2 6 1 ,̂ according to the conditions (as), $ 2 ) and (P4), the 

relations : 
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L ' i = w £ ®x

 V I = »(Vx. wfr = M P J I , n 2 ( K X ) 

and 
H i = * ( W X ) = Mn^(K^) = $ R X(L'J) 

for all X e A*2 = {1, 2, 3 } , give the relations : 

L | = M u ( K x ) = Mi(Kx) = Kx for all X e A' 2 = {1, 2, 3} 
and 

H | = Mi(Kx) = Kx for all X, G A'2 = {1, 2, 3} 
which imply the relations : 

M ' 2 = e L '? = Ki e K 2 e K 3 

A,G A'2 
and 

H' 2 = EL H , ? = K i x K 2 x K 3 

he A f

2 

which characterize M'2 as a (FT2 - Ci)-bimodule. 
Thus, in order to choose "a second parameter" *P'2 constituted by a 

F-algebra homomorphism: 
VP' 2 : Ci = (Ki x K 2 x K 3 ) > H'2 = (Ki x K 2 x K 3 ) 

which determines, by the characterization : 
M 2 = [M'2 ; H"2 : Q >H'2] 

a non null Ci-bimodule: 
M 2 € At(Ai,Ti) 

we can choose for ¥ '2 any F-algebra endomorphism : 
4 " 2 G Endp(Ci) 

For instance, we can choose three "auxiliary parameters" constituted by 
three F-automorphisms : 

i l l G Autp(Ki) T|2 G Autp(K2) T | 3 G Autp(K3) 

which determine "the second parameter" : 

V'2 = (Til, T12, T13) G Autp(Ki) x Aut F(K 2) x Aut F(K 3) C EndF(Ci) 

With this choice, which gives the relation : 
/ A l ( M 2 ) = Ti 

according to the condition : 
Ti G ??(Ai) 

the Proposition 3-15 implies the relation : 

0 = 0 G H*(Ai, Ti, M 2 ) = H 2(Ai, Ti, M 2 ) 
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and therefore, in order to choose "a third parameter" it is possible to choose 

the T\-essential cohomology class : 

h 2 = ^ 2 = 0 = 0 € H 2 ( A ! , T I , M 2 ) 

which gives the characterization : 

( A 2 , N 2 ) = (Ai, Ti , M 2 , 0) = (Ai, Ti , M 2 , %2) 

and in particular the "iterative cohomological characterization": 

A 2 = (Ai, M 2 , %2) 

A 

These choices of ¥'2 = (T|i, r|2> T|3) and of £2 = 0, imply immediately that 

the right Artinian F-algebra: 

Aj = A 2 e A ( F ) 

has a "matrix realization" of the form : 

a t ; 0 0 1 I 1 1 0 0 ; 0 

0 a t ; 0 0 | \ j J 0 0 J 0 
0 0 ! a, 0 1 1 1 1 / - 0 ! 0 

• 1 I I I I 5 ; 

0 0 ; 0 a xl I I I 0 l6> 0 

| ^ a 2 ) a 2 0 \~ 1 1 0 0 : 0 

! 0 a 2 0 j | | 0 0 J 0 

_ «*o"o"V 2 i ' \"\6"6]T7 
A 2 ~ I 1 -I J , 

1 1 1 1 : 
I I 0 a 3 I I 
1 1 R - T ; - • 

I I L ! _ 4 ± '-. 
I I 1 1 a< 0 I 0 
I I I I 5 , 
I I I I 0 a 6 - 0 
I I I I- -! - -
. 1 . 1 0 0 , a ? 

which means that each element a e A 2 is represented by a (13 x 13) square matrix, 

in which the coefficients verify the conditions : 

ai e Ki C K5 a i e Ki /5 s K5 

ai € Ki C Kg CC2e K2 fee 

a2 e K 2 C K7 a3 e K3 /7 s K7 
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a3; e K3 04 € K4 as € K5 a6 € K6 a7 G K7 

the addition and the multiplication in the F-algebra A2 being the classical addition 

and multiplication of matrices. 

In this "matrix realization ", the "one-socle" : 

N(A 2) = N 2 = (0, Ti) = {0, Ti) = {(0, t ) ; t € Ti} 

is represented by the four last columns, the other columns being null. 

(C3) For the index j = 3 € 1̂ , associated to the index k(j) = k = 1 € I2, the 

condition: 

T"?= 0 t forj = 3 e iA 

and the condition (oĉ ) determine the proper two-sided ideal: 

T"| = s5 e s 6 e s 7 

which verifies: 

r j e ^ ( B i ) s ^ ( A i ) 

and for the surjective F-algebra epimorphism : 

4 = x l = T 2 : Aj-i = A 2 » A k = Ai 

the condition: 

T H = T 2 = N 2 n | ^ ] - l ( r f ) 

characterizes a proper two-sided ideal: 
T H = T 2 e « ( A 2 ) s « ( A j . i ) 

defined by the condition : 

T 2 = e 1s^ = s 5 e s 6 e s 7 

Xe A"\ 
in which: 

= (0, S*) 
is characterized by the (X+6)-th column in A2, the other columns being null, and 

which determines the right Artinian F-algebra : 

A2/T 2 = C 2 € A(F) 

defined by the relation : 

C 2 ^ Dj^Ki) x Dj 2 (K 2 ) x Dj 3 (K 3 ) x K4 

in which: 

DjHKx) = [ a i ] for all X € {1, 2, 3} 
* L 0 a j 

and the obvious canonical surjective F-algebra epimorphism : 
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cp2 : A 2 » C 2^Dj» 1(Ki) X Dj 2 (K 2 ) X Dj 3 (K 3 ) X K 4 

and also the canonical surjective F-algebra epimorphism : 

<p"2 : C 2 » C 2 = C2/J(C 2) = Ki x K 2 x K 3 x K4 

Morever, for j = 3 € IQ, according to the conditions (AS), ( P 2 ) and ( P 4 ) , the 

relations : 

and 

for all X e A'3 = {1, 2, 3, 4} , give the relations : 

L | = Mi ti(Kx) = Mi(Kx) = KX for all X G À'3 = {1 , 2, 3, 4} 
and 

H'{ = Mi(Kx) = for all X G A'3 = {1, 2, 3, 4} 

which imply the relations : 

M'3 = © L'2 = Ki © K 2 e K 3 © K 4 
Xe A'3 

and 

H' 3 = Il H | = Ki x K 2 x K 3 x K 4 

Xe A'3 

which characterize M'3 as a (H'3-C2)-bimodule. 

Thus, in order to choose "a fourth parameter" constituted by a 

F-algebra homomorphism : 

H"3 : c 2 > H'3 = Ki x K 2 x K3 x K 4 

which determines, by the characterization : 

M3 = [M'3 ; ¥'3 : C 2 >H*3] 

a non null C2-bimodule : 

M3 G JVt(A2, T 2 ) 

it is possible to choose for ¥ ' 3 the F-algebra epimorphism : 

y 3 : c 2 > H'3 = Ki x K 2 x K 3 x K 4 

characterized by the condition : 

^ 3 ( c ) = (îl?(ai),^(a2),îi5(a3), u) 

for every a e A 2 , which determine cp2(a) = c G C 2 . 

Therefore, the C2-bimodule M3 is characterized by the fact that for every : 
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P = (P l .P2 , fo ,P4)€ (Ki © K2 © K3 © K4) = M3 
and for every 92(a) = c € C2, then : 

cP = Ol?(ai) pi, Ti2(a 2) p 2 , Ti2(a 3 ) p 3 , a4p 4 ) 

and 

pc = (piai , p2a2 , P 3 a 3 , $ 4 M ) 

Then , for every : 

|i = (Hb 1̂ 2, € ( F * ) 3 

it is easy to verify that the condition : 

h*(a, a') = (|iiTn(ai)a'i, H2Tl2(a2)a'2, H3m(a3)cc'3> 0 ) 

characterizes a 2-cocycle: 

h = h^ G Z2(A 2 , T 2 , M 3 ) = Z2(C 2 , M 3 ) 

Fristly, the definition of M 3 implies the relations : 

/A 2 (M 3 ) = {a G A 2 ; ai = a2 = a 3 = a4 = 0 } 3 T2 

Secondly, in order to prove the relation : 

h ^ e Z 2 ( A 2 , T 2 , M 3 ) 

according to the Proposition 3 - 1 5 , we must show that for every element: 

a = (p, a) G M 3 x [ /A 2 (M 3 ) - T 2 ] C M 3 x A 2 

the conditions: 

( 7 ) r A 2 ( a ) C SA 2 (a, h) = (a 1 G A 2 ; Pa' + h*(a, a1) = 0 } 

and 

(s) a. S A 2 ( a , h ) n T 2 = (0) 

imply a = 0, that is : p = (Pi, P2, p 3 , P4) = 0 and a = 0. 

Then, if a G [ / A 2 ( M 3 ) - T2], in the element a G A2 there exists an 04 * 0 for 

one i G { 1 , 2 , 3 } , and if we choose a" G A2 such that a t f i = 1 and the other 

components of a" being null, then the relations : 

a" G rA 2(a) and a" <£ SA 2 (a, h) 

show that the condition ( 7 ) is not verified, in such a way that the Definitions 3-7 

and 3 -9 imply the relations : 

h = h^G Z 2 ( A 2 , T 2 , M 3 ) 

and 
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h = h^ G H*(A2, T 2 , M 3 ) C H2(A 2, T 2 , M 3 ) 

Therefore, in order to choose "a fifth parameter" £3 it is possible to 

choose the ^-essential cohomology class : 

h u = 4 3 e H 2 ( A 2 , T 2 , M 3 ) 

which gives the fourth characterization : 

( A 3 , N3) = (A 2 , T 2 , M 3 , h^) = ( A 2 , T 2 , M 3 , Ç3)  

and in particular the "iterative cohomological characterization " : 

A 3 = (A 2 , M 3 , % 3) 

A 

These choices of ¥"3 and of Ç 3 = f^, imply immediately that the right 

Artinian F-algebra : 

Aj = A 3 6 A ( F ) 

has a "matrix realization" of the form : 
TL(ai) 0 

A 3 = 1 

. 0 a 7 . 

completely characterized in the following | TABLE № 8| , which means that each 

element a G A3 is represented by a (17 x 17) square matrix, in which the 

coefficients verify the conditions : 

ai G Ki C K 5 a i € Ki Pi G Ki /5 € K 5 

ai G Ki C K 6 oc 2G K 2 | 3 2 G K 2 / ô e K ô 

a 2 G K 2 C K7 0C3 G K3 p3 G K3 /7 G K7 

a3 G K3 a4 G K4 as G K5 a^e KÔ a7 G K7 

the addition and the multiplication in the F-algebra A3 being the classical addition 
and multiplication of matrices. 

(b4) For the index k = 4 G l\y which determines the (right) almost 

semisimple right Artinian F-algebra : 

{ 0 G4 J 
in which the F-algebra H4 verifies the relation : 

H4 = M q(K8) 
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from the F-algebra A3, the Structure of the right Artinian F-algebra: 
A = A k = A4 € A ( F ) 

is characterized by a "sixth parameter" *F 4 constituted by an injective F-algebra 
homomorphism : 

4 / 4 : A3 > » H 4 = M q (K 8 ) 

which defines a F-subalgebra: 

A 3 C H 4 

which gives the fifth characterization : 

A = A 4 = {A3 U 1 = (A3 > — - > H 4 < Gu)  
I 0 G 4 )  

which implies: 

S(A) = S 4 = f ̂  ) = S (A4) = S(B 4 ) 
{0 G 4 J 

For instance, according to the existence of the previous (injective) F-algebra 
homomorphisms : 

4*1.5 : Ki C K 5 ; ¥ * . 6 : Ki C K6 ; ¥ 2 . 7 : K 2 C K 7 

if we suppose the existence of (injective) F-algebra homomorphisms : 
¥ 3 . 8 : K 3 C Kg ; T 4 . 8 : K4 C Kg ; ^ 5 , 8 : K 5 C Kg ; 

¥ 6 , 8 ; K 6 C Kg ; ¥ 7 , 8 : K 7 C Kg 

such that the following diagram is commutative: 

\ t t \ \ 
K l K 2 K 3 K 4 K 9 

and if the "numericalparameter" q e N*, verifies : 

q = 17 
we can choose for the injective F-algebra homomorphism : 

¥ 4 : A3 > » H4 = M q (K 8 ) = Mi7(Kg) 

the "canonical injection" defined by the previous "matrix realization" of the 

F-algebra A3. 
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With these choices, it is immediate that the right Artinian F-algebra : 
A = A4 e A ( F ) 

has a "matrix realization" of the form : 

r|f(ai) 0 

A = 

0 a 9 _ 

completely characterized in the following TABLE № 9 , which means that each 

element a e A = A4 is represented by a (19 x 19) square matrix, in which the 

coefficients verify the conditions : 

ai e Ki C K 5 C Kg a i e Ki C K 5 C Kg 

ai G Ki C KÔ C Kg CC2 G K2 C K7 C K8 

a2 G K2 C K7 C Kg 0C3 G K3 C Kg 

Pl G Ki C K 5 C Kg /5 G K 5 C Kg 

p 2 G K 2 C K 7 C Kg / 6 G K 6 C Kg 

P 3 G K 3 C K 8 / 7 e K 7 C K g 

P 4 e K 4 C Kg 

a 3 e K3 C Kg ; a4 G K4 C Kg ; as G K5 C Kg ; a6 G KÔ C Kg ; a 7 e K 7 C Kg 

ag G Kg ; 39 G K9 

and at last : l\ G Kg for 1 < i < 17 ; 

the addition and the multiplication in the F-algebra A = A4 being the classical 
addition and multiplication of matrices. 

With the previous "matrix realization" of the right Artinian F-algebra A, it 
is easy to determine its quiver (in the sense of [T7J p. 97) : 

r(A) = (A = V(A),E = E(A)) 
in which the vertex set A = V(A) being defined by : 

A = V ( A ) = { 1 , 2 , 3, 4 , 5 , 6 , 7, 8 ,9} 
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the edge set E = E(A) = {(ej, ej) : ei J (A) ej * (0)} is characterized by the 

following table : 

A l 2 3 4 5 6 7 8 9 I 

1 (1,1) . (1,5) (1,6) (1,8) I 
2 (20) (2,7) (2,8) I 

_ J 0 3 ) (3,8)  

4 (4^4) (4,8)  

_ 5 (5,8)  

6 (6£)_ 

7 (7,8)  

8  

9 I 

This last example gives an illustration of our Structure Theorem, which 

shows the possibility of the existence of OBSTRUCTIONS to the choice of the 

"parameters", which characterize the "multiplicative structure" of the right Artinian 

F-algebra. 

Moreover, it suggests the problem of the study of the connexions between 

our notion of F-''Completely structured vertex set" and the classical notions of 

quiver. 
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