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§ 1 - INTRODUCTION. 

1.1. The firing squad synchronization problem was introduced by E.F.MOORE 
in 1962 [3 ]. One considers a finite -but arbitrarily long- ordered line 
of n finite state machines numbered from 1 to n. All machines numbered 
from 2 to n-1 are identical and called soldiers ; the machine numbered 1 
is also called the general and the machine numbered n the right-end soldier. 
These n machines work synchroneously ; the state of a machine at time t+1 
depends only on the states at time t of itself and its (one or two) 
neighbours. 

For t < 0, all machines are in the same state, called the quiescent 
state. 

At t= 1, an external intervention undergoes the general in a new 
state ; all other machines still being in the quiescent state. Afterward 
there is no external intervention ; the line evolves as an isolated system. 

The problem is to define finite sets of states and transition rules 
(for the three types of machines) with a distinguished state, called the 
"fire state" so that : Whatever be the length of the line, all machines first 
enter the fire state at the very same time (called the synchronization 
time t(n), which obviously depends on the length n of the line). 

1.2. One can show that necessarily t(n) > 2n-l. 

Intuitively 2n-l is the minimal time for the general to send a 
message to the right-end soldier and to get back an answer. 

A minimal time solution of the synchronization problem is a family 
of finite sets of states and transition rules for which t(n) = 2n-l. An 
N-states solution of the synchronization problem is a solution for which 
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the union of the sets of states of the three types of machines is of 
cardinality at most N. 

1.3, J.MacCARTHY and M.MINSKY proved the existence of solutions (1965) ; 
these solutions work in times 3n-l , y n-1 .... A minimal time solution 
was presented by A.WAKSMAN (1966) [4 ] ; this solution uses 16 states. 
R.BALZER presented an 8-states minimal time solution (1967) [ 1 ]. We present 
here a 6-states minimal time solution. 

1.4, To study this problem, it is natural and usual to consider the set 
of pairs (K,t) with 1 < K < n and 1 < t < t(n). This plane set of pairs 
can be used in two ways. 

- The state-diagram is obtained by indicating the site-values < K,t > 
(i.e. the state of machine K at time t). Graphically we shall represent 
the site (K,t) by an unit square and get an N-colored tiling of the rectangle 
formed by these n x t(n) unit squares. 

- Geometrical diagrams are obtained by indicating the action of 
some distinguished transition rules which correspond intuitively to the 
propagation of signals. Graphically, this gives continuous lines through the 
portion of plane [l,n] x [1 9 t(n)]. 

1.5, To avoid the consideration of three cases of transition rules 
corresponding to the three kinds of machines, it is convenient to introduce : 
- a new artificial state denoted X. 
- two artificial machines always in state X, delimitating the line, having 
ranks 0 and n+1. 

This trick allows us to represent the transition rules of an N-states 
solution by a family of N-1 matrices of states with N lines and N columns 
as follows : 
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- we denote the fire state, q̂  the state X and q̂  ... q̂  the 
remaining states. 
- If at time t, the machines numbered K-l, K, K+l (where K G {1 n}) 
are in respective states q , q, , q (where a,b,c are in {1 N}) 

a D c 
then at time t+1, the machine K is in state q where q is the element 
of the b-th matrix on line a and column b. 
REMARK, - Since all machines have to enter the fire state at the very same 
time, we do not consider transition rules where one of a,b,c is 0. 

- The elements of these matrices are among qQ , q̂  , q̂  , •••, q̂  . 
- Thus, all machines 1,2 n-l,n are considered as identical : 

they have the same set of internal states (qQ > q̂  , > ̂ 3 a n c* 
the same transition rules. 

The way machines 1 and n, the general and the right-end soldier, 
can be distinguished is as follows : machine 1 (resp. machine n) is the 
only one to have a left (resp. right) neighbour in state q̂  and so to 
make use of the related transition rules indicated in the first line 
(resp. column) of each matrix. 

1.6, The idea of the earlier solutions (MINSKY and MacCARTHY) is the 
following : 
- After the external intervention the general generates two waves which 
propagate through the line at different speeds (cf. figure 1.6). 
- The fast wave is reflected by the right-end soldier. 
- This reflection meets the slow wave at the middle of the line. 
- By this way the initial line is broken into two new lines having equal 
length, which evolve independently (depending to the parity of n, these 
two lines are disjoint or have a common element). 
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- The right line evolves in a way "nomothetical" to that of the initial line, 
so that its general is its leftest machine. The left line evolves in a way 
"symmetric" and "nomothetical" to that of the initial line, so that its 
general is its rightest machine. 
- This dichotomy is iterated up to the obtention of lines with length two. 
Then the fire state appears. 

1.7. The common features of WAKSMAN and BALZER's solutions are the 
following : 
- After the external intervention, the line generates a family of waves, all 
of which seem to come from the general. 
- The two fastest ones (Ĝ  Ĝ  Ĝ  and Ĝ  Ĝ  on figure 1.7 a)) act as in 
MINSKY and MacCARTHYfs solutions and break the initial line at Ĝ  creating 
two new lines having equal length. 
- The right line (consisting of machines numbered from t o n)> which 
is created at time 1> ̂ a s ^ n fact begun its evolution at time n, its 
general being the machine n. It evolves in a way such that the trapezoid 
of sites Ĝ  Ĝ  F̂  is symmetric and homothetical to the trapezoid of 
sites F̂  Ĝ  Ĝ  F̂  associated to the initial line. 
- The remaining portion of the initial line (machines 1 to 1) is 
also iteratively broken by the meeting of F̂  with slower and slower 
waves all seemingly starting at site Ĝ . 

This remaining portion evolves in such a way that the triangle of 
sites F̂  Ĝ  F̂  is "homothetical" to the triangle of sites F̂  Ĝ  F̂ * 
The two triangles of sites F̂  Ĝ  F̂  is F̂  Ĝ  F̂  are symmetric, so that 
the two machines 1 and n (the first and second generals) are synchronized. 
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In case n is odd, figure 1.7 a) shows the first step of this 
iterative process. 

In case n is even, figure 1.7 b) shows the needed (easy) 
modifications. 

Figure 1.7 c), shows the iterative process in the idealized (though 
impossible) case where all breaks are as in figure 1.7 a). 

1.8, The previous solutions seem symmetric since the initial line is 
broken into equal parts. However the general is alternatively at the right 
end or at the left end of the successive lines. This fact induces an 
irregular character and introduces superfluous internal states. We shall give 
a minimal time solution in which the general is always the left-end soldier. 
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§ 2 - GEOMETRY AND DELAYS. 

2.1. As indicated above, in the solution presented here, all created 

lines will have as general their leftmost macine. 

2 

This can be done in a very convenient way by breaking lines at /̂  

of their length instead of ^¡2' 

We shall first describe our solution with continuous geometrical-

-diagrams : such a description applies to an idealized case where all 

intersections of lines have integral coordinates (in fact this ideal case 

does not exist ! ) . 

In this situation we have the following property shown by figure 2.1 a). 

The initial line is broken at site (so that = 2 G^). The new 

2n 

line consists of machines -y n. The wave (which is the progression 

from site Ĝ  of the reflection of the initial signal Ĝ  R^) has the 

same length as the wave Ĝ  R2 ̂  (which is the progression of the wave 

created in the new line on site Ĝ , reflected on site R̂  and going back 

on F̂  to the general of the new line). 

In particular these waves Ĝ  F̂  and Ĝ  R2 F̂  reach their 

respective generals at the very same time, thus synchronizing the two 

generals, i.e. machines 1 and . This is the basic step of an iterative 

process which leads to the synchronization of the whole line. 

REMARK. This situation occurs only if the breaking point is on machine . 

As in WAKSMAN and BALZER's solutions, the created line and the 

remaining portion of the initial line (which consists of machines 

1 ... 1) evolve independently from time 1 to time 2n-l : 

4n 
- The evolution of the new line from time — - 1 up to time 2n-l 
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is homothetical to that of the initial line from time 1 up to time 2n-l. 

- The remaining portion of the initial line will be also broken at 
2 . 2 2 its , i.e. at machine (—) n, creating a second new line consisting 

2 2 2 
of machines numbered from (—) n, to -j n-1, and a second remaining portion 
of the initial line. 

- This new left portion is also broken and so on. 

By this way an iterative process is set up. 

The creation of the new line with general at site is the 
result of the meeting of the reflection F̂  of the initial wave with 
the slow wave Ĝ  G2. 

The remaining portion of the initial line (machines 1 to 1) 
is also iteratively broken by the meeting of R̂  F̂  with slower and slower 
waves all (seemingly) starting at site Ĝ . 

Figure 2.1 b), shows this iterative process (with all waves) in the 
idealized case. 

2,2, In figures 2.1 a) and 2.1 b), we have supposed that all sites have 
integral coordinates. In the discrete situation where n is an integer, 
we have to modify the basic step (figure 2.1 a)) according to the "ternarity" 
(the remainder modulo 3) of n. 

In the sequel we no longer consider geometrical diagrams but 
state-diagrams. 

The initial wave fills sites and its reflection fills sites 
(£, 2n-£) (for t € {1 n}) . Suppose that the new general is created 
at site Ĝ  = (K, 2n-K). The reflection of the initial wave reaches the 
old general (machine 1) at time (2n-K) + (K-l) = 2n-l. 
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If the new general (machine K) becomes active after a delay of j 
units of time then : 
- the new initial wave starts at site (K, 2n-K+j), 
- it reaches the right-end soldier (machine n) at site (n , 2n-K+j+n-K), 
- and goes back to the new general at time 2n-K+j+(n-K) + (n-K) = 4n-2K+j. 
In this case both the new and old generals (machines K and 1) will be 
synchronized if 2n-l= 4n-3K+j, i.e. 3K = 2n+j+l. 

This equation in K and j is solvable with the constraint 
j € {0,1,2}. 

Suppose that the initial line has length n = 3p+i with i € {1,2,3} 
and p > 1 ; then : 

if i = 1, we get K = 2p+l and j = 0 
if i = 2, we get K = 2p+2 and j = 1 
if i = 3, we get K = 2p+3 and j = 2. 

The value of j will be called the "delay" for the activation of 
the new general. In all three cases, the new line consists of p+1 machines 
numbered from K = 2p+i to n = 3p+i and the delay is j = i-1. 

Figure 2.2. shows these three different cases. 

REMARK. The slow wave progresses at speed V (so that it is graphically 
represented by a "line of sites" of slope 2). Machine K receives this slow 
wave at time 2K-1 and the reflection of the initial wave at time n+n-K = 2n-K. 
The value of K determinated above is also that for which : 

- the reflection of the initial wave attains machine K before (or 
at the same time) that the slow wave. 

- the waiting delay between these two waves is minimum. 
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§ 3 - THE SCHEME, 
We now study the generation of the family of slow waves. 

In fact it is more convenient to introduce the waves on which successive 
right-end soldiers are created (rather than those corresponding to new 
generals). 

3.1, Define the set of sites Ŝ  as the set of (K,t) such that for 
some value of n (n > 4) the first break of a line of n machines occurs 
on site (K+l , t) so that machine K is the right-end soldier at site 
(K,t) (and the reflection of the initial wave is on machine K at 
time t+1) . 

As seen in 2.2., if n = 3p+i, then machine 2p+i becomes general 
at time 2n - (2p+i) = 4p+i ; so that : 
Sl = {(2p+i-l , 4p+i) ; p > 1 ; i € {1,2,3}}. 

Observe that two sites (K,t) and (K1 , tf) are "related" if 
K = Kf and |t-t!| =1 or if |K-Kf| =1 and t = t1. It is convenient 
to connect the set Ŝ  and introduce the set Ŝ  : 

Sl = (2p+i-l , 4p+i-l) ; p > 1, i (I {1,2,3}} U S 

Similarly we define for every positive i, the set of sites Ŝ  as 
th 

the set of sites (K,t) such that for some value of n, the i break of the 
initial line of n machines occurs on site (K+l , t) (all these breaks are 
relative to the leftest remaining portion of the initial line) and K > 2 
also Ŝ  is defined by : 

S. = S. U {(K, t-1) ; (K,t) e s ^ } . 

Observe that if machine K transmits the initial wave at time t 
then it receives its reflection at time t+2(n-K) which has the same 
parity than K. So that one unit of time out of two can be that of the 
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arrival of its reflection. 

This phenomenon will be called the "internal clock". 

It allows us to use half of the time to get the synchronization 
either with particular constraints imposed (cf. [ 3 ]) or with fewer states. 

A "connected wave" is by definition a non empty set W of sites such 
that if (K,t) G W then either (K+l , t) G W or (K , t+1) € W and 
(K-l , t) and (K+l , t) are not both in W. 

We define the starting machine SM(W) and the starting time ST(W) 
of W as follows : 

SM(W) is the smallest K such that (K,t) is in W for some t 
and ST(W) the smallest t such that (SM(W) , t) is in W. 

To each site (K,t) with K > 4, we associate the site NR(K,t) 
(NR for new right-end soldier) so that NR(K,t) is the new right-end 
soldier after the first break in the evolution of the line of machines 1 
to K, the external intervention occuring at time t-K+2 (so that the 
reflection occurs at time t+1) : (K,t) being the right-end soldier, the 
reflection occurs at time t+1). 

The domain of NR is D = {(K,t) ; K > 4} and, as seen in 2.2, 
if (K,t) in D is of the form (K,t) = (3p+i , t) where i G {1,2,3} 
and p > 1, then : 
[*] NR(3p+i , t) = (2p+i-l , p+t+1). 

We observe that if W is a connected wave, then W D D and its 
image NR(W 0 D) are empty or are also connected waves. 

In fact [*] shows [**] : 
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[**] If NR(K,t) = (Kf , tT) then 
- NR(K , t+1) = (K1 , tf+l) 
- NR(K+1 , t) = (Kf , tf+l) if K E 0 mod (3) 

NR(K+1 , t) = (Kf+1 , tf) if K i 0 mod (3). 

If the starting machine of W fl D is of the form SM(W fl D) = 3p+i 
with p > 1 and i € {1,2,3} then NR(W fl D) is non empty and its 
starting machine is 2p+i-l. 

We now describe a process to obtain the connected wave NR(W fl D) 
from W fl D (cf. figure 3.2). 

This process is twofold. First we initialize the wave NR(W fl D), 
then we construct the whole wave from its starting site. 

The initialization of NR(W fl D) cannot be done in a general 
setting : there is no way to get quickly the starting machine of NR(W fl D) 
from that of W fl D. 

We suppose that SM(W fl D) = 3p + i where > 1 and 
o o ° 

i Q G {1,2,3}, whence (using [*]) SM(NR(W (ID)) = 2pQ + i -1. This starting 
machine being fixed, we do construct the starting time of NR(W fl D) from 
that of W fl D by the following elementary process : 
- from site (SM(W fl D) , ST(W fl D)) a signal a is emitted which propagates 
along the diagonal 
A(SM(WflD) , ST(WflD)) = {(SM(WDD)-£ , ST(WflD)+£) ; 0 < I < SM(WflD)-l}. 
- The starting time of NR(W 0 D) is that one when this signal a reaches 
machine SM(NR(W fl D) ) . 

We now describe the construction of the wave NR(W fl D) from its 
starting site. 

First we observe using formula [*] that both sites (K,t) and 
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NR(K,t) (for K > 4) belong to the same diagonal : 
A(K,t) = {(K-£, t+£) ; 0 < I < K-l}. 

The content of [**] can be rephrased as follows : 
- When one moves vertically on W fl D (i.e. from (K,t) to (K , t+1)), 
then the corresponding move by NR on NR(W D D) is also vertical. 
- When one moves horizontally on W fl D (i.e. from (3p+i , t) to 
(3p+i+l , t)), then the corresponding move by NR on NR(W fl D) is in 
two cases out of three also horizontal (cases i = 1 or i = 2), and in one 
case out of three vertical (case i = 3). 

Similarly to BALZER [1], we introduce three kinds of distinguished 
states si> s2 9 s3 P r oP ag a ti ng along the diagonals A(K,t) for those 
(K,t) in W fl D such that (K+l , t) is also in W fl D. 

Let r £ {1,2,3} be such that SM(W fl D) = r mod (3) 

We let the first such signal (that one which starts from a site 
(SM(W fl D) , t)) be ŝ  and we let these signals appear successively 
in the order .... ŝ  ŝ  ŝ  

[+] Thus the only possible signal starting from machine K (if there 

_ is some) is ŝ  where j = r + (K - SM(W fl D)) mod (3) 

j = K mod (3) . 

Formula [**] can now be restated as follows : 

[***] T i f (K1 , tT) = NR(K,t) where (K,t) is in W fl D then 
-if (KT , tf) does not belong to any of these signals s. 
(i.e. (K , t+1) £ W fl D and (K+l , t) j. W fl D) , then 
(K1 , tf+l) £ NR(W n D). 
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[***] - if (KT , t1) does belongs to such a signal ŝ  where j E 1 or 
j E 2 mod (3) (case K=l or K E 2 of [ + ]) then (Kf+1 , t1) is 
in NR(W fl D). 
- if (K1 , tf) does belong to such a signal Sj where j E 0 mod (3) 

_ (case K E 3 of [+]) then (KT , tf+l) is in NR(W fl D) . 

Figure 3.2. shows such a construction of NR(W fl D) from W fl D. 

3.3, As seen in 2.2. if a line has 3p+i machines, i € {1,2,3}, then 
the new general which will be created will become active after of delay 
of i-1 units of time. 

We have noticed in 3.2. that the only possible signal starting 
from machine 3p+i is ŝ . This shows that ŝ  conveys the information : 
flIf you become general, then be active after a delay of i-1 units of 
time". 

3.4, Let S q be {(K , K-l) , (K , K-2) for K>4}. 

The very definitions of S 1 and NR show that S 1 = NR(S Q) 

(observe that S Q C= D, the domain of NR). Also for all i > 1, we have 
S. , = NR(S. fl D). l+l l 

Figure 3.4. illustrates these process which give from S Q 

and iteratively , , • . . from , , • . . . 
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§ 4 - STATES AND TRANSITION RULES FOR AN 8-STATES SOLUTION, 

We suggest the reader to constantly refer to figure 4 . 1 0 (which 

gives an instance of the synchronization process) as an illustration of 

the material developped in this paragraph. 

Besides the matrix notation for transition rules described in 1.5, 

it is convenient to denote (U,V,W) • T the transition rule which asserts 

that if machines K-l , K , K+l are at time t in states U,V,W, then at 

time t+1, machine K is in state T. 

4.1, The very statement of the synchronization problem introduces 

- two particular states : the quiescent state (denoted L ) , and the fire 

(denoted F). 

- Obviously related transition rules (L,L,L) • L and (L,L,X) • L 

and (X,L,L) > L. 

Clearly for t < K, site (K,t) is in state L. 

We now introduce states and transition rules convenient to set up 

the process described in § 3 : first we introduce such states in a loose 

way, then we severely reduce the set of states. 

It is essential to observe that the different notions associated 

to signals and waves, need not be characterized by particular states, but 

rather by particular situations, that is triples of states (corresponding 

to machines K-l , K , K+l,). 

4.2. We present a first tentative set of states and transition rules 

translating the inductive step of the construction of the S^fs via the 

signals s j ? s paragraph 3). We introduce four particular states 

A,B,C,S : 
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- all sites in U S. will be in state S. 
i > i 1 

- all sites "between11 S. and S. _ will be in state A,B ou C. 
1 l+l * 

States A,B,C will be distributed so that : 
- signal ŝ  (resp. s 2 , ŝ ) is on site (K,t) iff (K,t) is in state A 
(resp. B,C) and (K+l, t) is in state B (resp. C,A). 
- If Sj and Sj , are successive signals going from Ŝ  to t^ i e n 

all sites "between" s. and s.t (and S. and S. -) are in the same 
J J l i + l 

state : that one common to all sites in s... 
J 

Following the different elements of the construction in § 3 we now 
enumerate, comment and represent on figure 4.2 (anticipating alinea 4.3, 
state S is indicated by L on figure 4.2) adequate transition rules. 
1). S. emits s.. 

i J 
We get three rules : (A,S,S) > B, (B,S,S) • C, (C,S,S) • A. 

The first one can be interpreted as follows : 
at time t, sites (K,t) and (K+l , t) are in S_̂. Site (K-l , t) is 
in state A ; this means that the last signal emitted by Ŝ  was ŝ , 
coded by (• C A). Site (K,t) has to emit signal ŝ  : in order that site 
(K-l , t+1) be in signal ŝ , site (K , t+1) must be in state B (and 
site (K-l , t+1) must be in state A since ŝ  is coded by (• A B)). 

2). S. does not emit any s.. i J 
We get nine rules : 

(A,A,S) >A (B,B,S) >B (C,C,S) >C 

(C,A,S) >A (A,B,S) >B (B,C,S) >C 
(S,A,S) >A (S,B,S) >B (S,C,S) >C 

Rules (• , A, S) > A starts the filling of a new diagonal 
between two successive signals ŝ  and ŝ  (with the three possible left 
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neighbors). Other rules have similar signification. 

3). Filling diagonals. 
We get two sets of rules : 

(i) (A,A,B) > B (B,B,C) > C (C,C,A) • A 
~ (A,B,B) > B (B,C,C) > C (C,A,A) > A 

(ii) 
_ (B,B,B) > B (C,C,C) > C (A,A,A) > A 
Rule (A,A,B) > B allows the propagation of signal ŝ  : if 

(K,t) is on signal ŝ  then (K-l , t+1) is also on signal ŝ  so that 
(K , t+1) has to be in state B (and (K-l , t+1) in state A). 

Rules (A,B,B) • B and (B,B,B) • B do insure the filling 
of diagonals between successive signals s j l s * 

4). S. receives s.. i + 1 J 

According to [***] in 3.5. 

We get three rules : (S,A,B) > S (S,B,C) > S (S,C,A) > A. 

Rule (S,A,B) > S can be interpreted as follows : site (K,t) 
is on signal ŝ  and has its left neighbor on 

This means that receives a signal ŝ  on site (K-l , t+1) 
and has "to move right" : site (K , t+1) has to be in hence in 
state S. 

Rule (S,B,C) > S is similar with signal s2- Rule (S,C,A) > A, 
interpreted in the same way, means that receives a signal ŝ  on 
site (K-l , t+1) hence has "to move vertically", so that site (K , t+1) 
is also outside Since the next signal will be ŝ , site (K , t+1) 
has to be in state A. 
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5). S. does not receive any s.. 
1 + 1 J 

We get three rules : 

(S,A,A) • A (S,B,B) > B (S,C,C) > C. 

These rules complete the filling of diagonals between successive signals. 

6). Vertical moving of S. and S. . 
l l+l 

We know that if (K,t) is on and (K+l , t) is not on S I 

then (K , t+1) has to be on S^. This leads to eleven rules : 

(S,S,V) > S (U,S,W) > S 

where U and W are A,B or C and V is B or C. 

Observe that any environment SSV corresponds to an horizontal 

move of some hence to the reception of signals s^ or s^ (and not s^). 

The middle S in SSV must come from A or B (and not C) with right 

neighbors BB or CC (recall signal s^ and s^ are coded par AB 

and B C ) . Thus V is obtained as the result of the rules for environments 

ABB and BCC : V is B or C (and not A) . 

7). Construction of S^ from S Q. 

We now attribute states A,B or C to sites (K,K), for K > 3 

If K = 1 mod (3) then site (K , K-l), which is on S q, emits a signal s^. 

Since s^ is coded by AB and (K-l , K) is on s^, sites (K-l , K) 

and (K,K) have to be in states A,B. So we put state B on site (K,K). 

Similarly if K = 2 mod (3) (resp. K = 3 (mod (3)), then site 

(K,K) will have state C (resp. A ) . 

This gives nine transition rules : 

(A,L,L) > B (B,L,L) • C (C,L,L) > A 

(A,B,L) > B (B,C,L) > C (C,A,L) > A 
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(S,A,L) > A (S,B,L) • B (S,C,L) > C 
(the last three are in fact useless but not obviously so). 

Observe that if (K,K) has state A (resp. B,C) then it does 
know : "If the reflection occurs at next unit of time, then the line has 
K+l machines and K+l = 1 mod (3) (resp. 2,3) so that the new general 
will become active after delay 0 (resp. 1,2)". 

4,5, We do observe the following key fact : replacing S by L in all 

previous rules 1 to 7, one gets a compatible set of rules.. This permits 
to eliminate state S in profit of L. 

4.4. 
8). Initialization of the construction of the S^fs (i > 1). 

According to 3.2, we observe that the starting machine of S£+-^ 
(i > 0) is machine 2, and the starting site of ^ s obtained via 
the signal a emitted by machine 4 at the smallest time t for which (K,t) 
is in (so that we have also (3,t) in Sj . Observe that t = ST(S.. fl D) 
and ST(Si+1) = ST(Si fl D) + 2 (it takes two units of time for signal a 
to go from machine 4 to machine 2 along a diagonal). 

We introduce two states G and H : 
- G marks all sites (l,t) for t > 1, 
- H marks all sites (2,t) except those already marked by L (i.e. 
those in U S.). 

i > 0 X 

In particular, since sites (3 , S T ^ fl D)) and (4 , ST(S^ fl D)) 
both have state L, site (2 , ST(Si fl D)) has to be in state H. Also, 
since a reaches machine 2 at time ST(S. fl D) + 2, site (2 , ST(S. 0 D) + 1) 
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is not in S. - hence has to be in state H. l+l 

Apart from a, the first signal emitted by (i > 0) starts 
from machine 4 at a time 0 such that (4,0) and (5,0) are in S^. 

This signal is ŝ  since 4 = 1 (mod (3)). 

Since ŝ  is denoted by states A,B on adjacent sites, sites 
(3 , 0+1) and (4 , 0+1) are in states ' A and B. 

In order not to introduce new transition rules we attribute state A 
to all sites (3,t?) for l + ST(Si fl D) < t1 < 0. 

Now all sites below the first signal ŝ  emitted by have 
been atributed a state (cf. figure 4.4). Note that signal a is coded by 
the environment HAL. 

All this process necessitates the introduction of the following rules : 
(X,G,L) > G (X,G,H) > G Persistency of G. 
(G,L,L) > H (G,H,L) • H Introduction and (partial persistency) of H 
(G,H,A) > L Machine 3 is always in state A or L ; 

when A comes, it carries signal a, 
so that machine 2 gets into a n c* 
has state L. 

(G,L,A) > L (Partial) persistency of L on machine 2. 
(H,L,L) • A (H,A,L) • A Machine 3 emits signal o. 
(H,L,B) > L (Partial) persistency of L on machine 3 

(machine 4 is always in state A , B or L). 

We remark that transition rules 1 to 8 (where L replaces S) 
attribute states to sites below the reflection of the initial wave. 



- 20 -

Remark, 
Recall the internal clock phenomenon (cf. end of 3.1) : one unit 

of time out of two can be, for a particular machine, that of the arrival 
of the reflection of the initial wave. With the above transition rules, 
this phenomenon is translated by the following fact : up to the arrival 
of the reflection of the initial wave, any machine K stays in a particular 
state an even number of time units. 

This fact, joined to the diagonal propagation of the sj l s> implies 
the staircase aspect of the distribution of states on sites below the 
reflection (cf. figure 4.10). 

4,5, Now we consider the reflection of the initial wave and its propagation 
up to its meeting with a signal under the hypothesis that the 
created line is not too short (i.e. of length at least 3). 

Machine K knows (at time t) that it is upon (at time t+1) to 
deal with the reflection of the initial wave (of the very initial line 
or of some of the created lines) if and only if : 
- (K,t) is in state L 
- (K+l , t) is in state X or G 
- (K-l , t) is in state A,B or C. 

Moreover if (K-l , t) is in state A (resp. B,C), it does know 
that the next general to be created will become active-after its creation-
with delay 0 (resp. 1,2). 

All these informations will be transmitted by machine K to 
machine K-l and will progress along diagonals up to the machine which 
has to become general. 

In order not to introduce new states we shall code these informations 
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as follows : 
- the order of appearance of states A,B,C (which is ... ABC 
horizontally and vertically) is broken (hence inversed since they are 
only three). This introduces the following transition rules : 
(A,L,X) > C (B,L,X) > A (C,L,X) • B 
(A,L,G) > C (B,L,G) • A (C,L,G) > B 
- The previous inversion is transmitted to machines along a diagonal using 
the transition rules : 
(A,A,C) • C (B,B,A) > A (C,C,B) — * B 

Due to the staircase distribution of states (cf. remark at the 
end of 4.4), we have not to consider environments different from AAC, BBA 
and CCB. 

In this way we have set up the reflection of the initial wave. Now 
we deal with the propagation of the information about the delay : it is 
convenient to introduce an eighth state, denoted R, to mark the end of the 
delay-transmission process. The three possible delays and the staircase 
distribution of states lead to the three following sets of rules (cf. 
figure 4.5). Recall that delay 0 (resp. 1,2) is conveyed by ŝ  (resp. 

, ŝ ) which is coded by .AB (resp. .BC, .CA) and gives at reflection 
.AC (resp. .BA, .CB). 

- Delay 0 
(A,C,X) > R the right-end machine enters state R after one unit of 
(A,C,G) > R J time. 
(A,C,R) > R } Propagation of the delay information. 
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(C,R,X) • L After the passage of the diagonal of R̂ , any machine 
(C,R,G) > L goes back to the quiescent state L (except in the case 
(C,R,L) • L when the left neighbor is the general). The last rule 
(R,L,X) > L (L,L,G) > L gives the persistency of L after the 
(R,L,G) • L passage of the R\ 

(R,L,L) > L 
(L,L,G) > L _ 

- Delay 1 
(B,A,X) > C the right-end machine meets the conditions of delay 0 after 
(B,A,G) • C J one unit of time so that the total delay is one. 

(B,A,C) > C } propagation of the delay-information. 

Plus all the transition rules described in the delay 0 case. 

- Delay 2 
(C,B,X) • A the right-end machine meets the conditions of delay 1 after 
(C,B,G) • A J one unit of time so that the total delay is two. 

(C,B,A) • A } propagation of the delay information. 

Plus all the transition rules described in the delay 1 case. 

4,6. We now consider the meeting of the reflection of the initial wave 
with any signal Ŝ . 

If at time t, machine K is in state A (resp. B,C), if its 
left neighbor is in state L and its right neighbor in state C (resp. A,B) 
instead of A or B (resp. B or C, C or A), then machine K knows : 
- (K-l , t) is on some S, 

l 
- (K+l , t) transmits the reflection of the initial wave. 
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Hence it realizes that it has to become general of a new line at 
time t+1. This introduces the following transition rules : 
(L,A,C) > G (L,B,A) > G (L,C,B) > G 

This new general will stay in state G up to the firing time. 
We shall study in alinea 4.8 this G-stability question. 

The diagonals which transmit the reflection and the delay (there 
are 2 or 3 or 4 such diagonals according to the value 0 or 1 or 2 
of the delay) crash on the vertical line of Gfs sites. The new general 
becomes active when its right neighbor is in state R. 

A simple analysis of the three types of reflection (associated 
to the three delays) leads to figure 4.6., and shows that only three rules 
are necessary : 
(G,A,C) > C- (G,C,R) >R (G,R,L) >H 

Observe that after the arrival of the R's diagonal, the new general 
emits the initial wave of the new right line : in fact states G and H 
mark the first and second machines of the new line while other machines 
of this new line are in the quiescent state. 

4,7, We now consider the case where the created line has length two : 
in this case the emission of the reflected wave does interfere with its 
crash on the G vertical line. 

We introduce four rules : 
(G,A,X) • C (G,A,G) > C : these rules complete the previous rules 

(G,A,C) > C (B,A,G) > C 
(G,C,X) • R (G,C,G) > R : these rules complete the previous rules 

(G,C,R) > R (A,C,G) > R 

We do not consider environments GB. since they do not appear. 
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4.8. We first study the stability of G up to the creation of too 
short lines. 

This G-stability question is twofold : 
- during the crash of the reflected signal, 

- after the created line is operative. 

The G-stability in the reflection period leads to nine cases 
corresponding to 
- the three possible delays conveyed by the reflected signal coming from 
the right up to the activation of the new line, 
- the three possible delays conveyed by the reflected signal progressing 
leftwards along the remaining portion of the initial line (after the 
creation of the new line). 

This leads to figure 4.6 which shows the sole environments which 
have to be considered, and gives the ten following rules : 
(L,G,A) > G (L,G,R) > G 
(R,G,R) > G (A,G,R) > G 
(A,G,C) > G (B,G,R) > G 
(B,G,C) > G (C,G,R) > G 
(C,G,C) > G (L,G,C) > G 

After the new line is activated and up to time 2n-3, 
- the right neighbor of the general is always in state L or H 
- the left neighbor of the general can be in any state except state G. 

This leads to the following rules : 
(A,G,L) > G (B,G,L) > G (C,G,L) > G 
(R,G,L) > G (L,G,L) • G (A,G,H) • G 
(B,G,H) > G (C,G,H) > G (R,G,H) • G 
(L,G,H) > G (H,G,L) > G (H,G,H) > G 
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4,9, Finally we now have to deal with short lines which cannot be broken. 
A priori, such lines have length 1,2 or 3. 

Since we do not consider an initial line of length one and since 
the breaking process creates lines with length at least two (if n = 3p+i 
where p > 1 and i £ {1,2,3}, then the new general is machine 2p+i, 
so that the line has length p+1 and p+1 > 2), we have only to consider 
short lines of length two or three. 

Such lines appear in three different contexts : 
- The initial line has length two or three. 
- A created line has length two or three. 
- A remaining portion of a line has length two or three. 

The firing synchronization will be obtained as follows : 
- up to time 2n-3, no two adjacent machines are both in state G, 
- at time 2n-2, all machines are in state G, 
- at time 2n-l, all machines are in state F. 

The G-synchronization at time 2n-2 leads to figures 4.9. and to 
the following transition rules : 
(G,L,X) • G } Rule necessary for an initial line of two machines (â ) 

(H,L,X) • H Rules necessary for an initial line of three machines 
(G,H,H) > G (a3). 
(H,H,X) > G_ 

(G,R,X) • G } Complementary rule necessary for rightmost created lines 

of length two (°2̂ • 

No new rule is needed for the case of a rightmost created line 
of length three (b^). 
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(G,R,G) > G } complementary rule necessary for the generic created line 
of length two (c^). 

(H,L,G) • H complementray rules necessary for the generic created 
(H,H,G) >GJ line of lenth three (c3>. 

(G,L,G) —-» G } complementary rule necessary for the remaining portion of 
a line, with length two (d^). 

No new rule is needed for the case illustrated by (d^)• 

Lastly we consider the stability of G within the context of 
short lines. Figure 4.9 shows that at time 2n-3, all machines are in 
state G,H,R,L. To complete the stability of G (from time 2n-3 to 
time 2n-2) it suffices to introduce a single new rule : (H,G,R) • G. 

With these rules all short lines are G-synchronized at time 2n-2. 
The whole initial line, being covered by these short lines, is thus 
G-synchronized at time 2n-2. 

It is now clear that the firing synchronization is insured by the 
three following rules : 
(G,G,G) > F (X,G,G) > F (G,G,X) • F 

4.10, Now we have all necessary transition rules which fill the seven 
matrices of figure 4.11. 

Observe that no two rules are contradictory. 

Also observe that the blanks in the matrices correspond to 
environments which are not met, hence for which no transition rule is 
necessary. 

Figure 4.10 shows the synchronization of an initial line of 29 
machines. 
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§ 5 - A SIX STATES MINIMAL TIME SOLUTION. 

5.1. In this paragraph we show how to eliminate two states in the 

preceding solution. It is easy to eliminate state H. The matrices of the 

8-states solution show that state R appears very few times. We are going 

first to eliminate state R and then state H. 

To do this we shall introduce new rules, some of them, marked 

by [*], contradicting old ones. To get over the contradiction we shall 

also abandon some old rules and introduce some new ones. And so on up to 

an equilibrium. 

5.2. Observe that no B-diagonal belongs to the part of the reflection 

which crashes on a G vertical line (cf. figure 4.10). This induces us 

to replace state R by state B and leads to the following transitions 

rules (suggested by figures of § 4) : 

(B,L,L) • L [* 1] (B,L,X) • L [* 1] (B,L,G) • L [* l] 

(C,B,X) > L [* 2] (C,B,G) > L [* 2] 

(A,C,X) > B (A,C,G) > B (C,B,L) > L 

(G,B,L) > H (G,B,G) • G (G,B,X) » G 

(A,C,B) > B (G,C,B) > B (G,C,G) — » B 

(G,C,X) > B (H,G,B) > G 

Unfortunately 

- rules marked by [* l] contradict rules 

(B,L,L) > C (B,L,X) > A (B,L,G) > A 

- rules marked by [* 2] contradict rules 

(C,B,X) > A (C,B,G) > A 
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5_»3L In order to maintain rules marked by [* l ] supJress t< . 

environment BLL below the reflection of the i n i t i a ' u °\ v. -c ce 1 • •: 

modify the at t r ibut ion of state B to sites on a s ignal s, 'vbc vu " 

and a n c * t o s i tes between s^ and the preceeo In̂  sigiia"1 I S'^P 

the internal clock phenomenon we replace the portion ot the ,t&tc-d I â 1' - -~ 

BBL BCL 
BLL 7 GLL 

By th is way, we also suppress the environments BLX and BLG 

occuring on the re f lec t ion of an i n i t i a l wave. 

Looking at f igures 4.10 and 4.2 , we see that th is leads to 

- the suppression of : 

(B,L,L) -—• C (A,L,L) —» B (B,B,L) —* B 

(B,L,G) > A (B,L,X) > A (A,B,L) — • B (L,B,L) —-* L 

- the introduction of : 

(L,G,L) > B [* 3] (G,L,L) —-* C !* ] 
(A ,L ,L ) —> G (B,B,L) > G (A,A,G) —-* B 

(L,B,L) —> G (B,B,G) —» B (A,G,L) — • B [* 3] 

(G,L,B) — * L (G,L,C) > L (L,B,G) * B 

(B,G,L) > B [* 3] (G,L,G) —> A [* 3] (G,L,X) — * A [* 4] 

Unfortunately rules marked by [* 4] and [* 3] contradict 

rules : 

(L,G,L) > G (G,L,L) > H 

(A,G,L) • > G (B,G,L) > G (G,L,G) — + G (G,L,X) - ^ 

5.4. In order to maintain rules marked by [* 2] we modify the 

re f lec t ion of the i n i t i a l wave in the case of delay 2* To do this we reo la r 

the portions of diagrams 
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B A C Z B A C Z 
A Z C B A Z where Z is state X 

by 
C C B Z C C G Z orG. 
C L Z C L Z 

By this way we suppress the environments CBX and CBG. 

Looking at these portions of diagrams and figure 4.5 (for the 
reflected wave), we see that this leads to. 

- the suppression of : 
(C,L,X) > B (C,B,X) > A 
(C,L,G) > B (C,B,G) • A 

- the introduction of : 
(C,L,X) > G (C,G,X) • A (C,C,G) > B 
(C,L,G) > G (C,G,G) > A (G,H,G) • G 
(G,G,C) > G (G,G,B) > G 

In the case the line to be created is going to be short the preceding 
diagrams have to be modified. 

To suppress the environments CBX and CBG we have to replace 
the portions of diagrams 
L G A Z L G A Z 
L C B Z by L C G Z where Z is state X or G. 
C L Z C L Z 

This introduces the rule : (L,C,G) • G. 

5,5, Observe that the environments of the rules marked by [* 3] occur 
only when machine 2 is in state L. In order to maintain these rules 
marked by [* 3], we always (in fact up to time 2n-2) place machine 2 in 
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state H. To do this, we replace the two portions of diagrams : 
G H L B 

G L A G H L B 
G L A G L L B 
G H A G L A B 
by : 

G H L B 
G H A G H L B 
G H A G H L B 
G H A G H A B 

This leads to : 
- the suppression of rules 
(H,G,L) > G (G,H,A) > L 
(L,G,L) • G (A,G,L) > G (B,G,L) • G 
(C,G,L) > G 

- the introduction of rules : 
(G,H,A) > H (H,A,B) > L 

This new state-value introduced for machine 2, modifies also the 
G-synchronization in the case (d̂ ) (see figure 4.9). This leads to the 
suppression of the rule (G,L,G) • G and the introduction of the rule 
(G,H,G) > G. 

Now there remains only two contradictory rules : (G,L,X) > A 
and (G,L,L) > C. We observe that the rule (G,L,X) > G is used only 
when the initial line is of length two : when the rightmost new line is 
of length two, the rule (G,B,X) • G introduced in 5.2 is used. 
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We observe that rule (G,L,L) • H is used only to 
set up machine two. Thus the two remaining contradictions 
concern only site (2,2). 

5,6, Now we eliminate state H ; this suppresses rule (G,L,L) > H. 

Rule (G,B,G) > G (resp. (G,L,L) > A) suggests us to replace state H 
by state B (resp. C). In fact using the internal clock phenomenon we shall 
replace state H alternatively by states C and B. Observe (look at 
site (3.21) in figure 5.6) that we must introduce the rule (C,L,G) • L 
which contradicts the rule (C,L,G) • G introduced in 5.4. To avoid 
this contradiction, we shall code states of machine 3 in a particular way : 
machine 3 will be alternatively in state A and in state G. To do this 
we replace diagrams of figure 5.6 a) by diagrams occuring in figure 5.6 b). 

This leads to : 
- the suppression of all the rules in which a state H occurs and of the 
rules : 
(L,B,L) > G (L,G,L) > B (L,A,L) > A 

- the introduction of rules : 
(G,L,L) > C (G,C,L) > B (G,B,A) > C 
(G,C.G) • B (B,A,L) > G (G,B,L) > C 
(B,A,B) • G (C,G,L) • A (G,G,L) > B 
(A,B,C) > L 
(A,B,L) > G (X,G,B) > G (X,G,C) • G 

These new site values for 2 and 3 modify the G synchronization 

when : 
- the initial line is of length three or four (cases â  , â  of figure 4.9) 
- the remaining portion of the initial line is of length three of four 
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(cases ĉ , of figure 4.9). 

This leads to the introduction of the following rules : 
(A,B,A) > B (G,B,C) > B (B,C,G) > G (B,C,X) > G 
(B,G,G) • G (B,G,X) > G. 

By this way we obtain a six-states automaton which synchronizes 
all lines consisting of more than two machines. 

The special case of an initial line of two machines is solved 
by the two following diagrams : 
X F F X X G B L the first diagram insures the synchronization of an 
X A A X X A C L initial line of length 2 ; the second one deals with 
X G L X X G L L the consequences brought by the first. 

This leads to the introduction of the following rules : 
(A,C,L) > B (X,A,C) > G 
(X,G,L) > A (X,A,A) > F (A,A,X) > F 
and the suppression of the rule (X,G,L) > A. 

5.7, Observe that these modified rules have the following consequence : 
a site (K,t) in receives state L if and only if K > 4 (contrary 
to the situation described in § 4 ; this is due to the particular coding 
device of machines 2 and 3). 

5.8, Now we have all necessary transition rules which fill the five 
matrices of figure 5.7. 

Observe that no two rules are contradictory. 

Also observe that the blanks in the matrices correspond to 
environments which are not met, hence for which no transition rule is 
necessary. Figure 5.8 shows the synchronization of an initial line of 29 
machines. 
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§ 6 - PROOF OF CORRECTNESS. 

6.1. We now prove that the automaton defined in § 5 (whose transition 

rules are indicated on figure 5.7) is indeed a minimal time solution of 

the firing squad synchronization problem. 

The proof will proceed by induction on the length n of the initial 

line : the synchronization of a line of length n = 3p+i (with i € {1,2,3}) 

is reduced to the synchronization of lines of length 2p+i-l and p+1 

(corresponding to the break at the 2/3 described in paragraph 2). 

In order to get such a reduction, we first prove some facts relative 

to : 

- the behaviour of the line below the reflection (the scheme), 

- the reflection itself. 

The following fact will be useful : 

Fact 1. Every site (K,t) with K > t has state L. 

It is a trivial consequence of the rules (L,L,L) • L and 

(L,L,X) > L. 

Finally we shall often use the fact that the distribution of states 

on a set X fully determines that on a set X bigger then X as illustrated 

by figure 6.1. 

6.2. It is clear (cf. the study of signals s^ in § 3) that diagonals 

are the esseptial objects to consider. Due to the internal clock phenomenon, 

the most pertinent object is that of double diagonals DD^ : 

Notation 1. 

If 7 < m < n, we let DD be the set ' m 
{ (m-i , m+i) , (m-i , m+i+1) ; i € {-1 ,0 ,. . ., m-1}} 
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(i is allowed to be -1 in order that DD captures two sites 
m 

corresponding to machine m+1. 

As can be seen in figure 5.8, a double diagonal DD^ consists 
of several "unicolor" pieces. This leads us to introduce truncated double 
diagonals : 

Notation 2. 
If 7 < m < n and 1 < K < j < m+1 we let DD . Tr be the set 

m,j,K 

DD^ fl { (£, t) ; K<Z< j } = { (m-i,m+i) , (m-i,m+i+l) ; i € {m-j m-K}}. 

REMARK-

Observe that indices m,j,K are in decreasing order : this is 
indeed the order of appearance of machines when one progresses upward on D D

m* 
We distinguish some families of basic truncated double diagonals. 

DEFINITION 1, 
Suppose j > K+3 and K > 2. 
1). We say that DD . i s A-basic (resp. C-basic) if : 
(a), its rightmost and leftmost sites (j , 2m-j), (j , 2m-j+l) 
and (K , 2m-K) (K , 2m-K+l) have state L. 
(3). its other sites (i , 2m-i), (i , 2m-i+l) have state A 
(resp. C) (with i in {m-j+1 m-K-l}). 
2) . We say that DD . Tr is B-basic is condition (a) above is 

m,j,K 
satisfied and 
(gf) its left to rightmost sites (j-1 , 2m-j + l), (j-1 , 2m-j) have 
states B and G, 

its other sites (i , 2m-i), (i , 2m-i+l) (with i in 
{m-j+2 m-K+1}) have state B. 
3) . DD . Tr is basic if it is A, B or C basic. 
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REMARK. 
The reason of the condition j > K+3 is that the extreme sites 

are distant enough and do not directly interfer. 

The next two lemmas describe some possible evolutions in time 

of truncated double diagonals (up to the arrival of the reflected signal). 

LEMMA 1. 
i Let j > K+3 and K > 2. 
i 1)• If DD . is B-basic (resp. C-basic) and if the rightmost 
i sites of DD . (i.e. (j , 2m-j+2) and (j , 2m-j+3)) have i m+1,j,K 
i state L then DD , - . Tr is also B-basic (resp. C-basic). i m+l,j,K 
i 2) . If DD . Tjr is A-basic and the rightmost sites of DD - . Tr i m,j,K & m+l,j,K 
i have state L and if 
i (*) Tsites (K-l , 2m-K+l) and (K-l , 2m-K+2) have states different 
i from L, 
i then DD i . Tr is also A-basic. m+l,j,K 

Proof. We refer to figure 6.2 a). 

Using rules (C,C,L) > C, (C,C,C) • C and (L,C,C) • C we 
see that all sites (i , 2m-i+2) (and then all sites (i , 2m-i+3)) for 
i € {K+l j"D are in state C. 

Observe that the environment (L,C,L) does not occur : they are at 

least two sites between the leftmost and rightmost sites of DD . since 

j > K+3. 

States marked by U,V on figure 6.2 a) (on sites (K-l , 2m-K+l) 

and (K-l , 2m-K+2)) are not X since K ± 1. This fact and the transition 
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rules (-,L,C) • L where . is any state different from X, show that 
(K , 2m-K+3) , (K , 2m-K+2) have state L. 

This proves that DD -. . Tr is C-basic. 
m+l,j,K 

£s*§e JHD§si[c . 
We proceed in a similar way. Observe that (B,B,L) > G puts 

state G to site (j-1 , 2m-j+3). This imposes us to consider the case 
j = K+3 (see figure 6.2 a)) for which we use rule (L,B,G) • B. 
Case_A-baS2£. 

We proceed as in the case C-basic. The lack of any transition rule 
with environment (L,L,A) is supplied by the hypothesis (*). • 

LEMMA 2. 
i Let j > K+3 and K > 2 and 7 < m < n. 
i 1). If DD . is A-basic (resp. B-basic) and if the rightmost | m>J>K 
i sites of DD -, . i Tr i (i.e. sites (i+1 , 2m-j+l) and i m+l,j+l,K+l J J 

\ (j + 1 , 2m-j+2)) have state L then DD is B-basic i m+l,j+l,K+l 
} (resp. C-basic). 

i 2) . If DD . T_ is C-basic, if the rightmost sites DD , . n Tr i m,j,K & m+1,j + 1,K 
i have state L and if condition (*) of lemma 1 is satisfied 
i then DD • , Tr is A-basic. m+1,j+1,K 

The proof is similar to that of lemma 1 and is illustrated by 
figure 6.2 b). 

Looking at figure 5.8, we see that double diagonals consist of 
basic truncated double diagonals and a terminal portion somewhat different. 
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DEFINITION 2. 
Let 7 < m < n ; a truncated double diagonal DD , (resp. 

m, H , 1 
DD r ^ , resp. DD , ) is called a 4-end (resp. 5-end, resp. m,5,l m,6,l K ' * 
6-end) if its site-values are those indicated by figure 6.2 c) 
case 1 (resp. case 2, resp. case 3). 

LEMMA 3, 
i Let 7 < m < n. There exists a finite sequence of integers 

| (j-L J£ / such that 
i m 
i 4 < j £ < ... < < j £ < ... < j x = m+l 
i m 
i and 
i 1). for every t in {l m̂~̂ -̂  t n e portion of double 
i diagonal DD is basic, i .m .m 

i 2). The integer is 4,5 or 6 and the terminal portion 
i m 
I DD is a j n - end. i .m - 't I m,j^ , 1 m 

m 
Proof. The argument is an induction on the integer m in the segment 

[7 , . . ., n-1]. 

(i) . Case mj=_7 . 
Observing that the site-values of DD^ is independent of n 

(n > 8), it suffices to check this case with any particular value of n. 
This can be done using figure 5.8. 

We now assume that the lemma is true up to m (m < n-2) and prove 
the case m+1. The proof is quite long and occupies (ii) to (v) below. 

, n ii .m+1 .m+1 (n). We define I + 1 and the sequence ,. . ., ,. . ., as 
m m+1 

follows : 
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[l] V - Z is £ +1 if j 0 =6 and all truncated double diagonals m+1 m -c m 
DD (with £ in {1 -1}) are A or B-basic ; .m .m m 

m'J-e» J£ +i 
£ .. is £. otherwise. m+1 m 
- For £ in {1 ,...,£ } 

m 
j?"1"* is if all truncated double diagonals DD with J£ JZ .m .m 

m+1 m 
s € {1,...,£-1} are A or B-basic ; is otherwise. n .m+1 .m _ In particular for £=1 =j^+l = m+2. 
- If £ - = £ +1 then =4. L m+1 m J£ -

m+1 
TT i • r .m+1 .m ,̂ .m+1 .m c ii 
We observe that if = then j g = j g for all s in 

{£,...,£} and £ n = £ . 
m m+1 m 

(iii). We first observe that condition (*) from lemmas 1 and 2 is always 
satisfied for the DD with £ € {1 £ -1} : 

.m .m m m,J£ , 3l+1 

- Case 1=1-1. 
m 

It is clear from property 2) for DD and figure 6.2 c) 
. m -j 

m>j£ 5 1 
m 

that sites (ĵ  - 1 , zm-j^ + 1; and (j^ - 1 , 2m-j^ + 2) are not in state L. 
m m m m 

-. Case £ < £ - 1. 
m It is clear from property 1) for DD and definition 1 * J .m .m 

that sites ( J£ + 1 " 1 , 2m~J£+i + ^ a n d ^£+1 "~ 1 * 2m~^£+l + 2^ a r e n 0 t i n 

state L (theiy are both in state A or both in state C or in respective 
states G,B). 

(iv). We first prove a part of property 1) for : double diagonals 

°̂ m+l 9 ̂ £+^ ' ̂ £+1 a r e ^ a s^ c ̂ o r ^ ̂  ̂  >•••» ̂ m""̂  (the only, possibly 
remaining DD , - , j m +^ , jT̂ i -when £ , - = £ + 1- will be studied in ° m+1 ' J£ J£ +1 m+1 m m m 
point v)). The proof is by induction on £ in {1 , .... £ -1}. 

m 
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* Initial step Z=l. 

Using Fact 1, we know that sites (m+2 , m+1), (m+2 , m) are in 
state L. Since m+1 = j1? , this shows that DD m satisfies the 

m,m+l,J2 
hypothesis of lemma 2. Noticing that the different cases in lemma 2 correspond 
to the different cases in the definition of from , the conclusion 
of lemma 2 establishes that DD n is basic. - 0 .m+1 m+1,m+2,J2 

* Induction step. 
We suppose that DD , .. is basic (with 1 < Z < Z -1). v v i .m+1 .m+1 m 

m + 1'j£ ' J£ +l 
First we observe that the rightmost sites of DD 

are the leftmost sites of DD m+i* ^-ne induction hypothesis 

(over£) insures that these sites are in state L. 

.m+1 .m 
- Case = + 

The very definitions of J^+J from show that every 

DD , with s € {1 Z -1} is A or B-basic. Thus, the value .m .m 
M ' J S ' Js+1 

c .m+1 . of j £ + 2 is : 

" j , . 9 + l if DD 
£+2 .m .m A „ , 

m , J£+l ' 3Z+2 1 S ° r B " b a s i c 

if it i s C-basic. 
Since sites + 1 > 2m~J™+i + ^ a n d ^£+1 + 1 » 2m~J£+l + 2^ 

.m+1 .m ., 
- being the rightmost sites of DD m + 1 m + 1 since = J£ + 1

 + 1 " 
m + 1^£+l > j£+2 

have state L, the hypothesis of lemma 2 is satisfied for DD 
' J r .m .m 

m>J£+l ' J£+2 
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Observing that the different cases in lemma 2 correspond to the 

different cases of the definitions of J™+2 ^ r o m £̂+2 * W e ^ e t t*ie kasic 
character of DD , - - . 

- .m+1 .m+1 
m + 1' J£+l ' 21+2 

.m+1 _ .m 
- Case 3l+l - 3l+v 

Recall (cf. end of point ii)) that this equality implies = 

Since sites ( J™ + 1 > 2m~J£+i + 2) a n d ^£+1 9 2m~J™+l + 3^ " b e i ng t h e 

rightmost sites DD since J£+^ = £̂+i "~ n a v e state L, 
m+1'j?+i > J?I2 

the hypothesis of lemma 1 is satisfied for DD - ., . 
- .m+1 .m+1 

m + 1' J£+l ' J£+2 Thus DD - § 1 -which is the same as DD - is .m+1 .m+1 .m .m 
m + 1>j£ +l ' J£ + 2

 m + 1 > J W ' J ! + 2 
also basic. 

(v). Up to now, we have shown that the double diagonals DD 
m + 1'j? ' j£+l 

will t € {1 m̂~*l} satisfy condition 1) of lemma 3. We still have 
to study the remaining part DD of DD 1 t ° F , - .m+l , m+l m+l,J^ , l 

m 
It is convenient to consider two cases corresponding to the possible 

- _ .m+l . .m values of from . 
m m 

.m+l .m 
- Case = . 

m m 
Notice (as above in (iv)) that sites (j1^ , 2m-j™ +2) and 

m m 
(j1? , 2m-j1? + 3) -being the leftest sites of DD - - - have L L - .m+1 .m+1 m m m + 1' J£ -1 > J£ , , I- m m state L. 

Using the induction hypothesis over m, DD is (according 
m 
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to property 2) of the lemma 3 at step m) a 4 (or 5 or 6)-end. As illustrated 
by figure 6.2 d) , the state-values of sites in DD are completely 

m+l,J£ , 1 m 
determined and this truncated double diagonal is also a 4 (or 5 or 6)-end. 

Note : In this case, we always have Z n = Z (which agrees with point ii). m+1 m 

n .m+1 .m , 1 

- Case = + 1. 
m m 

Notice (as above in iv)) that sites (j™ +1 , 2m-j^ +1) and 
m m 

(j^ + 1 , 2m-j™ + 2) -being the leftest sites of DD -
m m m+1, _ ]_ » J£ , m m have state L. 

Using the induction hypothesis over m, DD is a 4 (or 5 
.m -

m>j£ > I 
or 6)-end. m 

As illustrated by figure 6.2 e) the state values of sites in 
DD - are completely determined, i .m+1 v J 

m+l,j£ , 1 
m 
It is trivial to check that : 

- if DD is a 4-end (resp. 5-end), .m 1 m,j£ , 1 
m 

then DD is a 5-end (resp. 6-end) . 
x l .m+1 . m+l,jn , 1 

m+1 

In this case we have Z n = Z which agrees with point ii). 
m+1 m 

- If DD is a 6-end, then : .m 1 > 1 
m 

* DD n , is a 4-end 
m+1,4,1 

* DD .. _ . is A-basic. 
m+1,7,4 
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In this case we have = 6, = 7, =4 arui 
m m m+1 £ - = £ +1 which agrees with point ii)• m+1 m & r 

This complete the proof of lemma 3. • 

The following notion is quite convenient. 

DEFINITION 3. 
The sets of sites U and V included in {1 ,. . ., n} x {1 , . . ., 2n-l} 

2 2 
are n-equivalent if there exists a translation T : IN »1N 
such that : 
- T(U) = V, 
- For every (K,t) in U, sites (K,t) and T(K,t) have the same 
state in the state diagram of an initial line of n machines. 
We shall use the following consequences of the above proof : 

LEMMA 4, 
1 1). If = then the translation (K,t) • (K , t+2) maps 
i DD onto DD - and respects the state values. i .m - 1 .m+1 _ r 

1 m, , 1 m+1, , 1 
1 2) . Let 1 < L < H , the function m » i^" 1̂  ̂  with domain 1 m JZ J£+l 1 o 
1 {m̂  n-1} is not decreasing. 

Proof, (1). From the proof of lemma 3 we see that the condition = 
implies : 
- I =1 

m+1 m 
- for s in {<£,..., t -1} the set DD _ 1 and its state 

* m .m+1 .m+1 
, Js * Js+1 

values is obtained from DD (and its state values) via the 
.m .m 

, Js * Js+1 
translation (K,t) • (K , t+2) . 
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- The set DD - and its state values is also obtained via this .m+1 1 m+l,j£ , 1 
m+1 

translation from DD 
.m 

, 1 
m 

(2). This is a trivial consequence of the proof of lemma 3 : in 
r ^ ,.m+l .m+lx , .m .m v 
fact (iz - (J £"J £ + 1) is 0 or 1. 

The next lemma states an essential property of the scheme, i.e. 
the distribution of states below the reflection. It will be basic to prove 
that the remaining portion of the initial line after the break at the 
2/3 evolves -for the part during and after the reflection- as an initial 
line of length (cf. 6.1). 

LEMMA 5. 
x Let 12 < m < n be of the form m = 3p+i with p > 4 and 
j i G {0,1,2}. 
i 1). DD - 0 . is A (resp. B,C)-basic if i = 0 (resp. 1,2) ; i m,m+l,zp+i 
i n .m . i also = 2p+i. 

1 2). DD o .• i i s n-equivalent to DD_ . . = DD_ 
m,2p+i,l H 2p+i-l 2p+i-l,2p+i,l 

Proof, We argue by induction on the integer m. The case m = 12 is easily 
checked (cf. figure 5.8). 

Suppose now that properties 1 and 2 hold for m. 

(i) . From Fact 1 we see that sites (m+1 , m) and (m+1 , m-1) 
have state L. Since DD _ 0 . is basic, its leftest sites (2p+i , 2m-2p-i) 

m,m+l,2p+i 
and (2p+i , 2m-2p-i+l) have state L. Due to the decomposition of DD^ in 
basic and end DD's (lemma 3), their neighbors (2p+i-l , 2m-2p-i+l) and 
(2p+i-l , 2m-2p-i+2) have states different from L. This shows that the 
hypothesis of lemma 2, including condition (*), are satisfied by D D

m > m + 1 ^ 2 p + i ' 
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Applying lemma 2, we are led to the three cases : 

- Case i = 0. 
By induction hypothesis, DD _ _ . is A-basic and lemma 2 

m,m+l,2p+i 
shows that DD ^ n _ . is B-basic. Noticing that the equality m+1 = 3q+j m+l,m+2,2p+i+l 
with j £ {0,1,2} implies q = p and j = i+l=l, so that 2q+j = 2p+i+l, we 
see that the first part of property 1) holds for m+1. 

- Case i = 1. Similar. 

- Case i = 2. 
By induction hypothesis DD 0 . is C-basic and lemma 2 J x r m,m+l,2p+i 

shows that DD _, _ _ . is A-basic. Noticing that the equality m+1 =3q+j m+l,m+2,2p+i ° n J ^ J 

with j € {0,1,2} implies q = p+1 and j = 0 so that 2q+j = 2p+2 = 2p+i, 
we see that the first part of property 1) holds for m+1. 

(ii). In the three previous cases, the basic character of 
DD ,- i 0 _ . implies that j™*1 = 2q+j where m+1 = 3q+j with i £ {0,1,2}. m+l,m+2,2q+j r J2 n J ^ J J ' * 
We consider two cases according to the value of from j™. 

n .m+1 .m 
- Case J 2 = J 2. 

Point 1 of lemma 4 and the induction hypothesis prove point 2 of 
this lemma for m+1. 

.m+1 .m 
- Case J 2 = J 2 + 1. 

By induction hypothesis DD 0 ,. , is equivalent to DD . n 0 . n. J J V m,2p+i,l 2p+i-l,zp+i,1 
Sites (2p+i+l , 2p+i) and (2p+i+l , 2p+i-l) have state L by Fact 1. 
Sites (2p+i+l , 2m-2p-i+l) and (2p+i+l , 2m-2p-i+2) have state L because 

jT^ = + 1 = 2p+i+l and these sites are the leftest ones of DD m+1* 
m+1, m+2,j2 

Thus the two sets 
U = D D 2 p + i - 1 2 p + i x U {(2p+i + l , 2p+i), (2p+i+l , 2p+i-l) and 
V = DD 0 . , U {(2p+i+l , 2m-2p-i+2), (2p+i+l , 2m-2p-i+l)} m, Zp+i,1 
are n-equivalent via the vertical translation of vector (0,2m-2(2p+i-l)) = (0,2p+2). 
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Notice that the state-values of DD - 0 . . , (resp. DD0 . ̂  , - ,) 
m+l,2p+i+l,l r 2p+i,2p+i+l,1 

are fully determined by those of V (resp. U) (see figure 6.2 f)). We thus 

deduce that D D ^ ^ ^ . ^ ^ and ^ ^ ^ ^ ^ are n-equivalent. 
Observe that the equality = ĵ +1 implies that DD is 2 2 - ,m m,m+l,j2 

A or B-basic (cf. point ii) of the proof of lemma 3). Thus, point 1) of lemma 5 
shows that if m = 3p+i then i f 2. 

Finally, recall that if m+1 = 3q+j (where j € {0,1,2}) then 
2q+j = 2p+i+l (where m = 3p+i with i £ {0,1}). 

Thus the n-equivalent preceding sets are exactly those of point 2 
of lemma 5 for m+1. o 

6,5, The two next lemmas describe some properties of the reflection 
of the initial wave. The first one considers the emission and transmission 
by the right-end soldier of the reflected initial wave. 

LEMMA 6, 
i Let n > 25, n = 3p+i with i € {1,2,3}. 
i Let Z and U be the sets : 
i Z = {(£, 2n-£+i+z) ; I £ {j 2~ 1 + 5 n} ; z £ {-1,0,1,2,3}} 
j U = {(£, 2n-£+u) ; I £ {j!J~1 + 5 n} ; u£ {0 6} (cf. fig. 6.3 b)). 
i These sets are non empty and : 
1 1). The distribution of states on Z is as indicated in figure 
i 6.3 a), i.e. every vertical section has states CBLLL from bottom 
j to top. 
i 2). The distribution of states on U completes that of Z as 

i indicated in figure 6.3 a). 
i Case i=l : U^Z consists of two L-valued diagonals above Z. 
i Case i = 2 : U^Z consists of two diagonals, one A-valued below Z 
i and the other L-valued above Z. 
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i Case i = 3 : U ^ Z consists of two diagonals below Z. The highest 
i one is A-valued, the other one is B-valued except its rightmost 
i site which has value G. 

24 
Proof. When n = 25, we have =16 and the truncated double diagonal 
DD 0 / o c has sites corresponding to ten adjacent machines. Using point 2 

Z4,ZJ,lb of lemma 4. we deduce that for all n > 25 , DD has at least ten ' -. .n-1 n-l,n,j2 adjacent machines. 
As illustrated in figure 6.3 b), DD fully determines 

n-l>n>J2 

the set U. Observe that this set is non-empty since there are least six 
(indeed ten) adiacent machines involved in DD . 

J .. .n-1 
Observing that n-1 = 3p + (i-1) with (i-1) G {0,1,2}, lemma 5 

-applied to DD - gives the three distributions of states on U 
n~l,n,J2 

(as illustrated on figure 6.3 a)). • 

REMARK-
Lemma 6 proves that the delay is really conveyed by the reflected 

wave as indicated in paragraph 4. 
The following lemma considers the crash of the reflection of the 

initial wave and completes lemma 6. 

LEMMA 7, 
i Let n > 25. The distribution of states for sites corresponding 
i to machines j 2 ^ - 2 , . . ., j 2 ^ + 5 and to the arrival of the 
i reflection of the initial wave is always that of some of the nine 
i cases indicated in figure 6.3 c). 
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Proof. Let V be the set 
DD n_ 1 n_ 1 U {(j n _ 1 +5 , 2n-j n - 1-5+ £) ; Id {0 6}}. 

J2 + 5 , j 2 - 2 

The set V is fully determined by V. 
24 24 24 24 We first observe that J 2 > j + 3 and 25 = > j 2 +6 (easy 

check, cf. figure 5,8). Point 2 of lemma 4 permits to extend these inequalities : 
.n-1 _ .n-1 0 , ,n-l ̂  ,n-l , m t . 
J2 J3 3 a n d n = J l J2 " T n i s insures that : 
DD 1 c: [DD n , U DD , ] . i .n-1 .n-1 .n-1 .n-1 n .n-1 

n-l>J2
 + 5 > J 2 " 2 n~ 1>J 2 > J3 n-l,n,J2 

By lemma 3, DD - - is A or B or C-basic. J 9 . .n-1 .n-1 
N ~ 1 » J 2 > J 3 

From lemmas 5 and 6 the distribution of states on 
DD and {Cj^"1 + 5 , 2n-J2"1-5 + £), I £ {0 6}} 

(which is included in the set U of lemma 6) depend only on the remainder 
of n modulo 3. Thus there are only nine types of distribution of states 
on the set V. 

Observing that V is fully determined by V, we get the nine cases 
of figure 6.3c). • 

6,4, In order to compare states-diagrams for inital lines of different 
lengths, it is convenient to introduce the following notation and definition : 

Notation 3, 
Let Y be a set of sites included in {1 ,. . ., N} x {1 , . . . 9 2N-1} 
and N < n. By < Y > we mean the restriction to Y of the J n 
state-diagram of the evolution of an initial line of length n. 

Also < K,t > denotes < {(K,t)} > . 
n n 
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DEFINITION 4. 
Let Y and Z be two sets of sites. B y < Y > ~ < Z > we 

J n m 
mean 
- < Y > and < Z > are both defined 

n m 
- there exists a translation T : (K,t) • (K-a , t-b) such that 
T(Y) = Z and T respects state-values (i.e. < T(K,t) > = < K,t > 

m n 
for (K,t) in Y). 

REMARK. 
In case n = m, then < Y > ~ < Z > if and only if Y and Z * n m J 

are n-equivalent in the sense of definition 3. 

Notation 4, 

. is the following portion of a constant-time line 
{(£,t) ; K < I < j}. 

LEMMA 8, 
i Let n > 25, n = 3p+i with i € {1,2,3}, then 
i < H*" . > . ~ < H 3 > i 2p+i,3p+i 3p+i l,p+l P+1 
i for t = (2n-l) - [2(p+l)-l-3] = 4p+2i+l (i.e. the distribution 
i of states at time 3 for an initial line of p+1 machines is that 
i at time t for the p+1 rightmost machines of an initial line 
i of n machines. 

3 Proof- It is clear that the distribution of states on H- - for an l,p+l 
initial line of length p+1 is GBALL ... LL. 

Using lemma 7 for a line of n machines, it is easy to check that 
in the nine cases of figure 6.3 c) 
- sites (2p+i , t), (2p+i+l , t), (2p+i+2 , t) are in respective states GBA. 
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-sites (2p+i+2 , t-1), (2p+i+2 , t-2), (2p+i+3 , t-2), (2p+i+3 , t-3) are 
in state L. 

By lemma 5, = 2p+i-l ; thus lemma 6 insures that all sites in 
the set 
W = {(£, 2n-£+i+l), (>£, 2n-£+i+2) ; I £ (2p+i+4 , n}} have state L 
(for an initial line of n machines). 

Observing (cf. figure 6.4 a)) that the set 
W U {(2p+i+2 , t-1), (2p+i+2 , t-2), (2p+i+3 , t-2), (2p+i+3 , t-3)} fully 
dtermines a set containing . ̂  ̂  . , we deduce that all sites in 

° 2p+i+3,3p+i Ho ...o o . • have state L (for an initial line of n machines). 2p+i+3,3p+i 
This proves that the states of < . _ . >̂  . are r 2p+i,3p+i 3p+i 

GBALL ... LL. 

Taking T : (h,9) > .(h-2p-i+l , e-t+3), we see that : 

2p+i,3p+i 3p+i 1,P+1 P+1 

Notation 5, 
LDD*" . is the following set of sites (it is the union of an m, J 
initial truncated double diagonal and a triangle) (cf. figure 6.4 b)) : 
LDDt . = DD . , U {(h,0) ; h < j and 0 < t and h+9 > 2m+l}. m,j m,j,l 

LEMMA 9. 
i Let n > 25, n=3p+i with i E {1,2,3}, then 
I < L D D 4 P ; 2 ^ . . > ~ < L D D ^ ; ? 1 : 1 , 
i n-l,2p+i-l n 2p+i-2,2p+i-l 2p+i-l 
i (i.e. the distribution of states at time 2p+i-l+b (with 
I b€ {0 i})) of the b rightmost machines of an initial wave 
I of length 2p+i-l is that at time 4p+i+l+b (with b £ {0 i}) 
i of the b left neighbors of the machine 2p+i of an initial 
i line of n machines. 
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Proof, (i). Observing that if n = 3p+i with n £ {1,2,3} then 
n-1 = 3p+i-l with i-1 £ {0,1,2}, lemma 5 insures us that 
< DD - 0 . - - > ~ < DD_ . 0 0 . - - > . 

n-1 , 2p+i-l,l n 2p+i-2 , 2p+i-l,l n 
Let I be the set { (h , h-l) ; with 0 < I < h-1 and h < 2p+i}, 

then DD0 . o o -ii i s fully determined by I U {(1,1)}. 2p+i-2 , 2p+i-l,l 

By Fact 1 we have < I > = < I > 0 . - (all sites have state L) . J n 2p+i-l 
Since < 1,1 > = < 1,1 > 0 . =G, we have n 2p+i-l 
< DD2p+i-2 , 2p+i-l,l ̂  ~ < DD2p+i-2 , 2p+i-l,l ̂ p+i-1' 

Thus < DD 1 0 . 1 1 > ~ < DD_ . . > 0 . . 
n-1 , 2p+i-l,l n 2p+i-2 , 2p+i-l,l 2p+i-l 

(ii). States < 2p+i-l , 4p+i+l+b > n with b £ {0 i} are 
indicated by lemma 7. These states depend on the remainder of 2p+i-l 
modulo 3 ; they are given by figure 6.3 c). 

States < 2p+i-l , 2p+i-l+b ̂ p+i-i w i t n b £ {0 i} are 
fully determined by the states of DD0 . _ for an initial line of 2p+i-l J 2p+i-2 
machines ; they are given by figure 6.3 a) (where n is replaced by 2p+i+l). 
These states depend also on the remainder of 2p+i-l modulo 3. 

Whatewer be this remainder, one checks easily on figures 6.3 c) 
and 6.4 c), via the translation T : (h,t) > (h , t-2p-2), that 
< {(2p+i-l,4p+i+l+b) ; b £ {0 ,. .., i}} > n ~ 

< {(2p+i-l,2p+i-l+b), b £ {0 i}} > 2 p + i. 1-

4 + 2 i+1 2 + 2 i 1 (iii) . Observing that LDD -, 0 , . and LDD0 . n 0 . are n-l,2p+i-l 2p+i-2,2p+i-l 
fully determined by 
DD - n t . - - U {(2p+i-l , 4p+i+l+b) ; 0 < b < i} and n-1 , 2p+i-l,1 r » r * 
DD2p+i-2 , 2p+i-l,l U t(2p+i-l , 2p+i-l+b) ; 0 < b < i}, 
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the two preceding points show that 
< L D D A P ; 2 J + 1 . , > ~ < L D D ^ 2 1 " 1 , . , > , . , . 

n-l,2p+i-l n 2p+i-2,2p+i-l 2p+i-l 

6,5, Let n = 3p+i with i € {1,2,3} and n > 25, we observe that : 

- LDDn-i22p+i-l U { ( 2 P + i > 0) 5 4p+2i+l < 0 < 2n-l} fully determines 
{(K , 2n-l) ; 1 < K < 2p+i-l} (i.e. the (wanted) synchronization step of 
the 2p+i-l leftmost machines of the initial line at time 2n-l). 
- H^"*"?1!1 . U {(2p+i , 0) ; 4p+2i+l < 0 < 2n-l} fully determines 

2p+i,3p+i J 

{(K , 2n-l) ; 2p+i < K < 3p+i} (i.e. the (wanted) synchronization step of 
the p+1 rightmost machines of the initial line at time 2n-l). 

Lemmas 8 and 9 show that the distribution of states on LDD^P^^+"|". -
n-l,2p+i-l 

4p+2i+l 
and H2p+i 3p+i a r e t n o s e o n ^equate subsets of the state-diagrams of initial 
lines having lengths strictly shorter than n. 

In order to reduce the synchronization of an initial line of n 
machines to that of shorter initial lines, we prove that : 
(X) - machine 2p+i stays in state G from time 4p+2i+l up to 

time 2n-2. 
- During the same time interval, the states U,V of machines 2p+i-2 
and 2p+i-l are such that the rules for environments (U,V,X) and 

_(U,V,G) give the same result. 
LEMMA 10, 

i Let n = 3p+i with i £ {1,2,3} and n > 25. 
i 
i For every time 0 in {1 4p+2i+l} 
i 
i (< n-1 , 0 >, < n,0 >) is an element of the following set 
i 
\ A 1 = {(C,L), (A,L), (A,C), (C,B), (B,L), (L,L), (G,L), (C,G), (B,A)} 
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Note. This proves that up to time 4p+2i+l, the environments GGX and 
AAX do not occur. 

Proof, From Fact 1 we know that these two states are (L,L) up to time n-2. 

From lemma 6 one checks that these two states are in from 

time n-1 up to time n+6. 

From Lemma 7 one checks that these two states are (L,L) from 
time n+7 up to time 4p+2i+l. D 

We cannot prove X directly. We proceed by an examination of 
successive horizontal lines. 

LEMMA 11. 
i Let n > 25 and n = 3p+i with i € {1,2,3}. 
i 
i Suppose that condition (**) 
i 
i (**) T For all 9, 1 < 9 < 2m-3 (< m-1 , 9 > , < m,9 > ) £ A. i v J 9 m m 2 i 
j L w ith A2

 = AX U {(B,C), (B,G), (G,C), (G,B) , (G,A)} 
i 
i holds for all m such that 3 < m < n. 
i 
i i Then i i 
i 1). For t € {0 2p-3} i f x TT4p+2i+l+t ^ TT3+t i (a). < H 0

F . Q . > Q . ~ < H- - > -i 2p+i,3p+i 3p+i 1,P+1 P+1 
i 
* /u\ ^ u4p+2i+l+t ^ ^ u2p+2i-l+t 
i 2p-2-t,2p+i-l 3p+i 2p-2-t,2p+i-l 2p+i-l i i 
i 2). Condition (**) holds for m=n. 

Proof, (i). We prove point 1) by induction over t. Observing that 
4p+2i+l . . i J J • T™4p+2i+l H_r . is included in LDD 1 _ . . we see that the case t = 0 2p-2,2p+i-l n-1,2p+i-l 
is answered by lemmas 8 and 9. 

We suppose now that point 1 is true for some t < 2p-4 and we 
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prove point 1 for t+1 in (ii) to (v) below (cf. figure 6.5). 

/-\ c u4p+2i+l+(t+l) , 3+(t+lk . . „ , _ . . (ii). Since H_ . 1 _ . (resp. H_ ) is fully determined 2p+i+l,3p+i 2,p+1 

TT4p+2i+l+t , T73+t v . i \ i_ by H 0
r . _ . (resp. IL point 1 a) shows that 2p+i,3p+i 1,P+1 

< H4 P +2i+i + (t +i) . < H f < t ; 1 ) > 
2p+i+l,3p+i n 2,p+1 p+1 

(iii). Observe that : 
u4p+2i+l+(t+l) , „2p+2i-l+(t+l) \ • - - - J • j , 

- H r /__,_-, \ o o (resp. H 0
r o j.- l s fully determined by 

2p-2-(t+l),2p+i-2 r 2p-2-(t+l),2p+i-2 y y 

__4p+2i+l+t • • _„4p+2i+l , __2p+2i-l+t ., Tnr2p+2i-l * 
H2p-2-t,2p+i-l U L DVl,2p+i-l ( r e S p - H2p-2-t,2p+i-l U LDD2p+i-2,2p+i-l) 

-<4V*IKK\-1 > - < H 9 p + 9 i ; 1 9 t
+ - 1 ^ n + i - r b y p o i n t i } b ) f o r 

2p-2-t,2p+i-l n 2p-2-t,2p+i-l zp+i-l 
- < LDD 4P + 2 i + 1. , > ~ < LDD^P*?1:1, . , >, +. , by lemma 9. 

n-l,2p+i-l n 2p+i-2,2p+i-l 2p+i-l 
^ H4p+2i+l+(t+l) 2p+2i-l+(t+l) 

inus < H2p-2-(t+l),2p+i-2 n H2p-2-(t+l),2p+i-2 p+1' 

(iv). Observe that if 3 < 6 < 2p then < 1,0 > _ = G. 
p+1 

- 0 > 14 then (1,0) is a leftmost site of a double diagonal DD with 
m 

7 < m < p+1 and lemma 3 insures that < 1,0 >p+^ = G. 
- Cases 3 < 0 < 13 are easily checked on figure 5.8. 

_ - • • _ * — TT4p+2i+l+(t+l) Now we complete the distribution of states on H 0 0 N 0 . r 2p-2-(t+l),2p+i-l 
by determining the state value of site (2p+i-l , 4p+2i+l+(t+1)). 

Condition (**) shows that : 
(< 2p+i-2 , 2p+2i-l+t > 2 p + i^ 1 , < 2p+i-l , 2p+2i-l+t > 2 C 
Point 1 b) for t then shows that : 
(< 2p+i-2 , 4p+2i+l+t > , < 2p+i-l , 4p+2i+l+t > ) E L . 

n n z 
It is easy to check from the transition matrices (cf. figure 5.7) 

that if (U,V) € A , then (U,V,X) and (U,V,G) are environments for 
which there are transition rules, and these two rules have the same result. 
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Observing that < 2p+i , 4p+2i+l+t > n is < 1 , 3+t >^ + 1 by point 1) a) 
for t and < 1,3+t > i is state G (cf. above), we see that the environments 

p+1 
(< 2p+i-2 , 2p+2i-l+t > 2 p + i_ 1 > < 2p+i-l , 2p+2i-l+t > 2 p + i- 1 » X ) a n d 

(< 2p+i-2 , 4p+2i+l+t > n , < 2p+i-l , 4p+2i+l+t > n , G) . 
have the same result, hence 
< 2p+i-l , 4p+2i+l+(t+l) > n = < 2p+i-l , 2p+2i-l+(t+l) > 2 p + i-i 

4p+2i+l+t+l 
(v). Now we complete the distribution of states on H

2p+i 3p+i 

by determining the state value of site (2p+i , 4p+2i+l+(t+1)). 

Observing that if t < 2p-4 then 3+t < 2p-l, we note that < 1 , 3+t >^ + 1 and < 1 , t+3+1 > are in state G (cf. above). p+1 

In an initial line of p+1 machines, site (2 , 3+t) is on double 
diagonal DDg (where s is is t is odd, ^ else). Since 
we have s < p, site (2 , 3+t) is a site for machine 2 on a 4 (or 5 
or 6)-end by lemma 3. Thus < 2 , 3+t >^ + 1 is state B or C (cases 
3 < t+3 < 13 are directly checked on figure 5.8). By point 1) a) for t, 
< 2p+i+l , 4p+2i+l+t > n is B or C. 

Since n > 25 we have p > 2 and 2p+i-l > 3. Thus we can apply 
condition (**) to m = 2p+i-l which shows that 
(< 2p+i-2 , 2p+2i-l+t > 0 . - , < 2p+i-l , 2p+2i-l+t > 0 . J € A0 

2p+i-l r 2p+i-l 2 
hence that 
< 2p+i-l , 2p+2i-l+t > 0 . - is different from state F. 

• 9 r 2p+i-l 
Thus by point 1 b) for t, < 2p+i-l , 4p+2i+l+t >^ is different 

from state F. Observing -on the transition matrices of figure 5.7- that 
all environments (U,G,B) and (U,G,C) (where U is different from F) 
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give state G, we conclude that < 2p+i , 4p+2i+l+(t+l) > is state G. 
n 

and this completes the proof of point 1 for t+1. 

(vi). Now we consider point 2. Lemma 10 shows that condition (**) 
for n holds from time 1 up to time 4p+2i+l. 

By point 1 (< n-1 , 4p+2i+l+t > , < n , 4p+2i+l+t > ) is 
n n 

(< p , 3+t > p + 1 , < p+1 , 3+t > + 1 ) for 0 < t < 2p-3. 

Thus condition (**) for p+1 < 3p+i = n insures us that 
(< n-1 , 4p+2i+l+t > n , < n , 4p+2i+l+t > ) is in A2 for 1 < 3+t < 2(p+l)-3 
i.e for 4p+2i+l < 4p+2i+l + t < 4p+2i+l+2p-4 = 2n-3. 

This proves that condition (**) holds for n. • 

6.6. Now we can complete the proof of correctness. 

THEOREM. 

i Let A be the automaton whose transition rules are indicated on 
i figure 5.7 ; A is a minimal time solution of the firing squad 
i synchronization problem. 

Proof. We prove by induction on the length n of the initial line that : 
(1). A synchronizes an initial line of length n in time 2n-l. 
(2). A G-synchronizes an initial line of length n with n > 3 

(i.e. < K , 2n-2 > n = G for K G {1 , . . ., n}) . 
(3). Condition (**) holds for n with n> 3. 

We easily check the following facts : 
- A is a minimal time solution of the firing squad for initial lines 
strictly shorter than 25. 

- For 3 < n < 24, A G-synchronizes an initial line of length n. 

- Condition (**) holds for n with 3 < n < 24. 
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We now suppose that facts 1,2,3 are true for m < n-1, and we 
prove them for n with n > 25. 

The induction hypothesis 3) for m < n-1, shows that the hypothesis 
of lemma 11 holds for n. Thus, point 1 a) of lemma 11 in the case 
t = 2p-3 shows that : 

TT2n-2 T72p 
2p+i , 3p+i n 1 , p+1 p+1 

Since p+1 < 3p+i = n, the induction hypothesis 2) for p+1 shows 
that all sites (K , 2p) (with 1 < K < p+1) are in state G if the 
initial line is of length p+1. Thus all sites (K , 2n-2) with 
K £ {2p+i 3p+i} are in state G if the initial line has length n. 

Point 1 b) of lemma 11 in the case t = 2p-3 shows that 
< H 2 n " 2 > ~ < H

4 p + 2 i ~ 4 > 
l,2p+i-l n l,2p+i-l 2p+i-r 

Since 2p+i+l < n (n = 3p+i with p > 7 and i € {1,2,3}), the 
induction hypothesis 2) for 2p+i+l shows that all sites (K , 2(2p+i-l)-2), 
with 1 < K < 2p+i-l, are in state G, if the initial line has length 
2p+i-l. Thus all sites (K , 2n-2) -with 1 < K < 2p+i-l- are in state G 
if the initial line if of length n. 

By this way we have proved that all sites (K , 2n-2) with 
K € {1 , . . ., n} are in state G if the initial line is of length n. 
This proves point 2 for n. 

From this G-synchronization at time 2n-2, we get 
- using rules (G,G,G) > F, (X,G,G) • F, (G,G,X) > F-
the F-synchronization at time 2n-l of the initial line of length n. 

Finally condition (**) for n is a trivial consequence of lemma 11 
(and the induction hypothesis). 

• 
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§ 7 - CONCLUSION, 

In [ 1 ], R.BALZER1s has shown that : 
- no minimal time solution exists with 4 states. 
- no minimal time solution satisfying extra conditions exists with 5 states. 

However, the solution presented here does not satisfy BALZER's 
four extra conditions : 
- in particular his extra conditions 1 (the stability of state G) and 4 
(rules (G,V,G) > G for V ̂  G) are violated, 
- the very idea of our solution is not to be an "image solution" (his 
condition 2), 
- the only condition satisfied is condition 3 (the fire is introduced only 
by environments GGG, XGG, GGX). 

Also it is easy to obtain a seven state solution which does not 
satisfy his condition 3 (introduce (GBG) • R and (GRG) > F and 
(GRX) > F where R is a new state) . 

The remaining open question is : "What is the minimal number of 
states for a minimal time solution of the firing squad ?". 

We know now that this number is 5 or 6. 
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F i g u r e 1.6 

Fi re 
t ( n ) 

Step 4 

Step 3 

Step 2 

Step 1 



F F F' F 1 3 3 2 
(1 , 2n-l) (i^i,2n-l) < ^ , 2 n - l ) (n,2n-l) 

F F F 1 3 2 
(l,2n-l) (^i,2n-l) (n,2n-l) 

b 3 N 

(2 2, 2 2 , 

G 2 (n,n+l) 
delay one unit of time 
G 2 (n,n) 

^3 \ 
,n+l 3n _ V 

G 2 (n,n) 

о 

G x (1,1) (l,n) 

Figure 1.7 b) : n is even 

G x (1,1) (l,n) 

Figure 1.7 a) : n is odd 
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F i g u r e 1.7 с) 
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F igure 2 .1 a) 

F (1 , 2 n - l ) F 2 ( ^ , 2 n - l ) 

R 2 ( n , ^ - 1 ) 

'2 (3 ' 3 U 

R ( n , n ) 

G 1 ( l , l ) ( l , n ) 



63 

F i g u r e 2 .1 b) 



Figure 2.2 denote initial waves and reflection of initial waves. 
Case n = 3p+3 : delay 2 

Case n=3p+l : delay 0 
Case n = 2p+2 : delay 1 
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Figure 3.2 

1 I I « 
machine 2p + i machine 3p + i o o o o 

The connected wave W fl D 

The connected wave NR (W (1 D) 

Signal Ö 

Signal 

Signal s 2 

Signal 



Figure 3.4 Sites (K,K) not ;on o 

The connected wave S. 
o 

The connected waves (i > 1) 

Signal 

Signal s 2 

Signal s 3 

Signal o 



Figure 4.2 67 

• Sites whose state value is defined in the 
initialization of the S.'s. 

1 1 ' 2 3 1 

l i t ) 
mac hi nes 

time 



Figure 4.4 

1 , 2 , 3 | 4 , machine numbered K (1 < K < 4) 

I tirae 

Sites and state-value of the fictive machine numbered 0 are not indicated. 

68 
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delay 0 delay 1 delay 2 

Figure 4.5 State G or X. 



The reflected signal progressing leftwards conveys : 

delay 1 delay 2 delay 0 

Figure 4.6 : The reflected signal coming from the right conveys delay 0 

The reflected signal progressing leftwards conveys : 

delay 0 delay 1 delay 2 

Figure 4.6. : The reflected signal coming from the right conveys delay 1. 



The reflected signal progressing leftwards conveys : 

delay 0 delay 1 • delay 2 

Figure 4.6 : The reflected signal coming from the right conveys delay 2. 
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Figure 4.9 

Case a 2 

Case a ̂  

t = 2n-l Initial line of length two or three. 

t = 2n-l Right-most created line of length two 
or three. 

Case b ? 

Case fc>3 

t= 2n-l Generic-created line of length two or three. 

Case c 2 

Case c 

t = 2n-l Remaining portion of a line of length two 
or three. 

C a s e d 

Case d^ 

Site whose state-value is known 
by hypothesis 

Site whose state-value 
does not interfer with 
these alineas. 

Site whose state-value nec 
the introduction of a new 
transition rule. 



Figure 4.10 

State L 

State G 

State H 

State A 

State B 

State C 

State R 

State F 

The fictive 
state X is 
not marked. 

Observe that : 

- machine 20 becomes 
general at time 38 
and active at time 39 
(delay 1 ) . 

- machine 13 becomes 
general at time 45 
and active at time 45 
(delay 0 ) . 

- machine 9 becomes 
general at time 49 
and active at time 51 
(delay 2 ) . 



Figure 4 . 1 1 
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Figure 5.6 

t ime 2 i 

machine 3 

Figure 5.6 a) Figure 5.6 b) 
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Figure 5.7 



FIGURE 5.8 

I State A 

State B 

State C 

State D 

State E 

State F 

The fictive state 
X is not marked. 



Site of a fictive machine 
numbered 0 or n+1. 

Site of X. 

Site of X \ X . 

78 

Figure 6.1. 
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Sites whose state-value is 
known from hypothesis 

Sites whose state-value is 
deduced. 

DD . T r is A-basic m, j ,K 

DD . „ is C-basic m, j ,K 

DD . „ is B-basic and i-K > 4 m,j,K J 

Particular case where DD . „ is B-basic m, j ,K 

and j-K = 3 

Figure 6.2 a) 
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Figure 6.2 b) 

Sites whose state-value is 

known by hypothesis 

Sites whose state-value is 

deduced. 

DD . is A-basic 
m,j,K 

¡3D is C-basic 
m, j ,K 

D D m , j , K i s B ~ b a s i c and j > K+3 

Particular case : DD • • n is B-basic 



Figure 6.2 с) 

Case 1 : 4-end Case 2 : 5-end C a s e 3 . 6 _ e n d > 

00 
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Figure 6.2 d) 

I 
4 

Case ; m = 4 
m 5 

Case : m = 5 
m 

6 

Case i™ = 6 
m 

Figure 6.2 e) 

4 

Case = 4 
m 

I 
5 

Case j 1 ^ = 5 
m 

I 

Case j £ = 6 

Sites whose state-value is known by 
hypothesis 

Sites whose state-value is deduced. 
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Figure 6.2 f) 

— 2m-2p-i+2 

— 2m-2p-i+l 

. ^ 
2m-2p-i 

2p+i 

2p+i-l 

machine 2p+i 
Site of D D

m , m + l , 2 p + i 

Sites of u 

Sites of V 

Sites of D D
m + l , 2 q + j , l 

Sites of D D
3 q + j - l , 3 q + j . 1 

,^„, tv v\ 

I 

machine I machine 2p+i-l machine m 
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State whose state-value is known by hypothesis 

State in Z whose state-value is deduced 

State in U ̂  Z whose state-value is deduced. 

Case n = 3 (mod 3) 
(delay 2) 

Figure 6.3 a) 
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Figure 6.3 a) 

Case n = 2 (mod 3) 

(delay 1 ) 

Case n = 1 (mod 3) 

(delay 0) 



Figure 6.3 b) 86 

Sites of DD 
n-l,n,j 

Sites of U : their state-value is deduced from state-value of sites in DD 
, .n-1 

limit if interference between sites. 



Figure 6.3 c ) . 

Case n • 3p+l (hence i = 1) 

Sites whose s t a t e-value is known 
by hypothesis 

Sites whose state-value is deduced. 

4p+2i+l (4p+3) 

4p+i (4p+l) 

?(n-l)-(2p+i)=4p+i-2 = 
= (4p-l) 

2 p + i (2p+l) 

5 6 ; D D , .n-1 .n-1 i s A " b a s i c 

n-l,J 2 , j 3 

j " " 1 = 1 mod (3) 

2p+i (2p+l) 

Case : DD . is B-basic , .n-1 . n - J n-1,J 2 ,J 3 

j " " 1 = 2 mod (3) 

2p+i (2p+l) 

• Case : DD i s a C-basic 
, .n-1 .n-1 

n-l.J 2 ,J 3 

j " " 1 = 3 mod (3) 



Figure 6.3 c ) . 

Case n = 3p+2 (hence i * 2) . 

Sites whose state-value is known by 
hypothesis. 

Sites whose state-value is deduced. 
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