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NOUVELLES ANNALES

E

MATHEMATIQUES.

SUR LES MOUVEMENTS PLANS;
Par M. L. LECORNU,

Ingénieur des Mines, Docteur és Sciences.

Lorsqu’on veut étudier analytiquement le mouvement
d’une figure plane invariable qui se déplace sur un plan
fixe, on considére a la fois deux axes rectangulaires liés
a cette figure et deux axes rectangulaires immobiles
dans le plan. En appelant alors £ et n les coordonnées
d’un point quelconque de la figure par rapport aux axes
entrainés avec elle, x et y les coordonnées du méme
point par rapport aux axes fixes, A et . celles de 1ori-
gine mobile, b Vangle de V’axe des £ avec celui des x, on
a les formules

$x:)\4:8c050—nsin0,

® { y =p+£sin0 + 7 cosh;
£ et n sont des quantités indépendantes du temps, et A,
i, 8 sont des fonctions du temps. Il suffit de se donner
ces derniéres pour que le mouvement soit complétement
déterminé.

Ajoutons I'une a I'autre les deux équations précé-
dentes, aprés avoir multiplié la seconde par la quantité



(6)
imaginaire i, cL posons en oulre

T +ly =3,
. .
;i = 4
A+ iu = a,
cosf +— ¢sinh = b
il vient

(2) s=a-+ by,

et cette équation unique peut, comme I'on sait, rempla-
cer les deux premiéres. On a ainsi une relation entre
les affixes z et { d’'un méme point rapporté successive-
ment aux axes fixes ct aux axes mobiles. a et b sontdes
fonctions du temps; en outre, le module de & est con-
stant et égal a 'unité, de sorte qu’on peut écrire b = €.
Je me propose ici d’appliquer ’équation (2) a I'exa-
men de quelgues questions concernant les mouvements
plans. D’abord, la vitesse du point z est la grandeur
géométrique représentée par la dérivée 2/, et 'on a

1.3) ,:':u'—‘.— b’:_.

Cette vitesse est nulle pour le point Cdont Paflixe &,
a pour valeur

(1) le=— 7"

La valeur ('Orl‘uspoudantc de z est
<

ab'— bd'
(5 :,.:a+bI_C=—————b,———;

le point C est le centre instantané de rotation, ou centre
de vitesse. Pour un autre point quelconque de la figure,
on peul écrire

(6) =0 — %)= (53— 3) = (0(5—23,).

A}
On voit ainsi qu'a un instant donné la vitesse de
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chaque point z est perpendiculaire 4 la ligne joignant ce
point au centre instantané, et proportionnelle i la lon-
gueur de cette ligne. Autrement dit, il y a rotation élé-
mentaire autour du centre, et la vitesse de rotation est
égale a 0.

Mais, dans le mouvement continu de la figure, le
centre instantané se meut a la surface du plan fixe. Sa
position au temps t étant déterminée par la valeur de z.,
la vitesse de son déplacement est donnée par z,. On tire
de I’équation (5), en tenant compte de (4),

T

) 5= oy, = LA,

. représente la vitesse du centre par rapport aux axes
mobiles, comme z, représente la vitesse par rapport aux
axes fixes. Le module de 4 étant égal a 'unité, ces deux
vitesses sont égales; 'argument de b étant égal a 8, les
deux vitesses ont méme direction. Ces résultats se tra-
duisent géométriquement en disant que la courbe, lieu
du centre instantané par rapport aux axes mobiles, roule
sans glisser sur la courbe, lieu du centre instantané par
rapport aux axes fixes. Ces deux courbes sont appelées
respectivement la roulette ou courbe roulante et la base
du roulement.

Une courbe quelconque faisant partie de la figure
mobile a une équation de la forme

(8) ¢ =/f(w),

ou u désigne un paramétre réel. La méme courbe a pour
équation, relativement aux axes fixes,

(9) z=a-+bf(u).
L’élément dz de cette courbe est exprimé par

(10) ds =bf'(u)du.
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Pour avoir I'enveloppe, il suffit de différentier 1’équa-
tion () par rapport au temps ¢, en considérant u comme
fonction de ¢, ce qui donne

(11) a'+ b f(u)+bf'(u)u'=o.

Entre les équations (g) et (11), éliminons f(u). Il

vient
ab'—a'b b2 ,
= yf (u)u',
ou bien

b, .
53— 5o=— —b—,f(u)u,

ou encore, en vertu de ’équation (10),

_ __ ¥y _iya
z— Z; b

Le second membre étant purement imaginaire, on
voit qu’en chaque point de contact de la courbe avec
son enveloppe, la tangente, qui a méme direction que
dz, est perpendiculaire & la droite z — z., propriété qui
permet de construire ce point de contact.

L’accélération z" d’un point quelconque est détermi-
née par I’équation

(12) '=a"+ b"¢.

Elle s’annule pour le point J dont Vaflixe J; vérifie 1'é-
quation

(13) a"+b";=o.

La valeur correspondante z; de = est
ab”— ba’

(l4) Zj:d—f—bcl':-—'—z;r——;

J estle centre d’accélération. Pour un autre point quel-
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conque, on a
b .
a5) F=b"(L—¢;)= Z(z—z,-):[LG”—(G’)’](z——zj).

Il résulte de 13 que, pour un instant donné, I’accélé-
ration d’un point quelconque est proportionnelle a la
distance r de ce point au centre d’accélération, et fait
avec la ligne joignant les deux points un angle ayant

”

pour tangente - La grandeur de Daccélération est

r /(8 )F+ (0.

L’accélération peut aussi s’exprimer en fonction de la
vitesse. On a

b
@y

B (7T U YR
(16) F= (33 = _OL,(_)_(z — ).

L’accélération est donc proportionnelle a la vitesse
relative du point considéré par rapport au centre d’accé-
lération, et fait avec elle un angle constant.

La combinaison des équations (5), (7) et (14) con-
duit a la suivante

b
?(zj_' :'C’)v

&

(17) c
d’aprés laquelle la vitesse de déplacement du centre -
instantané forme, avec la ligne joignant ce point au

”
7
Le lieu des points pour lesquels ’accélération est tan-
gentielle s’obtient en écrivant que I’accélération a méme

centre d’accélération, un angle égal a I’argument de

direction que la vitesse, ou, ce qui revient au méme, en

")
égalant a zéro I'argument de =- On trouve ainsi

z— 3 "

arg. -+ arg.—g, = 0.

z— 3,
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Cette expression exprime que le segment z;z. est vu
du point z sous un angle constant; le lieu est donc une
circonférence passant par les points z; et z.: c’est la
circonférence des inflexions. Sil’on suppose que z tende
vers 3., I’argument de z — z.a pour limite

arg.(s,— 5;)+arg. 7

ou bien

Us
7+ arg.(3; — &¢) -+ arg. >’

c¢’est-a-dire, en vertu de I'équation (11),
T+ arg. 3.

La circonférence des inflexions a donc pour tangente, au
point z., la direction de 2.

Le licu des points pour lesquels I’accélération est nor-

"

male s’obtient de méme en égalant a E Iargument de z;
On trouve encore une circonférence passant par les
points z¢, z;, et 'on constate que les deux circonférencee
se coupent orthogonalement.

La théorie des accélérations d’ordre quelconque s’éta-
blit avee la méme facilité. Bornons-nous a dire que le
centre des accélérations d'ordre n a pour aflixe z, la

b — hatn)

o, . Y. .
quantité — > et que I'accélération d’ordre zd'un
bin!

. ) )
point = quelconque est égale a 5 (z— za).

Les résultats qui précédent subsistent en grande partie
quand la figure considérée se déplace en changeant de
dimensions, mais en restant semblable a elle-méme.
Un pareil mouvement peut toujours étre représenté par
I'équation z=a+ b{, avec cette seule modification
que le module de 6 devient différent de I'unité.

En eflet, on voit d’abord que, si z et { sont les affixes
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de deux points différents d’'un méme plan, le lieu du
point z est semblable a celui du point &, car la multipli-
cation de § par b revient 4 faire varier dans un rapport
donné le rayon vecteur issu de origine et a faire tourner
ce rayon d’un angle donné, puis ’addition de a imprime
a la figure un simple mouvement de translation. On voit
en outre que toute figure semblable a la figure ({) peut
étre représentée par 1’équation précédente, car on peut
choisir a et & de telle facon qu’a deux points §, et §, de
la figure initiale correspondent deux points arbitraire-
ment choisis z, et z, de la seconde figure. L’équation
z=a—+b{ est donc aple 4 représenter dans le plan
toutes les figures semblables & une figure donnée, et il
suflit de faire varier @ et & en fonction du temps, en
laissant { indépendant du temps, pour représenter tous
les mouvements possibles d'une figure assujettie a rester
semblable 4 elle-méme.

Cela posés il y a encore un centre de vitesse, défini
par Véquation z.= ﬂ;—ba,, et la vitesse d’un point
quelconque z, proportionnelle 4 sa distance au centre,
fait avee le rayon vecteur issu du centre un angle égal a

I’ , e
Pargument de T Il y a également un centre d’accéléra-

tion, une circonférence des inflexions, une circonférence
des accélérations normales, ete.

Voici maintenant quelques exemples de problémes
faciles & traiter par ’emploi des variables imaginaires.
Nous nous bornerons, pour simplifier, au cas d'une
figure de grandeur invariable.

1. Trouver les déplacements dans lesquels le mouve-
ment de J est semblable & celui de C.

En placant convenablement l'origine et appelant m
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une constante, réelle ou imaginaire, on doit avoir

3j= msz,,
d’ou :
ab’—ba" b
ab—6a ~ "y

En intégrant et appelant K une nouvelle constante, il
vient

ab'— ba' = K(b'ym,
ou bien

3= K(b')ym—1,

En faisant au besoin tourner ’axe des x et choisissant
convenablement 'unité de temps, on peut rendre la
constante K égale a 'unité. L’équation z.= (")~ fait
alors connaitre la base du roulement. La courbe rou-
lante est donnée par les deux équations

a -+ bcrz(b’)mﬂ,
a+ bl =o;
d’ou, en éliminant «,
b, =(m—u)(b)ym-2p",
¢t par suite

R (b’)nz#'l b (b’ ym—1 (b’)m dt
Y = — 7z = e .
Le=(m 1)./‘ 5 dt B : B

L’argument de b reste arbitraire. Si Ton appelle o la
vitesse de rotation, cet argument est égal & wt. Le mo-
dule de &' est égal & w, ¢t comme on a les relations

5j— 3e=(m—1)5.=(m—1)(b")ym-1,
on arrive a cetle conséquence :

La vitesse de rotation est pruportionnelle a la racine
(m—1)*me de la distance des deux centres J ¢t C.

Dans le cas ou la vitesse de rotation est constante, la
valeur de . peut étre intégrée complétement, et 1'on
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trouve

4 L (iw)m—1eim—iwt;

4
m-—2

on a d’ailleurs
P (iw)m-l elm=1)iwt,

Partant de la, soient p la partie réelle et ig la partie
imaginaire de m, et soient A, B deux constantes qui
dépendent de p, ¢, w.Un calcul sans ditficulté conduit,
pour la courbe roulante et pour la base du roulement,
rapportées, chacune dans le plan qui lui est 1ié, a des
coordonnées polaires, aux deux équations

p= Ae;—‘qT’; e,
q
p= B e‘—_P 0.

Le mouvement est donc produit par le roulement
d’une spirale logarithmique sur une autre. Les deux
courbes ne peuvent devenir égales que si g est nul, mais
alors elles se réduisent a deux circonférences.

Le cas ou les deux centres coincident rentre dans le
précédent, en faisant m = 1. On voit immédiatement
que z. est alors constant, ainsi que {.; le mouvement
consiste dans une simple rotation autour d’un point
fixe.

Sil’on veut simplement que le centre d’accélération
reste fixe, on peut le prendre pour origine, ce qui re-
vient a faire m = o, et 'on trouve

Ze=

o

Dans ce cas, la vitesse de rotation est inversement pro-
portionnelle a la distance des deux centres. En outre,
si § désigne I'argument de b et ¢ celui de z., la somme
6+ o est constante, et la valeur de ¥4 ¢’ est nulle.
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Par suite, le rayon vecteur JC tourne en sens inverse du
systéme mobile, avec une vitesse angulaire égale en va-
leur absolue. Quand cette vitesse angulaire v est con-
stante, le point C décrit autour du pointJ un cercle ayant

1 .
pour rayon —. D’autre part, on a pour g, 'expression

_L_ e—2iwt,
2lW

X

P

ce qul représente une'circonfércnce ayant pour rayon

1 . . ,
5 Le mouvement est donc celui d’une circonférence

roulant sur une circonférence de rayon double. 1l est
clair qu’il s’agit ici d’un roulement intérieur.

2. Trouver les déplacements tels que la ligne JC
conserve une grandeur et une direcltion constanltes.

On doit alors poser z; — z.=K, ou bien, en tenant
. . b, sy .
compte de I'équation (17), 57z, = K. En intégrant, il

vient
sc.= Klogd' + Ki.

La constante d’intégration K, peut étre annulée par un
changement d’origine. La constante K peut, comme pré-
cédemment, ¢tre rendue égale A 'unité. Nous écrirons
donc z. = Klogd': c’est 'équation de la base du roule-
ment.

Remplagant z. par sa valeur (5), nous avons

ab'— ba’

7 :—_logb

3

d’ou, par une nouvelle intégration,

. blogb’
a =-bf—b;—dz,
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. , 14
a __bfwdt.

On déduit de 1a la valeur de ¢,

et, par suite,

aV b”
=— 5 = —dt
Le A a5
équation qui détermine la courbe roulante.
Quand on suppose la rotation uniforme, on a
Se=log(iw)+ fwt

et

— w2elnt
o= —wer { — — e—iwt
Le 5 - e .
Lwe2iwt

La base est alors une ligne droite, et la courbe roulante
devient une circonférence.

3. Trouver les déplacements tels que le centre d’ac-
céleration se meuve suivant une loi donnée.

zj est ici une fonction connue du temps. Pour déter-
miner z., on se servira de la formule (17), qui donne,
par une intégration facile,

Se= [% fb"zjdt.

ab'— ba' = b' z,.

On a ensuite

d’ou

a bz, , dt v .
5= dt~—.. Fz'/b z,dt;

a':—b’ffbi—jfb"sjdt— %fb”z,-dz,
fe=— 2 =f2i:/ ”z,dt—»—b—'b—,fb”zjdf;

Pargument de & reste arbitraire.

puis

Supposons, par exemple, que z; soit un polynome en
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t, F(t), auquel cas J décrit une courbe unicursale, et
que de plus la vitesse angulaire w de rotation soit con-
stante. Nous pouvons écrire

fb";,dz=_m2fefw(z)dz=_w2eiw'=p(t),

¢ (t) désignant un autre polynome.
Alors

se=1Llwo(t)
et

Cc:—-—wz/‘e""""q(t)dt—i- lwe il (t) = e~iwty(1)
= e=it[dy () + 22 (2)],

¥ (t) étant un troisiéme polyndéme dont ¢, et ¢, sont
respectivement la partie réelle et la partie imaginaire.

Dans le plan fixe, le point C décrit, comme le point J,
une courbe unicursale. La courbe mobile est représentée,
en coordonnées cartésiennes dans le plan mobile, par
les équations

£ =1, () coswt—+ §y(¢)sinwt,
n=—Y(t)sinwt + 4y(t) coswt.

En particulier, si I'on prend

w? §2

2

F(t) = — it
le point J décrit une parabole. Le polynéme s(t) est
1ié a F(t) par la relation générale
o' (t)+ iwo(t)=F(t)
qui devient ici
w?2f?

2

o (t)+iwo(t)=—1lwt+ ’

et I'on apercoit immeédiatement la solution

: w2
' o(t)=— 25,
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De méme, le polynéme ¢ (¢) est 1ié a o(t) par la rela-
tion générale )
‘ V() —iw ()= iwg'(2),
qui se réduit a

P (8)— iw () = w?y,
d’ou la solution
tp(t): I+ Ilwt.

Dans ces conditions, la base du roulement a pour équa-

tion
w212

2

Be=

c’est I'axe de la parabole parcouru par le point C avec
un mouvement uniformément accéléré.
La courbe roulante est déterminée par les deux équa-

tions
t =coswt+wisinwt,

7, = —sinwl-+wtcosw?:

c’est une développante de cercle. Le rayon de celui-ci
est égal a l'unité, c’est-a-dire au paramétre de la para-
bole. On parvient ainsi a la proposition suivante, dont
la vérification directe est bien facile :

Etant donnée une parabole, si I’on fait rouler sur
son axe avec une vilesse angulaire constante la dévelop-
pante d’un cercle ayant un rayon égal au paramétre
de la parabole, le point de contact, parti du sommet
avec une vitesse nulle, parcourt l'axe d’un mouvement
uniformément accéléré, et le centre d’accélération,
toujours situé sur l'ordonnée du point de conlact, dé-
crit la parabole.

Ann. de Mathemat., 3* série, t. X. (Janvier 18g1.) 2
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NOTE SUR LES SURFACES DE REVOLUTION APPLICABLES SUR
UNE SURFACE DE REVOLUTION DONNEE, ET PLUS GENERALE-
MENT SUR LES SURFACES DONT LES LIGNES DE COURBURE
D'UNE FAMILLE SONT SITUEES DANS DES PLANS PARALLELES
ET QUI SONT APPLICABLES SUR UNE SURFACE DE MEME

NATURE ;
Par M. A. ADAM,

Ingénieur, ancien éléve de I'Ecole des Ponts et Chaussées,
Docteur és Sciences.

On sait trouver les surfaces de révolution applicables
sur une surface de révolution donnée, mais nous ne
croyons pas qu’on ait fait sur ces surfaces la remarque
sulvante :

Quand on déforme une surface de révolution en lui
conservant son caractére, la forme que prend le méri-
dien est indépendante de sa distance a I'axe de révo-
lution.

Cette remarque ressort trés simplement des équations
des surfaces de révolution applicables sur une surface
de révolution donnée.

En effet, les équations de toute surface de révolution
peuvent s’écrire, en employant les coordonnées curvi-
lignes u et ¢ de Gauss,

x = U cosv,
v = Using,

= [y/l——U'ﬁdu,

»
U étant une certaine fonction de u.
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L’axe des z est alors I’axe de révolution de la surface
et les lignes & = const. et v = const. représentent res-
pectivement les paralléles et les méridiens.

Les équations des surfaces de révolution applicables
sur la proposée sont, d’autre part,

v
x =alU cos —,
a
.w
= aU sin —,
y a
zzf‘/n—azU”du,

a étant une constante arbitraire.
Les équations

z::f‘/l——U’?du

de la méridienne primitive deviennent donc
‘ r=al,

“) ‘(z:f¢l_Tm'adu,

pour la méridienne déformée.

Changeons d’une quantité 4 la distance de la méri-
dienne primitive a I’axe de révolution, c’est-a-dire rem-
placons dans les équations ci-dessus U par U+ 4; les
équations (1) de la méridienne déformée deviendront

r—aU+ab
(2) ? 3= f\/l——a?Uﬁdu

et Pon voit que cette méridienne (2) n’est autre chose
que la méridienne (1) dont la distance a I'axe de révolu-
tion aurait varié de la quantité ab.

Comme exemple, considérons une sphére de rayon r
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et un tore dont {e méridien soit un cercle de rayon égal
aussl a r:

8i l'on déforme le tore et la sphere de maniére que
ces surfaces demeurent de révolution, les méridiens
successifs de la premiére surface sont les méridiens
successifs de la seconde.

La remarque (ue nous venons de faire est susceptible
de généralisation en considérant les surfaces dont toutes
les lignes de courbure d’une famille sont dans des plans
paralléles.

Monge, qui a découvert ces surfaces, les définit de la
maniére suivante dans son Application de I’ Analyse a
la Géométrie :

Si, sur un cylindre & base quelonque, on pousse une
moulure d’un profil quelconque, mais constant, per-
pendiculairement a la génératrice, la surface de cette
moulure sera la surface demandeée.

On peut aussi les regarder comme engendrées par une
courbe plane quelconque dont le plan roule sur un cy-
lilldl'(’, (luc](?oll(]u(‘,.

Avec les variables w et v de Gauss, les équations de
ces surfaces peuvent s’écrire

i r = Ucose+V,

~ 2= Usine + Vy,

' 5= /\/:Tﬁd::,

(3)

U désignant une fonction de «, et V, V, deux fonctions
de v assujetties a la condition '

(4 V' +—Vitange = o.

~ LY
En eflet, toute courbe v = const. de la surface (3)est
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située dans un plan

.’Z‘—'V __y_—V,
“cosy  sing

paralléle a oz, dont la trace AB sur le plan xoy fait avec
ox l'angle v et passe par le point o, ayant pour coordon-
nées x=V, y=V,. Ce point o, décrit dans le plan zoy

X

une courbe T’ quelconque, alaquelle, en vertu de larcla-
tion (4), la droite AB demeure normale; par suite, AB
roule sur une courbe 'y, quand o, décritla courbe T'.

On reconnait d’ailleurs sans peine que la courbe
v = const. a pour équations, dans son plan x,0, z,,

"'.Z',: U,

(>} }z(—_-z: [¢1~U’?du:

cette courbe y est donc invariable ¢t fixe par rapport
aUX AXES 0Ky, 045y,

1l résulte bien de tout cela :

1° Que le plan de y roule sur un cylindre C; paral-
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léle & oz et de base quelconque Ty pendant la génération
de la surface;

2° Que la surface est aussi une moulure de profil con-
stant y poussée sur un cylindre C parall¢le 4 oz et de
base quelconque T.

Cela posé, admettons qu’on puisse déformer la surface
considérée de fagon qu’en lui conservant son caractére,
les courbes v = const. continuent d’étre les génératrices.

Pour avoir les équations de la nouvelle surface, il
faudra, dans (3) et (4), remplacer U(u), V(¢), V(v)
par certaines fonctions U, (u,), T (¢y), T (vy); uy et vy,
qui doivent rester constants respectivement avec u et ¢,
étant certaines fonctions u, = f(u), v\ = ¢ (v).

Le ds* de la surface (3), qui avait pour expression,
en vertu de la condition (4),

V' \2
ds? = du? + <U — ——> dv?,
sin ¢y
deviendra donc

dst= f'?(u) du?+ <U1—

’

>q>”(u)dv’.

siny,
Identifiant ces deux ds2, il vient

S(u)y=1 d’ou Uy = u,

et
\ N
(6) U- siny <U‘_ sinv,)q) ®)-
Cette derniére équation, différentiée par rapport a u,
donne
U= Ujo'(v),

d’ou

U 1

- = = = une const. a,

U ¢'(v)

@(0):(’1:72 et U1=GU+6.

Les équations (4) et (6) donnent enfin pour T et T,
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les expressions
o 14
V' sin — 0
a
T = ———dv — bcos -
siny a
~
v
V) cos —

T, = / — 2 dv—bsin.
cosy a

(%2

Les équations de la surface déformée sont donc

2l
. P
V' sin —
14 a
x:aUcosa—s— ——dv,

o/ sy

, v
V| cos —
.0 1 a
y=alUsin— + —dp,

- a cosy
z :fg/l—azU’zdu.

Par suite, les équations (5) de la génératrice primi-
tive ¥ deviennent, aprés la déformation,

ry=a Uy
z‘=f‘/| —a*U2du;
ce qui signifie que :
La génératrice primitive s’est déformée de la méme
facon que si elle eit été le méridien d’une surface de

révolution d’axe paralléle & 03, et cela quelle que soit
la directrice T.

Par exemple :

Si l'on prend une surface canal de rayon r, dont
U'axe soit une courbe plane quelcongue, et si on la dé-
Sforme comme il est dit plus haut, ses genératrices suc-
cessives seront des courbes égales aux méridiens des

surfaces de révolution applicables sur une sphére de
rayon r.
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FORMULE DES DIFFERENCES ET FORMULE DE TAYLOR;
Par M. E. CARVALLO,

Examinateur d’admission a I'Ecole Polytechnique.

I. Formule des différences. — Je considére la fonc-
tion u = f(x), et je donne a la variable x les valeurs
équidistantes x, £ + Ax, x + 2Ax, ..., x +nAz. On
a, pour les valeurs de la fonction ct ses ditlérences suc-
cessives, le tablean

Uy Auy Aluy ... ArPu,
uy Auy A2y ... Apuy
Uy Au, A2u,

Up—y AUp—y
Up

La formule que je veux signaler donne u, en fonction
des nombres de la premiére ligne, jusqu’a la colonne
des A? et des nombres de cette colonne des AP. Clest

Up= U+ C}LAuo—i-' C;‘A2 Ug+ ..o Cz’i AP—lyy+ Qp,
avec
Qp=Chziarug+ CEZ2APuy+... 4 ChZi AP U, ),

Pour p =1, on doit la remplacer par la formule évi-
dente
(I) Up = Wo—+ Aup—+ Auy+ Aug+...+Au,,_,= U+ Q‘.

Pour passer de p =1 a p = 2, je multiplie les deux
membres de I’égalité (1) par A, ce qui revient a avancer
d’une colonne vers la droite dans le tableau des diffé-

rences; dans la formule obtenue, je remplace n succes-
. U cy e
sivement par les nombres Oy 1,2y 000y —16€L J’ajoute;
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j obtiens

L]
Qi=ClAug+ Ch_  Auo+ Gl _, A%2uy+...+ ClA%2u,_,,
et, en portant cette valeur de Q, dans I'égalité (1),
g Up= upy—+ CLAuy+ Q.,
} avec
| Qe=0C}_;A%uo+ Ch_,A%uy+...+ ClA2u, ,.
De méme pour évaluer au moyen de A2u, et des
2 [
différences troisiémes, je multiplie les deux membres
de la formule (1) par A? et je remplace successivement
n par o,1,2,...,n— 2. Pour avoir Q,, il suffit de
multiplier les deux membres des égalités obtenues res-
pectivement par C,_,, C,_,, ..., C} et d’ajouter. On
trouve ainsi
Qg = C}‘Azuo—l- C:‘t—i Adug+ C,zl_z Ay +...+ C%ASH,,_;,
et, en portant cette valeur de Q, dans I’égalité (2),
{ Up= U+ C}LAlLo—i— C,?,Azlto—'l— Q3,
(3) < avec
L Qa=C2_ Muo+ CJ_,A%uy+...+ CA3u, ;.
Par la méme méthode, on passe d’'une valeur de p a
’ P
la suivante. On a donc bien la formule annoncée.

Il. Formule de Taylor. — Je pose
nAz =h, up= f(x + h), uy= f(x),

et, pour simplifier I'écriture, je considére la formule (3)
qui correspond & p = 3. Elle peut s’écrire

Aty o n(n—1) A2y,
f(.z‘—&—h)—f(z)—k—AxAx ——T.—‘Z——AzAg-{"Qs,
(3") ¢ avec
/ Aduy L, Aduy g Aup_g’
Q3:A.l""(\C",_l —A?-‘v— ,2,._'_; A3 e R R CZ v ).
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Je fais maintenant tendre Ax vers o, en laissant
fixe le produit n Ax = £, el je suppose que les rapports
duy Suy
Az’ Azt
d A .

u° = f"(x) (*). De la formule (3') elle-méme, résulte

que Q5 a aussi une limite et que 'on a, en désignant
cette limite par R,,

ont des limites que je désigne par — duy = f'(x),

S+ hy=f@)+ 2@+ 2 o) R

c’est la formule de Taylor.
L’expression de Q; dans la formule (3') fournit intui-
tivement les diverses formes qu’on peut donner au reste.

. Adu
a. On peut regarder les diverses valeurs de —
Ax3

comme aflectées des poids C;_,, C2_,, ..., C] dont la

somme est C2. On peut alors écrire
n P

cp Mo g B At
Ax3 Ax3 * Axd
Q3= C} Az? 5
Cll
n(n—i)(n—2) A3n
= Az3. moy — -
1.2.3 ¥y x3

Si I'on fait tendre Ax vers o, on sait que Q; a une
o s Ay
limite Rj, cette formule montre alors que moy —; a
Ax3
une limite, et cela sans faire aucune hypothése sur

I'existence méme de la dérivée troisiéme. En désignant

cette limite par (d 3> , on a
h3 diu
(a) Ro= 0 ().,

(*) Ces limites pourraient servir de définition aux dérivées des
divers ordres; la notation différentielle n’en serait que plus intuitive.
d*u d d

11 en résullerait avec évidence la formule ~— T2 = d= da:
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Cette formule peut remplacer la formule de Lagrange
h3 'n
By= —=f"(z+0k)

qui est équivalente a la précédente dans les conditions
bien connues ou on al’habitude d’établir la formule de
Taylor par la méthode de M. Rouché; dans ces condi-
tions, il serait sans doute malaisé de transformer direc-
tement la premiére formule dans la deuxiéme. La trans-
formation devient facile si I'on suppose qu’a chaque
nombre ¢ on peut faire correspondre un nombre 7 tel
que P'on ait

Ay  ddu

Axd  dxd

<, toutes les fois que |Ax|<w,

et pour toutes les valeurs de x et de x + Ax comprises
entre x et x -+ k. Je ne m’arréterai pas sur ces difficultés
dont |’étude est trés loin du but que je me propose ici.

b. Je considére un terme quelconque de Q; dans la
formule (3'), savoir

A3uy _ (n—k—1)(n—k—2) Azt A3 uy
Ax3 1.2 Az?

K= Crz;—-/r—i Azd

Je remplace n par sa valeur é; K prend la forme

1 , Adu
K= —[h—(k+1)Az][h—(k+2)bz].02 e
Enfin je pose
z +k Az = 3, ur=f(3), Az = Az;
J'obtiens
1 ; A3 f(2)
K= E(z—i—h—z—Az)(x—q—h—-z— 287) e Az,

et par suite, en faisant tendre Az = Ax vers o,

. x+h

(&) R; = P~ (x+h—3)f"(3)ds.
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¢. Si I'on imagine le tableau des différences prolongé
vers la gauche, en mettant des zéros sur toute la pre-
miére ligne, on aura, en multipliant par A% les deux
membres de la formule (3),
A3up=C}l_jup+C2 ,uy+...+~ Cu,s.
On a de méme
A lup=uwup+ uy+...+ Up—1,
d’ou Von tire
Alu,
Azt

= UyAx + U Ax +. ..+ Up—1 A2,

Je fais tendre Ax vers o et je suppose que le second
membre ait une limite que je désigne par

d-u, x+-h
= [ s

on aura

. Ay, d-u, T _.
lim Az = do=1 = f(a) ds.
-

Comme on a, d’autre part,
A—3 A—1 A—1 A—1

3 =A-1.,A-1 A1 e

A ’ Ax3 Ar Ar Az’

, . At
on en conclut en su osant ue cha ue operation —
: PP q que op A

conduise a une limite,

d-» _ d-t d-t d-
dr’ ~ dr dr dz’

D’apreés cela, 'expression de Q; prend la forme

T Az Ar Ar  Azd

Q= A—=3 [Aduy_3 _ A=1 A-t A-1 A3y, s
37 Az Ax3

et conduit a la valeur limite

, x+h 3 3 "
(¢) R;= ds dz [f (3)ds.

S
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1II. Remarques. — En combinant les deux derniéres
méthodes de toutes les facons possibles, on obtiendra
p expressions du reste R, le nombre des intégrations
étant respectivement 1, 2, ..., p. La premiére fournit
facilement 'expression de Lagrange et la derniére celle
de Cauchy. Enfin on retrouve la formule de Taylor en
partant des expressions mémes du reste, pour la pre-
miére (b) en intégrant par parties, pour la derniére (c)
en effectuant les intégrations successives.

Je pense avoir suffisamment montré quels avantages
I'enseignement pourrait tirer d’'une méthode d’exposi-
tion ou les principes du Calcul différentiel et intégral
seraient basés sur le calcul des différences. Celui-ci,
s’occupant des quantités finies, est pratique et appartient
aI’Algeébre élémentaire ; celui-la, s’occupant des limites,
rentre dans I’Analyse. Mais le lien est bien évident, le
Calcul différentiel et intégral est en quelque sorte la
limite du calcul des différences. Il serait peut-étre bon
de mettre ce fait en évidence, au moins dans une pre-
miére exposition. On a vu combien les définitions arri-
vent intuitivement. La démonstration que j’ai exposée
de la formule de Taylor met bien en évidence son carac-
tére de simple identité.

INTERSECTION D'UNE DROITE AVEC UN HYPERBOLOIDE
DE REVOLUTION;

Par M. S. RAVIER,
Eléve du lycée Condorcet.

Premier cas. — La projection de la droite sur le
plan du cercle de gorge rencontre ce cercle.

Soit (o0, o') (fig. 1) le centre du cercle de gorge, et
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(D, DY) la droite. Menons, par la verticale o, un plan
arbitraire oA (dans la figure il est de front, mais cela
n’est pas nécessaire).
Ce plan oA coupe 'hyperboloide suivant une hyper-
bole ayant pour sommets & et c, et dont I’angle des
asymptotes est I’angle au sommet du céne asymptote de

I’hyperboloide.

Fig. 1.
9/
/"7 D’
b2 o ? ¥
¢
D
\\4 éq a
%g/j i
lo ] ka
A 4 2 A
14
m

Cette hyperbole, et I'hyperbole de section de I’hyper-
boloide par le plan vertical D, déterminent deux cénes.
On a construit le sommet (s,s’) de 'un d’eux.

Nous sommes amenés a trouver l'intersection de la
droite (D, D') avec le cone correspondant.

PrOJetons de(s,s'),ladroite (D, D’) surle plan vertical
oA, puis rabattons ce plan autour de I'horizontale 0 A
sur le plan du cercle de gorge [sur la figure, les deux
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points de D pour lesquels on a effectué ce rabattement
sont : 1° le point de rencontre ( f; f') de (D, D’) avec le
planvertical 0 A; il se rabat en f, tel que ff, = ¢ f'; 2° le
point a I'infini de (D, D’) qui donne la direction s'g’ du
rabattement f, k].

Nous sommes amenés a chercher les points de ren-
contre d’une droite f,k, et d’'une hyperbole dont on
connait les sommets &, ¢ et I'angle des asymptotes.

Pour cela, on remarque que le cercle de gorge et
I'hyperbole sont homologiques, & étant le centre d’ho-
mologie, et la tangente en c I’axe. D’ailleurs, pour avoir
deux points homologues, il suffit de mener par 4 une
paralléle a Pune des asymptotes (dans la figure, elle est
paralléle a 'une des génératrices de contour apparent du
cone asymptote; quelle quesoit, du reste, ladispositionde
I’épure, elle faitavec bc un angle connu). Le second point
derencontre §, de cette droite avec le cercle de gorge, et le
point a I'infini sur elle, §,, sont homologues. Alors on
applique une construction connue pour obtenir I’homo-
logue lk, de la droite f,lk,. On prend les points de ren-
contre pq, g, de lk, avec le cercle de gorge. On construit
leurs homologues p, ¢, sur f, lk,, on reléve ces homolo-
gues sur (D, D"); (p, p) et (¢, ¢') sont les points de ren-
contre cherchés.

Remarquons qu’aucune des constructions que nous
avons effectnées n’était nécessaire, et qu’on pourra tou-
jours les modifier de maniére a les amener dans les
limites de I’épure. Remarquons aussi que nous n’avons eu
besoin de tracer aucun cercle autre que le cercle de gorge.

Seconp cas. — La projection de la droite sur le plan
du cercle de gorge ne rencontre pas ce cercle.

Coupons I’hyperboloide par le plan vertical D (fig. 2).

La section est une hyperbole le long de laquelle est cir-
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conscrit a la surface un céne K ayant pour sommet s le
pole de D par rapport au cercle de gorge.
Ce cone coupe le cylindre vertical ayant pour base le
cercle de gorge suivant deux courbes planes.
Pour obtenir le plan de I’'une de ces courbes planes,

Fig. 2.

considérons le plan vertical sc perpendiculaire a os.
Il coupe le cone suivant deux droites dont l'angle avec
le plan du cercle de gorge est le méme que celui des
génératrices de I'hyperboloide avec ce méme plan, c’est-
a-dire eo’d.

On ¢n déduit que, sil’on construit le triangle rectangle
ayant pour angle aigu eo’d et pour coté de ’angle droit
o'd = sc, ed estla hauteur du point de rencontre du céne
K avec la verticale ¢ au-dessus du plan du cercle de gorge.
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Portons de en sf, sur sc, DaP, sera, dans le systéme
x'y'y le plan de I'une des” courbes planes communes au
cone et au cylindre.

On peut alors regarder le cone K comme défini par
une conique située dans le plan DaP, et ayant comme
projection sur le plan horizontal le cercle de gorge. On
cherchera les points d’intersection de la droite (D, D')
avec le cone ainsi défini.

Les constructions se continuent sans difficulté par la
méthode habituelle.

Remarque. — Les deux méthodes exposées s’appli-
quent, avec des modifications de détail qu’il est facile de
voir, a un hyperboloide non de révolution.

SOLUTION DE L'EPURE DE GEOMETRIE DESCRIPTIVE
DONNEE A L'ECOLE CENTRALE EN 1890 (1 SESSION) ();
Par F. J. M.

Intersection de deux cones. Les bases sont des cercles
dont les plans sont perpendiculaires & la droite (ab, a'b")
qui joint les centres. On donne la position des centres
par leur cote et leur éloignement.

On prend les diamétres horizontaux des cercles de
base, on joint les extrémites de ces diamétres voisines
du cdté gauche du cadre et [’on prend sur cette droite
un point de cote donnée : ce sera le sommet du cone de
base (a, d'). De méme a droite pour le sommet de
lUautre céne.

(') Voir I’énoncé complet, t. 1X (189o), p. 54o.
Ann. de Matheémat., 3* série, t. X. (Janvier 18g1.)
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Représenter U'ensemble des deux cones, limités
chacun & son sommet et a sa base.

Les données se placent facilement, puisqu’on sait que
le diamétre horizontal AE a sa projection horizontale ae
perpendiculaire a ab.

Le point C de la frontale AC du plan du cercle A permet
de trouver, parun rabattement, un point quelconque M
de la base du cone S et la tangente en ce point. Pour
trouver tout ce quiest demandé dans le restant de I’énoncé,
nous allons, suivant la méthode générale, couper les deux
cones par des plans passant par la droite des sommets.

Remarquons d’abord que les droites TF et SE étant
paralléles, les points 5, 5’ et 7, <’ sont ceux ou ST ren-
contre les plans des bases des cones. Considérons donc
le plan auxiliaire dont la trace sur le plan de base du
cone S est la droite em. Les plans des bases des deux
cones étant paralléles, menons les droites v, wn, vn res-
pectivement paralléles aux droites o, sm, pm.

Nous obtenons e¢n n un point quelconque de la base
du second cone et latangente 82 en ce point.

Les points g et k des génératrices s et tn sont ceux
ou ces droites rencontrent le plan de base de’autre cone;
et les droites gh et Al respectivement paralléles aux
droites am et 3n sont les tangentes en ces points.

Le point i de rencontre des deux génératrices est un
point de I'intersection; et, en le joignant a /2, point com-
mun aux droites 37 et gh, traces des plans tangents aux
deux cones, on a la tangente en ce point.

D’autre part, s considéré comme appartenant au plan
de base du premicr cone, se rabat en s, ; de sorte qu’en
menant la tangente s, ¢ on obtient suivant sd la généra-
trige de contour apparent horizontal, et j est le point
ot elle rencontre l'intersection.
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ETUDE GEOMETRIQUE DES PROPRIETES DES CONIQUES
D'APRES LEUR DEFINITION (');

Par M. L. MALEYX,

Soient encore les quatre points A, B, C, D (fig. 50),
et supposons d’abord la tangente PQ située a distance
finie; si E est I'un des points de contact de la courbe,
il sera I'un des points doubles de I'involution déterminée
par les couples de points P et Q, R et S. Unissant un
point quelconque, O, du plan aux cinq points P, Q, R,
S, E, le faisceau ainsi formé sera en involution et OE en
sera un rayon double. Si PQ passe a I'infini, les quatre
premiers rayons deviendront paralléles aux cotés du qua-
drilatére qu’ils rencontrent en P, Q, R, S, respective-

Fig. 5o.
S
B Q
C< E
s P
A D
R

ment, et OF sera toujours I'un des rayons doubles du
faisceau déterminé par ces paralléles; mais, comme OE
rencontre la courbe en un second point a I'infini, il est
paralléle A un des diamétres de la courbe et détermine
cette direction; on est alors ramené au cas ou ’on donne

(') Voir t. IX (189g0), p. 596.

(&%
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cing points dont I'un est a 'infini dans une direction
donnée. Comme le faiscean OPQRS a deux rayons dou-
bles, il y a deux solutions.

La tangente peut passer & l'infini en méme temps
gue l'un des points y passe dans une direction donnée.

L’une des tangentes passant a l'infini, la courbe ne
peut étre qu’une parabole; on peut alors supposer que le
point et le point de contact ont passé a l'infini dans la
direction donnée, et I'on est ramené au cas ou 'on donne
cinq points dont deux ont passé a 'infini dans la méme
direction donnée.

Il n’y a pas de modification sensible & la construction
générale, si deux des quatre points passent a linfini
dans des directions données, la tangente restant a
distance finie.

3¢ Construire une conique dont on donne quatre
tangentes et un point.

THEOREME CORRELATIF DE CELUI DE DESARGUES. —
Soient AB, BC, CD, DA les quatre tangentes données,
Elepoint donné ( fig. 51); unissons par des lignes droites

.
le point E aux quatre sommets du quadrilatére circon-
scrit. Si nous coupons la figure par une transversale
quelconque PS, les couples de points de rencontre de
cette droite avec les rayons EA et EC, EB et ED déter-
minent une involution dont font partie les points de
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rencontre de la méme droite avec les deux tangentes
issues du point E; mais, comme le point E appartient a
la courbe, les deux tangentes qui en sont issues se con-
fondent, et leurs points communs avec PS se réduisent a
un qui est le point double de I'involution déterminée
par P et Q, R et S. On déterminera donc un de ces
points doubles, en I'unissant au point E par une droite;
on aura une cinquiéme tangente et I'on sera ramené a
un cas précédent. Comme l'involution a deux points
doubles, il y a deux solutions.

La méme construction s’applique encore si le point
E se transporte a Uinfini dans une direction donnée.
Les quatre rayons EA,EB, EC, ED, devenant paralléles,
la courbe correspondante peut étre une hyperbole ou
une parabole: dansle premier cas, la cinquiéme tangente
sera une asymptote; dans le deuxiéme, cette cinquiéme
tangente passe a linfini; la courbe sera une parabole
dont on connait quatre tangentes; sa construction rentre
dans un cas précédent.

Si une des tangentes AD passe a Uinfini, le point
E restant & distance finie, la courbe ne peut étre
qu'une parabole, la construction continue a s’appliquer,
deux des sommets A, D du quadrilatére circonscrit pas-
sant a I'infini dans les directions BA, CD.

Enfin, si une des tangentes, AD par exemple,
passe & U'infini, et que le point E passe également a
Uinfini dans une direction donnée, la courbe ne peut
¢tre qu'une parabole; mais la construction ne s’applique
plus, la cinquiéme tangente qu’elle détermine passant
¢lle-méme a l'infini. On peut alors traiter directement la
question qui se réduit a construire une parabole dont
on donne trois tangentes et la direction des diamétres.

Soient AB, BC, AC les trois tangentes (fig. 52),
AX, BX/, CX" les paralléles aux diamétres menées par
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les points A, B, C; prenons pour inconnues les points de
contact.

La droite qui unit deux d’entre eux, ceux (ui se trou-
vent sur les tangentes BA, AC par excmple, est divisée
par AX en deux parties égales; dés lors sa direction est
déterminée : il suffira pour V'obtenir de prendre sur BA

Fig. 52.

B

la longueur AB,= AB ct de joindre B,1, I étant le
point de rencontre de BX” avee AC; B, I est paralléle aux
cordes divisées par AX en deux parties égales.

On déterminera d’'une maniére analogue les directions
des deux autres cordes de contact respectivement paral-
¢les aIB,, AH ou B,L. La question se raméne alors a
! )
construire un triangle dont les cotés soient paralléles a

3., IB,, B,L, et dont les sommets reposent sur
1By, 1B,, B,L, et dont ] ts ref t AB,
BC, AC; les sommets de ce triangle seront les points de
contact cherchés. Pour construire ce triangle, il suffit de
prolonger IBy, B, L., jusqu’a leur rencontre en K, d’unir
le point K au point C par une ligne droite coupant AB
en (5, puis de mener par ce point G les droites GGy,
GG, respectivement paralléles a IB,, B, L. Le triangle

29 P P ) )
GG, G, remplit les conditions de ’énoncé : le probléme
P

n’a qu’une solution.
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4° Construire une conique dont on donne trois
points et deux tangentes.

Desarcues. — Soient AB, AC les deux tangentes
données, E, I'; G les trois points donnés ( fig. 53):
considérons la droite MN qui unit les points de contact
des deux tangeutes AB, AC, comme formanl avec elles,
en la prenant doublement, un quadrilatére inscrit dans
la conique. Les points G et F, qui appartiennent 4 la

Fig. 53.

G

courbe, et les points P et Q on la droite GI' rencontre
les cotés opposés AB, AC du quadrilatére inscrit déter-
minent une involution dont le point @, ou GIF rencontre
MN, est un des points doubles. En construisant les
points doubles de cette involution déterminée, on aura
deux points, tels que w, @, dont I'un se trouvera sur
MN. Répétant le méme raisonnement relativement a la
transversale GE, on aura deux nouveaux points o', o',
dont I'un appartiendra ala droite MN. Cette droite peut
donc avoir quatre positions déterminées, cn associant
deux a deux les points w, v, avec les points o'y w5 a
chaque position de la droite correspond une conique
dont la construction se raméne a un cas précédent : la
question a donc quatre solutions.
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Dans les cas ou quelques-uns des éléments donnés se
transporteraient a l'infini, on raisonnerait comme dans
les cas prédents.

5° Construire une conique dont on donne trois tan-
gentes et deux points.

THEOREME CORRELATIF DE CELUI DE DEsancurs. —
Soient AB, BC, CD les trois tangentes données, E, I
les deux points donnés (fig. 54); cousidérons les deux
tangentes réduites & une en E, et les deux tangentes ré-
duites & une en ', comme formant un quadrilatére cir-
conscrit a la conique, ayant deux sommets opposés en E
et I, ctles deux autres sommets opposés confondus au
point O ou elles se coupent.

Les tangentes BA, BC, les deux rayons BE, BF déter-
minent un faisceau en involution dont BO est un rayon
double; donc, en construisant les rayon’s doubles de cette

D

involution, déterminée par les quatre rayons connus, on
aura deux droites BO, BO,, dont 'une doit passer par
le point de concours des tangentes en E et I,

Fn répétant le méme raisonnement sur le faisceau
déterminé par CB et CD, CE et CF, on obtiendra deux
nouvelles droites issues de C' et dont I'une passera par
le point O. En associant chacune des deux droites issues
de By et telles que BO, avec chacune de celles qui sont
issues de C, dans les mémes conditions, on obtiendra
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quatre points qui peuvent appartenir chacun a deux
tangentes en E et I

On pourra ainsi construire quatre systémes de deux
tangentes qux, associés chacun aux trois tangentes don-
nées, détermineront quatre coniques rempllssant les
conditions de I'énoncé.

Si un ou deux des éléments donnés passaient & I'infini,
on raisonncrait comme dans les cas précédents.

XV. Etant données deux conigues, chacune par
cing points, Ay, Ay, Ay, Ay, Ay pour la premiére, B,,
B., By, By, Bs pour la deuxiéme, et admettant que ces
deux coniques ont quatre points communs inconnus, on
propose de construire une troisiéme conique passant
par ces quatre poinls, el par un cinquicme point
donné C.

Par le point C menons une transversale quelconque;
d’aprés le théoréme du n° VI, Chap. II, on pourra con-
struire les deux points M et M, ou elle rencontre la
premiére conique, et les points N et Ny ou elle coupe la
scconde; le point conjugué de C dans 'involution déter-
minée par les couples de points M ¢t M,, N et Ny, appar-
tient a la troisiéme conique, d’aprés la généralisation du
théoréme de Desargues, n® VIII, Chap. II, et peut étre
construit.

On pourra déterminer ainsi autant de points qu’on
voudra de la troisiéme conique, et la question est réso-
lue.

XVI. Deux coniques ont deux points communs A,,
A, donnés; en outre on donne trois autres points de
chacune d’elles As, Ay, Ay pour la premiéere, A',, A, A’
pour la deuxiéme : on demande de construire leurs
deux autres points communs.



(44)

Coupant la figure par une transversale, d’aprés le
théoréme du n° VI, Chap. II, on pourra construire les
points M et My, N et Ny, ou elle rencontre les deux co-
niques qui sont chacune définies par cing points. Si P
est le point ou la méme droite rencontre la droite A A,,
le point conjugué Q dans I'involution déterminée par les
couples de points M et M,, N et N; appartient a la
droite qui unit les deux points inconnus (Geén. du th.
de Desargues, n° VIII, Chap. II).

On pourra coustruire ce point QQ, et de la méme ma-
niére déterminer un second point Q, de la droite unis-
sant les points inconnus. Il ne restera plus qu’a trouver
les points communs de la droite QQ, avec Fune des co-
niques données, ce qui sc fera par I'application du théo-

réme établi au n® VI, Chap. II.

XVII. Une section plane d’un céne ayant pour di-

rectrice une conique est aussi une section conique.

En effet, si 'on prend le sommet du cone comme point
de vue, la section peut étre considérée comme une per-
spective de la divectrice.

Comme les théorémes de Desargues et de Pascal sont
projectifs et s’appliquent a la directrice, on pourra con-
struirc tous les points de cette ligne par leur application
et au moyen de cinq d’entre cux; mais on pourra aussi
construire tous les points de la section par ’application
des mémes théorémes aux points correspondants de cette
section. Il en résulte gue tous les points de la section
apparticnnent a la conique qui passe par les cing pre-
miers et qui est déterminée, et qu’en conséquence celtte
scction est une coniquc.

1] i G, D s~
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CHAPITRE III.

THEOREMES DIVERS ET APPLICATIONS.

Théoréme de Newton et conséquences.

I. Tntoreme pe NewroN. — 8% par un point du plan
d’une section conique on méne deux sécantes paral-
leles a deux directions données, paralléles & ce plan,
le rapport du produit des deux segments déterminés
par la courbe sur Uune des sécantes au produit des
segments déterminés sur U’autre est un nombre con-
stant indépendant de la position du point.

Soient O le cercle directeur, S le sommet du cone
(fig. 53); menons par le sommet du cone les deux

droites SA, SB, respectivement paralléles aux deux
directions données, et limitdes en A ct B au plan de la
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base circulaire, le plan ASB scra paralléle au plan
sécant.

Par le point m, pris arbitrairement dans le plan
sécant, menons dc, ef respectivement paralléles a SA,
SB, puis faisons passer un plan par SA et dc, et un
autre par SB et ef’; le premier de ces plans coupera le
cone suivant les génératrices SC, SD, le decuxiéme sui-
vant SE, SF; ils se couperont entre eux suivant la
droite SM.

Tracons ensuite pmy parallele a DC et rmt paralléle

a EF. Dela similitude des triangles mdg, DSA, on déduit

md _ SA
mq AD’

et de celle des triangles Smg, SMD

d’our, multipliant membre & membre,

md _AS Sm
MD — AD S SM°

On trouve de méme, par la considération des couples

de triangles semblables, mpc, CSA, Smp, CSM,

me __A_S Sm
MG~ AG S’

En multipliant membre 4 membre les deux derniéres

me X md '-SK2 S m\2
MCxMD—ACxADX<§M>'

Répétant des calculs analogues sur les triangles sem-
blable;s : Smt, SMF, et mtf, SBF; puis sur les deux
autres couples de triangles semblables : Smr, SME, et
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mer, BSE, on en déduit

—2
me xmf  SB « Sm\?
ME < MF ~ BExBF = \SM/ °
Divisant membre a membre les deux derniéres éga-
lités, en remarquant que, d’aprés les propriétés des
sécantes au cercle, MC >< MD = ME < MF, ontrouve

me X md <SA)2‘AC><AD
me < mf \SB) "BE x BF

Le sccond membre est constant et le théoréme est
démontré.

La fig. 55 suppose les points A et B en dehors du
cercle directeur, ce qui arrive toujours quand la conique
est unc cllipse ou une parabole, exceptant dans ce der-
nier cas celui ou 'une des directions données serait
paralléle aux diamétres, et que nous examinerons a part
ala fin du présent numéro.

Dans le cas de I'hyperbole, 'un ou les deux points A
ou B peuvent étre intérieurs au cercle directeur, si les
directions SA, SB correspondent a des cordes rencon-
trant les deux branches; la démonstration se fait de la
méme maniére et conduit au méme résultat.

Conservons dans la fig. 56 les notations de la
Jig. 53, et aussi les mémes hypothéses, saut que SA
est une direction intérieure au licu d’étre extérieure
comme dans la figure précédente.

Des deux triangles mdg, DSA, sont toujours sembla-
bles et donnent

’i.d SA |

mg — AD’

il en est de méme des triangles Smg, SDM, d’ou I'on
déduit
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Multipliant membre 4 membre,

md _ AS S_m_
MD — AD * SM

Fig. 56.

Considérous encore les deux couples de triangles sem-
blables, mpc, ASC, et Smp, SMC, on en tire

mec AS Sm

C = AC ™ S

=

Multipliant membre 4 membre les deux derniéres
égalités, on a

in_(l x me _b:x—f . Sm\?
MD < MC ~ AD x AC Sm )’

La démonstration s’achéve comme dans lc cas précé-
dent, que la direction SB soit intérieure ou extérieure.

1l nous reste a4 examiner ce qui advient dans le cas
de la parabole, et si V'une des directions, soit SA, est
paralléle aux diamétres; dans ce cas SA est située sur
la surface du cone, et SB est contenue dans le plan tan-
gent suivant SA ( fig. 57).

Le plan de la parabole est paralléle au plan tangent
BSA’ et coupe le plan de la directrice suivant GH paral-
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lele a AB. Par un point m du plan de la section menons
les droites dml, emf, respectivement paralléles a SA,
SB; puis encore rmt, pmg, respectivement paralléles

aux traces BFE, DA des plans SBm, SAm sur le plan
de la directrice.

Ces deux plans SBm, SAm coupent le cone suivant
les couples de génératrices SE, SI, et SA, SD; de plus
ils se coupent entre eux suivant SmM.

La trace I de la droite dml, intersection du plan de la
courbe et du plan SAm, sur le plan de la directrice, se
déplace sur la trace GH du plan de la section sur le plan
du cercle de base.

De la similitude des triangles dmg, SAD, on déduit

md _SA
mg ~ AD’
de celle des triangles Sgm, SDM, on tire
mg _ Sm,
DM~ SM’
Ann. de Mathémat., 3¢ série, t. X. (Janvier 1891.)

=~
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multipliant membre & membre, on a
md_SA_Sm
MD ~ AD ~ SM
De la considération des triangles semblables Smp,
SMA, et observant que mp = Al, comme cotés opposés
d’un parallélogramme, on déduit

mp AL_Sm,
MA ~ MA SM’

multipliant membre & membre,

~r_n~d><Al __SA — Sm\2
MD < MA ~ AD SM/

On trouve, comme dans les cas précédents et par la
considération des mémes triangles,

me < mf SB - Sm\?
ME < MF ~ BF < BE SM
Divisant membre 4 membre et observant que

MD > MA = ME = MF,

ona
me>x<mf SB « AD
md =< Al 7 BE < BF 7" SA
ou
me x mf SB . AD < AT
md ~ BEx<BF SA

Or le produit AD >< Al est constant et égal a AH ; le
second membre est donc constant, et 'on a

me < mf S—B2 < ﬂ
md ~ BEx<BF ~ SA’

1
cest-a-dire que, dans la parabole, le point commun
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d’une corde de direction fixe avec un diamétre par-
tage cette corde en deux segments dont le produit est
au segment du diamétre compris entre le méme point
et la courbe dans un rapport constant.

II. — Propriétés métriques des demi-cordes paralléles,
ou ordonnées d’une section conique, par rapport aux
segments qu’elles déterminent sur le diamétre qui les
divise en parties égales. Equations des coniques a
centre rapportées 4 deux diameétres conjugués. Equa-
tion de la parabole rapportée 3 un diamétre et a la
tangente & l'extrémité de ce diamétre.

Les propriétés que nous avous l'intention d’établir
dans le présent numéro sont des conséquences immé-
diates du théoréme de Newton que nous venons de dé-
montrer.

Considérons séparément les trois courbes.

Evrviese. — Soit Pellipse O (fig. 58); AA’, BB’ deux

diameétres conjugués dont nous supposerons les demi-

Fig. 38.

longueurs respectivement représentées par o’ et &'; CC”
une corde paralléle a BB, et divisée en deux parties
égales par son point de rencontre P avec AA’.

PCx PC

D’aprés le théoréme de Newton, le rapport PA < PA’
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conserve une méme valeur constante quand le point P
se déplace sur AA’; en conséquence, on a, pour tous les
points de la courbe,

PC < PC’ OB > OB’

PA < PA' ~ OA < 0A"

ou
. ,
PG b
PA < PA' 7 a2
Donc : le carré d’une demi-corde, ou ordonnée, qui
se déplace en conservant sa direction, est au produit
des segments qu'elle détermine sur le diamétre con-
jugué dans un rapport constant.
SiTon désigne, d'une fagon générale, cette ordonnée
par y, et par x le nombre positif ou négatif représentant
OP, 'équation précédente peut s’écrire

2 _ 0H'2
(d—z)(d+x) a*
oun
xr? 2
@i Tpr Tl

c’est 'équation cartésienne de la courbe rapportée aux
deux diamétres conjugués AA’, BB'.

ParasoLe. — Soit une parabole dont le diamétre AX
divise en parties égales les cordes telles que CC', paral-
léles a la tangente AY (fig. 59); d’aprés la fin du nu-
méro précédent, on sait que, lorsque la corde CC’ se
PC =< PC’

AP
est constant; et, comme le point P ou CC’ rencontre le
diamétre conjugué de sa direction en est le point milieu,

déplace parallélement a elle-méme, le rapport

_

R TIY: (014
cette égalité peut se mettre sous la forme 4 = 2p/, P
1]

étant un nombre représentant une longucur fixe.
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Désignant, d’une facon générale, CP par y et AP par x,
I’équation précédente, qui a lieu pour tous les points de
la courbe, peut s’écrire

yr=2p'z,

équation cartésienne de la parabole rapportée a un dia-
métre et a la tangente a son extrémité.

Fig. 59.

HyversoLe. — Soient enfin ’hyperbole O ( fig. 60),
CC' une corde variable paralléle a OY, OX le diamétre

Fig. Go.

conjugué de sadirection; d’apres le théoréme de Newton
PC < PC’
PA > PA’

PG
PA <PA"

et pour tous les points de la courbe, le rapport

a une valeur conslante, et il en est de méme de
puisque PC=PC'.

Cherchons a déterminer la valeur de ce rapport : dans
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ce but mcnons, par le point C, Co paralléle a asym-
ptote OB; nous avons immédiatement

e T

PA < PA' " (Pw —wA)(Pw + wA’)
(7o)

_ Pw

R
Pw Pw

Si le point C s’écarte indéfiniment de Dorigine, la
droite Cw se rapproche indéfiniment de I'asymptote, et
le point w du point O; il en résulte que wA et wA’
restent finis, et que leurs rapports a4 Pw ont pour limite
zéro; de plus, sinous représentons les longueurs OA, AB,

par @', b’ respectivement, on déduit de la similitude

des triangles 0 PC, OAB ['égalité

PG b
Po @’
d’ou
PCH 2
e, <ﬁ”) .
PA < PA" ™ (l_w_A> <l+w_A’>—a’2
Pw Pw

Donc le carré d’une demi-corde, ou ordonnée,
qui se déplace en conservant sa direction, est auw pro-
duit des segments gu’elle détermine sur le diamétre

5 7
conjugué, que la figure suppose rencontrer réellement
la courbe, dans un rapport constant.
) PP

Si l'on représente, d'une maniére générale, cetie
ordonnée par y et par x le nombre positif ou négatif
représentant le segment OP, I'équation précédente peut
s’écrire

2 b2

(r—ad)(x+a') T
ou
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C’est 'équation cartésienne de la courbe rapportée aux
deux diamétres conjugués OX, OY.
Cette équation peut s’écrire

x? a'?
yrr b2 b
ou
'T2 a'Z

1
-

r+oy=1)(y—vy=1) 0"
d’ou I’'on peut conclure que le carré d’une demi-corde
qui se déplace parallélement a une direction fixe, et
dont le diamétre conjugué ne rencontre pas réelle-
ment la courbe, est au produit des segments qu’elle
détermine sur ce diamétre dans un rapport constant,
A CONDITION DE CONSIDERER LES EXTREMITES DE CE DIA-
METRE COMME DISTANTES DU CENTRE DES LONGUEURS IMA-

GINAIRES REPRESENTEES PAR == [)'\/— 1.

HI. Construire une conique dont on donne un point
réel et quatre points réels ou imaginaires définis par
les couples de points oit deux droites données ren-
contrent une ou deux coniques.

Remarquons d’abord que, d’aprés le théoréme établi
aun® VI, Chap. lI, on peat remplacer les points com-
muns réels ou imaginaires d’une conique définic et d’une
droite donnée par ceux de la méme droite et d’un cercle
gu’on peut construire; d’aprés ccla, on peut considérer
les quatre derniers points donnés comme situés par cou-
ples sur les deux droites données et deux cercles donnés.

Soit donc a construire la conique passant par le point
véel donné, A, et par les couples de points de rencontre
des droites données OX, OY, avee les cercles donnés v,
wy respectivement (fig. 61).

Menons par le point A la paralléle 4 OX rencontrant
OY en C, et soit A, son sccond point de rencontre avee
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la courbe; d’aprés le théoréme de Newton, le rapport

Fig. Gr.

Y .
| /
L& A

/ o '

du produit CA><CA, a celui des segments interceptés
sur OY entre le point C et les points ou cette droite
rencontre le cercle w,, ce dernier produit étant égal a la
puissance, =, du point C par rapport au cercle w,, est
égal au rapport des puissances P et P, du point O par
rapport aux cercles w et v, respectivement.

On aura donc I’égalité

CAy<CA P
= P,

d’ou I'on pourra déduire une construction du point A,.

On pourra déterminer par une construction analogue
le point A, ou la paralléle a OY menée par A rencontre
de nouveau la courbe; puis encore les seconds points de
rencontre avee la courbe des paralléles menées a OY et
OX par les points A et A,, soient ces poinls Az et A,;
connaissant cinq points réels de la courbe, elle est dé-
{inie et pcut étre construite.

Remarque.— La construction précédente ne pourrait
se terminer dela méme maniére s’il arrivait que les points
A, et A, se confondissent; dans ce cas OX et OY seraient
paralléles 4 deux diamétres conjugués de la courbe,
diamétres qu’on pourrait construire en menant des paral-
leles 2 OY, OX par les points milieux des cordes AA,,

AA,; on connaitrait alors le centre et I'on pourrait con-
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struire la longueur de ces diamétres d’apreés le théoréme
de Newton, ainsi qu’il suit.
Conservons dans la fig. 62 les notations dela fig. 61,
supposant A; et A, confondus en Aj, et soient R et R,

Fig. 62.

les extrémités du diamétre parallele a OY. On a, d’aprés
le théoréme de Newton,

—2 —2

IR < IR, OR —6I

o< TA; 3t P’

o]

>
1

P, et P étant toujours les puissances du point O par rap-
port aux cercles w, et w; la derniére égalité permet de
construire §R et, en conséquence, les points R et R;.

Examinons enfin le cas o les droites données sont
paralléles.

Proposons-nous de faire passer une conique par le
point réel A, et par les points imaginaires ou les cercles
w, w, rencontrent les droites paralléles X, X, Y, Y res-
pectivement ( fig. 63). '

Les points milieux des cordes interceptées dans la
courbe cherchée sur les droites X, X, Y,Y sont placés
aux pieds P et Q des perpendiculaires abaissées des
centres w, w, des cercles donnés sur les deux droites
données.

PQ est donc le diamétre de la courbe divisant en par-
ties égales les cordes paralléles a X;X; en menant par
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A la paralléle 4 X, X et en la prolongeant au dela de son
point de rencontre C avec PQ d’une longueur CA, = CA,
le point A, sera un nouveau point de la courbe. Dési-
gnons par R et R, les extrémités du diamétre PQ et par

Fig. 63.
Wy

N

L/Q

A G A
At PR \

=N

w

P et P, les puissances des points P et Q par rapport aux
cercles w, w, respectivement : nous aurons, par applica-
tion du théoré¢me de Newton,

CR x CR, _ PR PR, _ QR x QR
—3 - P - P
CA !

ou

CRxCR; _(PC+CR)(PC—CR;) _(QC—CR)(QC-+CRy)
p——Y - P - P
CA !

ou c¢ncore

CRx CR, _PC + PC(CR—CR;) QG — QC(GR—CR,).
cA " P4+ CA P, CA"

Au moyen de la derniére égalité, on peut coustruire
CR — CR,, puis au moyen de la premiére un carré
équivalent 4 CR >< CR,; et, d’aprés un probléme dont
la solution est connue, on pourra construire CR ct CR;.
Connaissant le diamétre RR de grandeur et de position,
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on aura le centre : on pourra alors construire le diamétre
conjugué qui est paralléle 4 X, X, et 'on aura sa lon-
gueur désignée par b’ d’aprés 1'égalité
—_2
40" AC
—S = Fr R’
, RR‘ CR x CR1

qui se déduit du théoréme de Newton.

(A suivre.)

ECOLE DES PONTS ET CHAUSSEES (CONCOURS DE 1890).

COURS PREPARATOIRES.

Géométrie analytigue. (Durée de Uépreuve : 4 heures.)

Etant donné un cercle fixe C dont le centre est en un point
de I’'axe des y, et une série de circonférences tangentes a I'axe
des z & l'origine, on méne des tangentes communes a ces cir-
conférences et au cercle fixe, et on demande le lieu des points
de contact M.

On examinera en particulier le cas ou le cercle fixe se réduit
a un point et celui ou le centre de ce cercle coincide avec
Porigine.

Algébre. (Durée : 3 heures.)

On désigne par z et y les distances AM, BM de deux points
A et B a un point M pris arbitrairement sur une droite D,
On demande de déterminer le maximum et le minimum du

. Y.
rapport *-

Lavis. (Feuille § grand-aigle.) (Durée : 3 heures.)

Moulures. — Laver & encre de Chine, a teintes plates ou a
teintes fondues, & volonté, les moulures dont le croquis est
donné ci-contre.

MN, M'N’ est 'aréte verticale d’un pilastre, portant ombre
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a 45° sur les moulures horizontales situées en arriére et dans
la position relative qu’indique la coupe.

Elevation

]

Les profils g'¢" et d'f' pourront étre formés par des quarts
d’ellipse.

Onne lavera que I'élévation, ombres propres et ombres
portées.

Epure. (Feuille + grand-aigle.) (Durée : § heures.)

Cone et cylindre de révolution. — Un cylindre de révolu-
‘tion a pour axe la droite horizontale (ab, a’d'); il est tangent

K x
i
]
13

N

N

Mo aan Cadre 240™ T aee .. > !

y

au plan horizontal et il est limité par deux plans de section
droite passant par les extrémités (a, a') et (b, b") de I'axe.
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Un cone, également de révolution, a pour sommet le point
(s, s') situé sur le plan horizontal; son axe passe par le point
(0, 0") milieu de I'axe du cylindre et il est,lui aussi, tangent au
plan horizontal. En projection horizontale, les axes des deux
surfaces sont perpendiculaires 'un sur I'autre.

On demande de chercher I'intersection des deux surfaces et
de représenter le cylindre seul en supposant le cone enlevé
aprés avoir fait son entaille dans le cylindre.

L’épure devra indiquer la marche suivie pour trouver un
point courant de I'intersecticn et la tangente en ce point. Elle
comportera également les constructions faites pour trouver les
points les plus remarquables de I'intersection.

CONCOURS D'ADMISSION A L'ECOLE NAVALE
EN 1889.

COMPOSITIONS ECRITES.

Arithmétique et Algebre. (4§ heures.)

I. Calculer, a un centiéme prés, le cosinus de 'angle B d'un
triangle ABC rectangle en A, dont les cotés & et ¢ ont pour
longueurs & = 115™,6543, ¢ = 17™4326.

1I. On donne une demi-circonférence BDC et une droite AD
perpendiculaire en A, au diamétre BG, et, par un point X situé

D
E
H
B 0 A X C

sur ce diamétre, on méne XE paralléle a AD; on joint BE
et on projette sur XE, orthogonalement en H, le point G ot
BE rencontre AD. Désignant OA, OX, OC respectivement par
a, z, R, on demande :

1° D’étudier les variations de HE = (> — (1)\/

R iquand
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le point X se déplace sur le diamétre BG, en considérant suc-
cessivement. les cas ol ce point est situé entre B et G, au dela
de C ou au dela de B; _
2” D’étudier le méme probléme en prenant pour variable
Pangle XOE = ¢.

Géométrie descriptive. (1 heure et demie.)

zy étant la ligne de terre, on donne sur le plan horizontal
un triangle ABC dont I'un des cotés AB est situé sur la ligne
de terre. Les cotés ont pour valeur

AB = 100™™,
BC = 68™™,
CA = 100™.

1° Construire au-dessus du plan horizontal un tétraédre
ayant pour base le triangle ABC et tel que les diédres AB, BC,
CA aient respectivement pour valeurs

. N

di¢dre AB =, 80°,

di¢dre BC = 6o°,
. 2N

di¢dre CA = 8o°.

2° Construire les projections des sphéres circonscrite et in-
scrite a ce tétraédre.
Calcul trigonométrique. (1 heure.)

Calculer les valeurs de » comprises entre o° et 9o°, qui satis-
font & la relation
. tang 199°18' 26" X< (cos121° 19’ 12" )3
sind(4a + 21°) = 99 ( s ?, ) .
2,98761 X< (sin348°14'57")?

Géométrie et Géométrie analytique. (3 heures.)

I. Géométrie. — Connaissant Ies trois cOtés d'un triangle,
calculer les médianes, les hauteurs, les bissectrices, les rayons
du cercle circonscrit, des cercles inserit et exinscrits.

1. Géométrie analytique. — Etant donnés deux axes rec—
tangulaires oz, oy et un point M de coordonnées a et b, on
demande de mener par le point M deux droites MA, MA/, fai-
sant entre elles un angle donné V, et telles que les quatre points
A, B A', B' de rencontre avec les axcs soient sur une méme
cnconfclcnc(,.
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1° Le probléme admet pour chaque valeur de V deux solu-
tions. Equations des deux circonférences correspondant a cha-
cune de ces deux solutions. Les distinguer.

2° Le point M étant fixe, on suppose que l'angle V varie
d’une maniére continue. Démontrer que le lieu des centres de
toutes ces circonférences est une ligne droite et qu’clles ont un
méme axe radical. Etudier comment varie la longueur du
rayon; trouver ses valeurs minima.

3° L’angle V étant constant, on suppose que le point M décrit
une circonférence autour du point O comme centre; trouver le
licu des centres de chacune de ces circonférences.

CONCOURS D’ADMISSION A I’ECOLE NAVALE
EN 1890.

COMPOSITIONS ECRITES.

Arithmétique et Algébre. (4 heures.)

3 1 1 & - 5
I. Calculer, a plus ou moins - prés, Ja valeur de tang15°
donnée par la formule

\/l —c0s30°
I+ c0830°

II. On donne un triangle ABC, rectangle en A et isoscéle,
tel que AB=AC=5. D'un point X situé sur AB comme
centre, avec XA comme rayon, on décrit une circonférence; on
joint le point X aux deux points M et N ou cette circonférence
coupe ’hypoténuse.

Etudier les variations de la surface du triangle XMN quand
le point X se déplace sur AB et sur ses prolongements.

III. Représenter par une courbe rapportée a des axes rec-
tangulaires les variations de la fonction
cosz + y/cos2x — cos?a

= log. népérien de
Y g-nep cosa ’

, . [
a etant compris entre o et ;4

. Co T
Examiner le cas particulier o a = o et a = 5
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Géométrie cotée. (1 heure et demie.)

Etant donnés deux points A et B dont les cotes au-dessus du
plan de comparaison sont respectivement

A =om,38, B = o™56,

et dont la distance horizontale est de o™, 42, construire a I'é-
chelle de - la projection cotée d’un prisme droit a base carrée,
satisfaisant aux conditions suivantes :

Le coté de la base est AB, la pente du plan de cette base
est de 1,la hauteur du prisme est de o™, 60.

Indiquer les intersections de la figure avec une série de plans
horizontaux équidistants entre eux de o™, 20.

Calcul trigonométrique. (i heure.)

Calculer les valeurs de o~ comprises entre 0° et 360°, qui sa
tisfont a I'équation
sin®(226°15'18",6) < tang2(338°42'13")

sin?(2x + 29°) = = - i .
( 9 (0,56417)3 > c0s245°19'56" 3

Géomdétrie et Géométrie analytique. (3 heures et demie.)

1. Géométrie. — Enoncer et démontrer succinctement les
principaux théorémes qui servent a établir que le rapport des
volumes de deux pyramides quelconques est égal au produit
du rapport des bases par le rapport des hauteurs.

1I. Géométrie analytique. — Oxy étant deux axes rectan—
gulaires, BL une droite fixe parall¢le a 'axe des x(y = b), et
A un point mobile sur cette droite (BA = ), a chaque position
du point A correspond une hyperbole équilatére passant par
les trois points A, B, O et tangente en O a I'axe des z.

1° Trouver le lieu des centres de toutes ces hyperboles et
construire pour unec position donnée de A le centre et les
asymptotes de 'hyperbole équilatére correspondant a ce point.

2° On joint le point variable A a un point fixe Q pris sur
I'axe des y, la droite QA rencontre 'hyperbole correspondante
i ce point en un second point M dont on demande le lieu;
discuter la nature de ce lieu suivant la position de Q sur I'axe
“des y.



(65)

INTERSECTION DE DEUX QUADRIQUES;
PArR M. Lvciexy LEVY.

Dans le numéro des Nouvelles Annales de décembre
1890, M. Carvallo a publié un intéressant article ou il
al'occasion d’appliquer une méthode de M. Darboux &
la recherche des conditions de contact de deux qua-
driques. La méthode indiquée me parait plus puissante
qu’il ne semble résulter de I'article cité et je voudrais
montrer qu’elle permet une discussion compléte de
I'équation en % relative a deux quadriques, au moins
si I’on fait abstraction du réel et de I'imaginaire. Je re-
trouverai ainsi tous les résultats obtenus par Painvin
(voir Nouvelles Annales, 1868 et 1869).

Pour abréger, je conserverai les notations de M. Car-
vallo et je renverrai, au besoin, i sa Note.

Soient

‘ S = (@, ¥, 3, t)
(1) = axr?+a'yr+a' st 2By s+ 23 50
t +28"2v +2yz+ 2y y +2y'5 +0=o.
S'=flz,y, 3, t)
(2) =Ar?+ Ay +A"32+2Bys +92B'ax
—aB'xy +2(x+ 20y -+-2C"5+D)=o0

les équations de deux surfaces de second ordre (S)

et (8);
(3) J(zyy, 5, t)+ho(z, ¥, 5,t)=0

Péquation générale des quadriques qui passent par leurs
intersections;

(4) A(A )=o0
Ann. de Mathémat., 3¢ série, t. X, (Février 18g1.) 5
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I'équation du quatriéme degré en ) qui exprime que
Péquation (3) représente un cone.

Si le déterminant A(X) est nul sans que tous ses mi-
neurs du premier ordre le soient, I'équation (3) repré-
sentera un cone ou un cylindre non décomposables.

Si les premiers mineurs de A(%) sont nuls sans que
tous les mineurs du second ordre le soient, l'équa-
tion (3)représentera un systéme de deux plans distincts,
paralléles ou non, réels ou imaginaires.

Si les mincurs du second ordre de A(%X) sont nuls
sans que les éléments de A()) le soient tous, I'équa-
tion (3) représentera deux plans confondus.

Enfin si les éléments de A()) sont tous nuls pour la
valenr de % considérée, I'équation (3) est indéter-
minée.

Nous considérerons successivement ces diverses hy-
pothéses. Cela posé, la méthode de M. Darboux repose
essenticllement sur le lemme suivant dont jomettrai la
démonstration : .

Si lon remplace les deux surfaces Set §' d’un fais-
ceau de quadrigues par deux autres surfacesy et X'
du méme faisceau, l’équalion en (qui exprime que
le discriminant de £ + p.¥ est nul) a sesracines relices
parune relation homographique a celles de ’équation
en \ provenant de la forme S + 1S/

Il en résulte que les équations en X ct en w acquer-
ront en méme temps une ou deux racines doubles, une
racine triple, une racine quadruple, et que I'on peut
choisir les surfaces S et §' qui servent de bases au fais-
ceau, sans que 'intersection ni la nature des racines de
I’équation en % en soient affectées.

)



(67)

I

A()\) EST NUL SANS QUE TOUS SES PREMIERS MINEURS
LE SOIENT.

Les quatre cones qui correspondent a chaque valeur
de 7 sont tous de véritables cones ou des cylindres. Je
supposerai que la surface (1) soit un de ces céones : par
suite, I’équation en X aura une racine nulle. Si, confor-
mément aux notations usuelles (Sarmon, Géomeétrie
analytique & trois dimensions, § 234), nous posons

AN =AM —0M3 4 DR — 'k + A,
I'équation (4) s’écrira
(5) AN — @M+ P A2—@ A = 0.
a. Tutorkme 1. — A toute racine simple de cette

équation correspond un cone n'ayant pas son sommet
sur une quadrique du faisceau.

D’aprés le lemme cité plus haut, on peut supposer
que cette racine simple soit la racine nulle. Le cone
correspondant a pour équation

(1) Sz, y,5,t)=o.

Les coordonnées x,, ¥y, 2, t, de son sommet véri-
fient les égalités (voir l'article de M. Carvallo)

3 yy s} amyr 257
(()A’ T foA\ T /oA T /oA - <¢2A—'>
A (ZW) oA” oB" 0B’
2Y13 271, Zyltj _ 2318 _ t?

() (&) G (&) (&)

JA(R)’ ,

etlon a
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Si la racine nulle est simple, 6’ n’est pas nul et le
. , . ,
point x,yyz,t, n’est pas sur la surface (S). Mais la dé-
monstration suppose que la surface (S') est un véritable
cone (') : il faut la modifier pour le cas ou elle serait
un cylindre. Dans ce cas, soit

r ¥ z

'y - 1 - |
une paralléle a I'axe de cylindre, on vérifie aisément
les égalités

1,
z} 7} 3 2T Y1 2ETy _ 2)15

@ &) & & & &)
Si nous appelons alors ¢'(x,y, z) I'ensemble des

termes du second degré en x, y, z de la fonction
o(x, ¥, z,1), nous aurons

—0'= ?I(xhyh zl)'

Cette expression n’est donc nulle que si la surface
(S,) a une génératrice (réelle ou imaginaire) paralléle a
I’axe du cylindre (S'). Ce cas, par une extension delan-
gage connue, rentre donc dans le précédent (2).

Donc, si toutes les racines de I'équation en ’ sont

(*) On se contente, en général (voir, par exemple, le Mémoire de
Painvin et la Note de M. Carvallo), de donner les théorémes rela-
tifs aux cones ou aux plans se coupant. Il m’a paru intéressant de
montrer que la méthode employée s'applique a tous les cas, sans
faire appel aux méthodes de transformation.

(*) Pour étre complet, il est utile de remarquer que la démonstra-
tration ci-dessus tombe elle-méme en défaut si tous les mineurs,

0A . s s .
sauf un, par exemple oA’ % réduisent & zéro. Mais, dans ce cas,

. A . L .
@' devient — a %&a et a= o exprime précisément que le cylindre a
ses génératrices paralléles & une direction asymptotique de l'autre
quadrique.
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simples, I'intersection des deux quadriques présentera
le méme aspect que l'intersection (sans point double)
de deux cénes ou cylindres n’ayant entre eux aucune
relation de position particuliére.

b. Tutorime II. — A toute racine double de l'équa-
tion en h correspond un céne ayant son sommet sur
toutes les quadriques du faisceau, ou un cylindre dont
Uaxe est une direction asymptotique commune & toutes
les quadriques du faisceau. (Nous supposons toujours,
pour le moment, les cones indécomposables.)

Ce théoréme est démontré par ce qui précede.

Deux cas peuvent ici se présenter : 1° Une seule ra-
cine est double. L’intersection est une quartique a
point double réel ou isolé : toutes les quadriques ont
un méme plan tangent en ce point. 2° Il y a deux ra-
cines doubles. 11 leur correspond deux cones ayant
chacun son sommet sur toutes les surfaces du faisceau
et en particulier sur 'autre cone. Les deux cones et, par
suite, toutes les quadriques ont une génératrice com-
mune; le reste de 1'intersection est une cubique gauche,
coupant la génératrice commune en deux points dis-
tincts.

c. Tutoreme IlI. — A toute racine triple de l’équa-
tion en M correspond un cone ayant son sommet sur
toutes les surfaces du faisceau et de plus le plan tan-
gent a toutes ces surfaces en ce point est aussi tangent
au cone.

1l suffit, pour le voir, de mettre 'équation du cone

sous la forme :
A"z —a2B'zy =o,

ce qui est toujours possible. La quantité ® de I'équa-
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tion (5) devient alors
B"(B'y"—2A"yy"),

et, comme B’ nc peut étre nul (cone indécomposable),
il faut, pour acquérir une racine triple, annuler lesecond
facteur, ce qui exprime précisément la condition de
I’énoncé.

Dans ce cas, toutes les quadriques du faisceau ont
encore un méme plan tangent en un point P; leur inter-
section est une courbe du quatriéme ordre indécom-
posable et présentant au point P un rebroussement.

d. 1l reste a examiner la singularité introduite par
une racine quadruple.
D’aprés le cas précédent, on pourra écrire I'équation
P ) I
du cone &
A"z2—aB"xy =o,

ct prendre le plan des zy tangent a la surface S. L'équa-
tion de cette derniére devient alors

o(Z, y,5,t)=ar+a'y2+a"32+ 20 ys
+a2f'zx+28" 2y +2vx =0,
et I'équation (3),

AN — &' y2A" M8 = o,

Pour qu'il y ait unc racine quadruple, il faut et il

suffit que
2y2A"=o
ety comme A” £ 0, que ¥ = 0 ou &' = o.

Siy = o, les deux surfaces sont des cones de méme
sommet, comme toutes les surfaces du faisccau : I'équa-
tion (5) est indéterminée ; ce n'est pas le cas actuel.

Si o = o, la surface S conticnt 'axe des y : les sur-
Sacesdu faisceau ont toutes une génératrice commune,
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et le reste de Uintersection est une cubique gauche
tangente a la génératrice commune. Le point de con-
tact est le sommet du cone quadruple. Les quadriques
ont en ce point un méme p]an tangent.

II.

A()\) EST NUL, AINSI QUE TOUS SES MINEURS DU PREMIER
ORDRE, MAIS UN MINEUR AU MOINS DU SECOND ORDRE
EST DIFFERENT DE ZERO.

Le cone qui correspond a cette valeur de & se réduit a
un systéme de deux plans distincts. Nous supposcrons,
comme précédemment, que ce cone soit la surface S’ et,
par suite, que la racine 2, qui annule A(}) et ses pre-
miers mineurs, soit zéro. A’ et &', qui est une fonction
linéaire des premicrs mineurs de A', sont nulles.

L’équation (3) devient alors

ANF— @)+ P22 = o.

a. Ainsi la racine nulle est double lorsque le cone
correspondant est un systéme de deux plans distincts.

Si I'on suppose les deux plans distincts se coupant,
on peut les prendre pour plans des xy et des yz et ®
a pour valeur > — /33 si les deux plans sont paral-
leles, on peut prendre pour leurs équations z = o et
z =1, etla fonction ® a pour valeur A2 (2" — aa'). Par
conséquent, l'intersection des deux plans qui consti-
tuent le cone dégénéré coupe la surface (S) et, par
suite, toutes les surfaces du faisceau en deux points
distincts.

Cela posé, nous avons trois cas a distinguer :

1° Les deux racines non nulles de I’équation en %
sont distinctes. Il leur correspond deux cénes n’ayant
pas leurs sommets sur l'intersection : cette derniére se
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compose donc de deux courbes planes non évanouis-
santes et ne se touchant pas. Les quadriques sont bitan-
gentes.

2° Les dcux racines non nulles sont égales entre elles,
mais n’annulent pas les premiers mineurs de A(%).

Le coue double qui leur correspond est un cone
effectif ayant son sommet sar Pintersection : celle-ci doit
donc étre composée de deux courbes planes dont une
passera au sommet du cdne, c’est-a-dire sera un systéme
de deux droites. Les quadriques se touchent en trois
points.

3° Les deuxracines non nulles sont égales entre elles
ct annulent les premiers mineurs de A(%).

Il leur correspond un systéme de deux plans distincts.
L’intersection, devant étre dans quatre plans ditférents,
ne peut se composer que de droites. C’est un quadrila-
tére gauche. Les quadriques se touchent en quati‘e
points qui sont les quatre sommets du quadrilatére.

b. Supposons maintenant la fonction ® nulle. La ra-
cine nulle de 'équation en 2 devient triple. L'intersec-
tion des deux plans distincts est tangente & la surface.

La racine qui reste correspond nécessairement & un
cone véritable qui n’a pas son sommet sur 'intersec-
tion. Il est coupé par les deux plans suivant deux co-
niques, tangentes entre elles, qui constituent I'intersec-
tion des deux quadriques. Ces deux surfaces ont un
plan tangent commun au point de contact des deux co-
niques.

c. La racine qui annule A(X) et ses premiers mi-
neurs est quadruple, 8 = o.

Je prendrai pour plan de coordonnées les deux plans
qui composent la surface (S'), pour'axe des y leur in-
tersection, pour origine le point ou les deux coniques
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se touchent (voir le paragraphe précédent), point ou
toutes les quadriques du faisceau ont un méme plan
ltangent qui passe évidemment par Oy. Alors I'équation
de (S') devient '
2B'zx = o,

et, dans l'équation de la surface (S), §=o0; & =0
donne Y= 0; @ devient égal a B'a’yy".

D’ou trois cas a considérer :

1° &' = 0. — Le plan des y est sur les deux surfaces.
Toutes les quadriques du faisceau se raccordent suivant
Oy et ont de plus en commun deux génératrices de
I'autre systéme. Le cone quadruple se compose de deux
plans passant I'un par Oy et par une génératrice com-
mune, autre par Oy et par 'autre génératrice com-
mune.

2° v = 0. — Le plan des xy, qui compose une partie
du céne (§'), est tangent a la surface (S). L’intersection
se compose alors d’une véritable conique et de deux
droites qui se coupent sur cette conique : le plan de ces
deux droites est tangent a la conique.

3° y"=o0. C’est le méme cas que le précédent.

11I.

TOUS LES MINEURS DU SECOND ORDRE DE A()x) SONT NULS,
MAIS UN ELEMENT AU MOINS EST DIFFERENT DE ZERO.

L’équation (5) se réduit a
AN — O A3 = o.

Donc la racine nulle est triple, lorsque le cone cor-
respondant se compose de deux plans confondus.

a. O n’est pas nul. A la racine non nulle corres-
pond un céne véritable n’ayant pas son sommet sur la
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surface. Les quadriques sont inscrites dans un cone le
long d’'une méme conique.

Si la conique est véritable, on ne peut pas avoir,
dans le cas actuel, de racine quadruple : car, en prenant
le plan de cette conique pour plan des xy, une tangente
a la conique pour axe des y, un plan tangent a la sur-
face (S) pour plan des 2y, enfin I'axe des z conjugué de
celui des y dans le plan tangent, I'équation (5) devient

rd'od" 4+ o'A" = o.
A n’est pas nul; 2 ne peut Pétre sans qu’il y ait une
indétermination compléte.
b. Supposons alors la conique, située dans le plan
double, évanouissante. ® = o ct I'équation se réduit a
A)l*= o.

Il y a toujours une racine quadruple : ce cas est
done séparé du précédent. Les deux quadriques se rac-
cordent le long de deux droites concourantes.

Iv.
v ., Y
TOUS LES ELEMENTS DE A(A) SONT NULS (POUR LA VALEUR

DE A CONSIDEREE).

Les deux quadriques coincident. Laracine de I'équa-
tion en % cst quadruple.

‘T
L’EQUATION EN A EST UNE IDENTITE.
Toutes les quadriques du faisceau sont des cones ou
des systémes de plans. Nous pouvons éliminer en bloc

les cas de cones ayant un sommet commun a distance
finie ok infinie, ces cones pouvant d’ailleurs dégénérer
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en plans : car toules les variétés possibles se rencontre-
ront en joignant par des droites tous les points d'une
des variétés de coniques a4 un point situé hors du plan
de la conique.

Supposons donc le cone (S') non décomposable : son
sommet sera sur l'autre cone qui, réciproquement, aura
son sommet sur le premier (s'il ne se décompose pas).
Cela résulte du théoréeme I. Enfin le second théoréme
nous apprend que le premier cone aura un plan tangent
commun avec le second. Les dcux cones se touchent
donc le long d’une génératrice : Iereste de 'intersection
est une conique. Si 'on observe que le faisceau de cones
comprend le cone composé du plan tangent commun et
du plan de la conique commune, plan qui, exception-
nellement, peut se confondre avec le plan tangent, si
Pon admet aussi que le second cone peut dégénérer en
deux plans, on aura toutes les variélés que comporte ce
cas.

La discussion de cc cas se ferait suivant les mémes
principes que précédemment. Ainsi, A et A’ étant nuls,
les deux surfaces S ¢t §' seraient des cones véritables,
des cylindres, des systémes de plans ou des plans con-
fondus. Dans chacun de ces cas les coeflicients 6, 0', @
seraient nuls soit parce que les mineurs d’un certain
ordre de A ou de A’ seraient nuls, soit par suite des po-
sitions mutuelles des deux cones. Ce qui a été dit dans
les paragraphes précédents suffit pour guider dans la
discussion actuelle, et nous nous Lornerons & renvoyer
le lecteur pour le résumé des cas qui peuvent se pré-.
senter au Mémoire de Painvin (Nouvelles Annales,
p- 213 et 214; 1869). Il conviendra cependant d’ajou-
ter a I'énumération détaillée de Painvin le cas de deux
quadriques composées I'unc d'un plan P et d’un plan Q,
Vautre du méme plan P et d’un autre plan Q' : Painvin
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ayant cru, avec raison d’ailleurs, devoir signaler a part
les cones de méme sommet, les cylindres paralléles, etc.,
il m’a semblé utile de signaler un cas intéressant ou
toutes les quadriques du faisceau sont des systémes de
plans. Il y en a encore d’autres que les lecteurs des
Nouvelles Annales découvriront, comme je I'ai indi-
qué plus haut, en annulant, non sculement A ou &',
mais encore leurs mineurs.

a. A et A’ sont nuls sans que leurs premiers mineurs
soient nuls. Ce sont de véritables cones (ou cylindres), et
I'on peut appliquer les théorémes de I'article premier :
ils ont chacun leur sommet sur la surface de I’autre, et
un plan tangent au premier céne en son sommet est
aussi tangent a4 l'autre (® = o). Les deux cones sont
donc tangents tout le long d’une génératrice; le reste
de T'intersection est une courbe plane. Il peut aussi ar—
river ici que les deux cones aient méme sommet.

b. A’ est nul sans que ses premiers mineurs le soient;
A est nul ainsi que ses mineurs da premier ordre. La
surface (§') est un véritable cone; (S) est un systéme
de deux plans distincts. Les théorémes de 1'article Ts’ap-
pliquent toujours : le cone (§') a son sommet sur la sur-
face (S) et un des deux plans qui composent la surface
(S) touche le cone (8'). C’est au point de vue du fais-
ceau de cones le méme cas que le précédent.

c. A’ est nul sans que scs premiers mineurs le soient;
A est nul ainsi que ses mineurs du premier et du second
ordre. (S) est un plan double qui passe par le sommet
du premier cone. C’est encore un cas particulier (cones
tangents entre eux le long de deux génératrices).

Il n’y a plus a associer que des couples de plans.



OBSERVATIONS SUR UN MEMOIRE DE M. HENRI POINCARE,
PUBLIE EN 1887, DANS LES « ACTA MATHEMATICA » DE
STOCKHOLM, ET RELATIF AUX RESIDUS DES INTEGRALES
DOUBLES;;

Par M. MaximiLiex MARIE.

Je n’ai eu que par hasard connaissance de ce Mé-
moire, ou cependant je suis pris a partie. Il m’a été
communiqué, le 1°* février 1890, par un professeur de
Mathématiques spéciales, a l'occasion de mes confé-
rences.

Jai lu ce Mémoire avec d’autant plus d’intérét que
J’avais moi-méme traité la question prés de quinze ans
auparavant (Journal de I’Ecole Polytechnigue, 1874,
et Théorie des fonctions de variables imaginaires,
1875 et 1876).

Je me trouve en accord 4 peu prés complet avec
M. Poincaré relativement a une partie de son Mémoire
et en désaccord absolu relativement a I'autre partie.

Les deux Parties dans lesquelles je divise le Mémoire
de M. Poincaré traitent de questions différentes.

Dans la premiére Partie, M. Poincaré se propose de
déterminer les résidus d’une intégrale double de la

forme
P(X,Y) :
Jf axvreeT v

ou P, Q et R désignent des fonctions entiéres, et il
donne, sans démonstration, pour représenter ces ré-
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sidus, les deux intégrales simples

J=omy=1 /_‘K_’L)_ or

9Q
R(z. —
) REng
el
Veony=y [ -PEX)_4,
Qa, 1)
. oy

ou x et y doivent successivement satisfaire aux équa-
tions
Q(z,y)=0 et R(z, y)=o.

Je retrouve ces formules comme applications immé-
diates de larégle que j’avais donnée en 1874 pour former

les résidus de la cubatrice[ 0X dY d’une surface
F(X,Y,Z)= o,

dans le parcours d’une courbe
70X, Y)= o

le long de laquelle Z serait intini. Mais ma démonstra-
tion ne suppose rien rclativement aux fonctions P, Q,
R, qui peuvent &tre irrationnelles, transcendantes, ou
méme définies implicitement. D’un autre c6té, M. Poin-
caré ne dit pas entre quelles limites il faudrait prendre
respectivement les intégrales J et J' pour obtenir les ré-
sidus de I'intégrale double.

M. Poincaré recherche ensuite les périodes des inté-
tégrales J ct J'. Ces périodes se rapportent soit aux con-
tours fermés que présenteraient les lieux Q=o0, R =o0;
soit aux points doubles des courbes Q =0, R =oet
QR = o.

Rien & dire des premiéres.
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Quant aux autres, M. Poincaré les exprime de la ma-
piére suivante :

, P(a b)
i 2 92Q 02Q
R(a, ”)\/ z)adb ~ ar o
et
P(a', b")
i 2R “ ”R R
Qb )\/ t)a ()b T 0d® b

seraient respectivement les périodes de J etde J', relatives
aux points doubles (a, b)de Q =oet (a’,5')de R = o;

et les valeurs de

P(all’ bll/)
0Q oR _ 0Q oR

da” ()[)” 01)” da”

4w

seraient les périodes communes a J et 4 ¥, relatives aux
points de rencontre (a’, 6”) des deux courbes Q =o et
R=o.

M. Poincaré ne donne non plus aucune démonstration
de ces formules; mais je les retrouve immédiatement
par application de la regle que j’avais donnée en 1874
pour le calcul des résidus relatifs aux points doubles.

Sauf quelques points de détail, I’accord entre M. Poin-
caré et moi est donc a peu prés complet jusqu’ici. Je
signalerai cependant ce fait que M. Poincaré a omis les
résidus qui se rapporteraient aux points multiples d’or-
dres supéricurs.

Mais M. Poincaré croit établir, dans la seconde Partie
de son Mémoire, cette proposition entiérement neuve et
qui aurait une portée incalculable : que les périodes de

Uintégrale double / f Q_PT( 90X 0Y seraient exactement

celles des deux intégrales J et J cumulées.
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Il est facile de démontrer, par un exemple, I'inexac-
titude de cette proposition.

Je prends Pintégrale double

V) ux oy,

f JXY)YMX+NY)+ (X, Y)(MX +N
(MX +~NY)(M; X+ N;Y)

ou f(X,Y) et f,(X,Y) sont deux polynémes quel-
conques du second degré; cette intégrale double est la
cubatrice de la surface

JNY) Ji(X,Y)

=X NY T XN Y

et elle est la somme des cubatrices des deux surfaces

. JOLY) AKX
I=pxany ¢ ZTmxom Y’

qui sont deux hyperboloides (sauf les cas particuliers).
Chacune des deux intégrales

FXY) o A Y)
/‘fMX—i—'\YdXdY et [[hI_X+N,YdXdY

a donc une période et ces deux périodes apparticnuent
a leur somme.

Or les intégrales J et J' relatives aux lignes
MX+-NY=0 e MX=+NY=o,
calculées par la formule de M. Poincaré, sont respective-

(s 2x)
J=amy/—1 R

ment

oX

N

M,
) P /f_‘_(" B m)‘)

el
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ct elles n’admettent pas de périodes, puisqu’elles sont
algébriques.
La fin du Mémoire de M. Poincaré passe mon enten-
dement. J'y trouve, page 354 des Acta :
P ok o
Q—ua
e . 0 PO
est égale a I'intégrale simple abélienne J = 2i= 5
on

« Nous avons vu que l'intégrale double [[

(%4

relative a la courbe algébrique Q = 2. »

Je ne comprends pas comment une intégrale double,
dont la valeur numérique dépend d’un contour, pourrait
¢tre égale & une intégrale simple, dont la valeur numé-
rique dépend seulement des valeurs extrémes d’une seule
variable.

Je sais bien, par ce qui précéde dans son Mémoire,
que M. Poincaré croit, & tort du reste, que les deux in-
égrales, dont il s’agit ici, ontles mémes périodes. Mais
quand méme il en serait ainsi!

Deux intégrales, méme de méme espéce, c’est-a-dire
toutes les deux simples ou toutes les deux doubles, se-
raient-elles donc égales par cela sculement quelles au-
raient fes mémes périodes?

Fst-ce queles uadratrices d’'une méme courbe placée
successivement de diflérentes maniéres dans le plan de
deux axes fixes sont égales? Est-ce que les cubatrices
d"une méme surface, placée successivement de difiérentes
maniéres, dans 'espace, par rapport a trois axes fixes,
sont égales? Et cependant la permanence des périodes,
dans les deux cas, a été démontrée par moi, en 1853,
ainsi que le constate le Rapport de MM. Cauchy ct
Sturm, présenté a I'Académie en 1854.

Au reste, un exemple simple sufliva pour montrer que
l’hyl)olhése de M. Poincaré est inexacte.

Ann. de Mathémat., 3¢ série, t. X. (IFévrier 18qr.) 6
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Je prends I'intégrale double

l__/“/'A.r?+Bxy+Cy2+Dm+Ey+F
. Yy —=

ox oy

qui est la cubatrice, transcendante, d’un hyperboloide;
I'intégrale simple correspondante, J, est alors

J=1a2ix f(Ax7+ Baz + Ca2+2D2 +2Ea + F)oz;

elle est algébrique : est-ce que
I1=1J?

Quant aux conséquences ou ces prémisses ménent
M. Poincaré, je ne les discuterai pas, parce que je n’en
saisis pas toujours les énoncés et qu'une telle discus-
sion m’entrainerait dans des détails qui ne sauraient
avoir place ici.

SUR UNE COURBE DEFINIE PAR LA LOI DE SA RECTIFICATION;
Par M. M. OCAGNE,

Ingénicur des Ponts et Chaussées.

1. Quand on observe le petit nombre des courbes
classiques dont I'arc est exprimable au moyen des fone-
tions élémentaires, voire des fonctions elliptiques, ou
méme, en général, le peu de simplicité de cette expres-
sion quand elle est possible, on est tenté de rechercher
quelles sont les courbes qui présentent les lois de recti-
fication les plus simples.

Une idée qui se présente tout naturellement, pour
préciser la question, consiste a faire correspondre &
chague point de la courbe un point d’une droite, sui-
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vant une loi géométrique simple, et & déterminer la
courbe par la condition que I'arc compris entre deux
points de cette courbe soit égal au segment compris
entre les points correspondants de la droite.

C’est cette idée qui a déja donné naissance & nos re-
cherches sur les courbes que nous avons appelées iso-
métriques de droites (*).

La loi de correspondance la plus simple consiste &
placer les points correspondants sur des droites con-
courantes. C’est 4 ce cas que sont consacrés le n° 5de
notre premiére Note (*) et la seconde tout entiére.

2. Nous allous ici examiner un nouveau cas qui
présente I'intérét de pouvoir étre traité géométrique-
ment.

Etablissons entre les points de la courbe cherchée et
les points de la droite que nous nous donnons le mode
de correspondance ainsi défini : La distance entre les
])ozhts corr'espondants est constante.

Soient B un point pris sur la courbe cherchée, A le¢
point correspondant de la droite d donnée ; AB étant de
longueur constante, si la normale en B 4 la courbe ¢
coupe au point N la perpendiculaire élevée en A a la
droite d, N est le centre instantané de rotation de AB
et on a le point P ou AB touche son enveloppe en abais-
sant de N la perpendiculaire NP sur AB. Or, si d(B) et
d(A) sont les diflérentielles des arcs décrits par les

points B et A, on a
d(B) _ NB,
d(A) NA’

(*) Bulletin de la Société mathematique, t. XIII, p. 71, et
L. XVII, p. 191,
(*) A lendroit cité, pour les expressions (7), (8) et (9) dey, on

; . x
doit, dans le second terme de la parenthése, remplacer = par o
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et puisque, par hypothése, ces arcs doivent étre égaux,

on a
NB = NA.

Le triangle NBA étant isoscéle, le point P est le mi-
lieu de AB et PA est constant. Il s’ensuit que 'enve-
loppe de AB ou le lieu de P est une tractrice t ayant la
droite d pour asymptote. La courbe cherchée, qui estle
lieu du point B, s’obtient donc ainsi : Prendre, sur
chaque tangente & une tractrice, le symétrique, par
rapport au point de contact, du point oi cette tan-
gente coupe U'asymptote de la courbe.

La courbe ainsi obtenue appartient a la catégorie de
celles que M. Sylvester appelle syntractrices (V).

Le probléme se trouve ainsi résolu. Remarquons en
passant que notre courbe est celle qu’on doit faire décrire
al’extrémité d’une bielle, dont Vautre extrémité est arti-
culée & une tige animée d'un mouvement rectiligne,
pour qu’a chaque instant les deux extrémités de la bielle
aient méme vitesse, en grandeur.

3. Cette courbe peuat encore se déduire de la trac-
trice, en ne faisantintervenir que les points de celle-ci
ct non ses langentes.

A cet efler, O étant un point fixe quelconque de la
droite d, prenons le symétrique Q de O par rapportaP,
puis le symdétrique C de € par rapport a B. Puisque
0Q = 20P, lc licu du point  est homothétique a celui
du point P par rapport au point O; c’est donc une trac-
trice . Dailleurs, le point P étant a la fois le milieu de
AB et le milicu de OQ, QB cst paralléle ct égal 4 OA,
ct il en est de meéme de BC. Par suaite, OC = AB et le

(') *SaLvox, Courbes planes, traduction Chemin, p. 405.
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lieu du point C est un cercle y de centre O et de rayon
égal a AB.

Ainsi, la courbe cherchée c est le lieu du milieud’un
segment de droite paralléle o Uasymptote d’une trac-
trice 8, et dont les extrémités s’appuient d’une part
sur cette tractrice, de ’autre sur un cercle y ayant
son centre sur l'asymptote et un rayon égal a la tan-
gente constante de la tractrice.

On doit associer les points du cercle v et de la trac-
trice § de facon qu’aux extrémités du segment de droite
QC les convexilés des deux courbes soient de méme
sens. .

On peut dire plus simplement que la courbe cher-
chée est la courbe moyenne (') de la tractrice § et du
cercle ~ relativement a la direction de I’asymptote de
la tractrice.

b. Ce mode de génération résultec immédiatement
d’un théoréme général obtenu dans mnotre premiére
Note sur les isométriques de droite (2).

En efict, si du point A comme centre on décrit avec
AB pour rayon un cercle qui coupe la droite d en By,
Varc BB de la courbe étant, par hypothése, égal au
segment de droite AA’, U'est aussi au segment B, B,. Par
suite, la courbe cherchée est isométirique de la droite d
par rapport au systéme formé par les cercles de rayon
AB, c’est-a-dire par les positions successives du cercle
ci-dessus désigné par v lorsque son centre décrit la
droite d.

Donc, en vertu du théoréme général auquel nous ve-
nons de faire allusion, on aura la courbe cherchée en

(") Bulletin de la Socicte matheématique, t. XIIL, p. 74.
(*) Ibid., p. 53 et 54.



(86)
prenant la courbe moyenne du cercle y et d’une quel-
conque des trajectoires orthogonales du systéme qui
vient d'étre défini, c’est-a-dire de la tractrice 8.
On retrouve ainsi le résultat énoncé au numéro
précédent.

5. Voici encore quelques propriétés géométriques de
la courbe qui nous occupe.

La détermination de son centre de courbure résulte
d’un théoréme que nous avons fait connaitre derniére-
ment (') et que nous rappelons ici :

"Si en chaque point P d’une courbe quelconque on
porte sur la tangente, de part et d’autre du point P,
des longueurs égales et constantes PA et PB, les cen-
tres de courbure des lieux décrits par les points A et B
sont en ligne droite avec le point P.

L’application de ce théoréme au cas qui nous occupe
montre que le centre de courbure Q répondant au
point B est le milieu de la distance du point B au
centre de courbure correspondant N de la tractrice 9.

6. Occupons-nous maintenant de laire de la courbe.
Prenons, a cet effet, pour centre O du cercle y le point
ou la tangente au point de rebroussement R de la trac-
trice O rencontre 'asymptote d de cette courbe.

Puisque le milieu du segment QC paralléle a d se
trouve sur la courbe ¢, le double de I’aire comprise
entre la courbe ¢, la droite OR et la droite QC est égal
a lexcés du demi-segment de cercle RKC sur Daire
comprise entre les mémes droites et la tractrice 6. On a

»
(') Association francaise pour U'avancement des Sciences, 188g.
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donc

2 aire RKB = aire RKC — aire RKQ
= aire RKC — (aireRO ¢ Q — aire KO ¢ Q).

Mais nous avons fait voir (') que

aireRO ¢ Q = aire RKC.
Il vient donc

2 aire RKC = aire KO ¢ Q.

Or, si M est le milieu de KC, on a

c e )
BM = KC¢ _ kg K6 _ KC—KQ _KQ
2 2 2 2

Par suite,

2aireMmbB = aireKO ¢ Q,
ct
aire RKB = airc M mbB.

Lorsque le point K est au-dessous du point D de la
courbe ¢, le rectangle Mmb B représente la diflérence
comprise entre la demi-boucle RD ct le triangle mixti-
ligne formé par les droites OR ¢t QC et la courbe c.
Cette différence tend vers zéro lorsque QC tend vers
I'asymptote. En d’autres termes, ’aire comprise dans
la boucle de la courbe c est égale a l'aire comprise
entre cette courbe et son asymptote.

7. Soient AB et A’B’ deux positions infiniment voi-
sines de AB, se rencontrant en P. Elles coupent la
courbe ¢ respectivement en M et en M'. Appelons s aire
comprise entre AB et la concavité de la courbe ¢, o,
laire comprise entre AB, la convexité de la courbe ¢

(') Nouvelles Annales de AMathématiques, 1884, p. 554, et bro-
chure Coordonndées paralléles et aziales. p. 4.
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et 'asymptote de cette courbe. Nous avons

ds = aire MPM' — aire PBB’,
dsy=--aire AMM' A",
Done

ds — d3zy = aire MPM'— aire PBB' 4+ aivc AM M’ A’
— aire PAA" — aire PBB’.

Mais les triangles PAA’ et PBB' sont équivalents,
aux infiniment petits d’ordre supérieur prés. Par suite,

ds — dz = o,

ct la diflérence 7, esL constante. Or nous venons
de démontrer que cette différence est nulle lorsque AB
coincide avec OR. Done

e SRR 0N

c'est-i-dive que Uaire comprise entre une position quel-
congue de la droite AB et la concavité de la courbe ¢
est égale & Uaire comprise entre la droite AB, la con-
pexité de la courbe ¢ et Iasympiote de cette courbe.

8. Revenant au probléme général délini au n° 1 de
cette Note, nous ferons remarquer que la solution de
ce probléme se raméne toujours a une quadrature
lorsque la position du point A de la droite d, correspon-
dant au point B de la courbe, ne dépend que de la pro-
jection du point B sur la droite d.

En cliet, en prenant la droite d pour axe des z, on
voit que I'équation difiérentielle du probléme s’écrit
alors

Adrta dy? = (r)dr]?:
ct Pon a

’ yo— / \/';'_; Y m 1 dor.
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9. Le probléme se raméne encore 4 unc quadrature
lorsque la distance du point A au pied & de la per
pendiculaire abaissée de B sur la droite d ne dépend
que de la distance B4 du point B a cette droite. Mais,
dans ce cas, la solution peut revétir une forme géomé-
trique remarquable.

Posons, en tenant compte du signe, b A = u, et sup-
posons que cette longueur soit liée a 'ordonnée 5B = y
par la relation

o(u,y)=o.

Prenons le point A comnme origine des coordonnées,
I’axe des X étant confondu avec la droite d parcourue
dans le sens positif, I'axe des Y étant perpendiculaire
au premier, et considérons la courbe dont I’équation

est
o(—X,Y)=o.

Cette courbe s coupera la courbe cherchée ¢ au point
B et la droite d en un certain point M.

Lorsqu’on passera d’un point a4 un autre point B de
la courbe ¢, la courbe s glissera parallélement a d, sans
changer de forme, en engendrant un systéme (s), et
la distance MA restera constante. Mais les segments
parcourus par A sont, par hypothése, égaux aux arcs
correspondants décrits par Bj il en est de méme des seg-
ments parcourus par M, et la courbe cherchée est iso-
métrique de la droite d par rapport au systéme ().

Donc, en vertu du théoréme général rappelé plus
haut, la courbe cherchée est moyenne par rapport a la
direction de la droite d de la courbe s prise dans une
quelconque de ses positions, et d'une quelconque des
trajectoires orthogonales du systéme (+), lesquelles sont
clles-mémes les positions successives d’une méme courbe
t glissant parallélement a d.
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On a ainsi la généralisation de la solution donnée
au n° 4.

On peut, pour simplifier le langage, dire que les
courbes s et ¢ sont conjuguées orthogonales par rap-
port a la direction de la droite d.

I.e résultat précédent s’énoncera dés lors ainsi :

Si, en appelant b la projection de B sur la droite d,
et posant bB =y, bA = u, on définit le mode de cor-
respondance entre les points A et B par la relation
o(u, y)= o, on obticnt la courbe cherchée en prenant
la courbe moyenne, par rapport a la direction de la
droited de la courbe o (— x, y) = o etde sa conjuguée
orthogonale suivant cette direction.

Si la relation ¢ a la forme u?+- y* = R2, on retombe
sur le cas auquel a été consacrée la présente Note.
. A .
Si elle a la forme y = % u, A étant une constante,

la courbe cherchée est

_(_l)h A h+___l—.ﬁ
Y= e A —2)zh2 |’

On reconnait la I'équation de la courbe de poursuite
lorsque le point poursuivi décrit I'axe des x et que le
rapport de sa vitesse a celle du point poursuivant est
égal a bk —1. Lorsque & = 2, on retrouve le cas traité au
n® 3 de notre premiére Note, pour lequel le second

logz

srme de | . : : toal 3 —
terme de la parenthése devient égal a 5
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ETUDE GEOMETRIQUE DES PROPRIETES DES CONIQUES
D’APRES LEUR DEFINITION (*):

Par M. L. MALEYX,

IV. Construire les points communs de deux coniques
situées dans un méme plan, ayant un diametre commun
conNu, divisant en parties égales des cordes de direc-
tion donnée.

Supposons d’abord deux coniques a centre ayant le
diamétre commun EF; divisant dans I'une et 'autre en

Fig. 64.

parties égales les cordes paralléles a AB, la position du
diamétre étant connue, ainsi que la direction de la corde
(fig. 64).

Nous pouvons supposer, en outre, la premiére co-
nique définie par trois points M, N, P, qui, d’aprés la
propriété du diamétre, en font connaitre trois autres,

(*) Voir t. X (18g1), p. 37.
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et la deuxiéme par trois autres points M,, Ny, P,.
D’aprés le théoréme établi au n° VI, Chapitre II, nous
pouvons construire un cercle O passant par les points
réels ou imaginaires E, F, ou la premiére conique ren-
contre le diameétre commun, ct de méme un cercle O,
passant par les points G, H, ot la seconde rencontre le
méme diamdtre.

SiA, B, C, D sont ces points inconnus, la question
se raméne 4 déterminer les cordes communes AB, CD),
ou, ce qui revient au méme, les points R et S ou elles
rencontrent EF.

Menons par les points M ct M, les paralléles & AB,
MK, M, K,, coupant EFF en K ct K, ; désignons par P
et p les puissances des points R ¢t K par rapport au
cercle O, et par Py et p, les puissances des points R et
K, par rapport au cercle O,; nous aurons, d’aprés le
théoréme de Newton,

ART MK AR WK, |
w’l’"" - 1) I,l ’ “4’]]71~ 7

d’ou, divisant membre a membre,

P MK p

NS

2
1

Le rapport des puissances du point R, par rapport
aux cercles O et Oy, est donc connuj il en résulte que
le point R et le point S, pour lequel il en est de méme,
se trouvent sur un cercle ayant méme axe radical avec
les cercles O et Oy ; ce cercle peut étre construit, comme
on I'a fait au n°® VI, Chapitre II, ¢t la question est ré-
solue.

Considérons actuellement le cas ot 'une des coniques
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est une parabole; supposons toujours connu le diamétre
commun EZ de position et la direction des cordes, telles
que AB, qu’il divise en parties égales ( fig. 63). Suppo-
sons la parabole définie par deux points qui en déter-
minent deux autres, d’aprés la propriété du diamétre; il
est facile de construire le point E ou la courbe coupe le
diametre, car il est le centre de I'involution déterminée
sur EZ par ses points de rencontre avec les couples de
cotés opposés du quadrilatére inscrit, dont les sommets

Fig. 65.

s¢ déduisent des données, son conjugué étant a I'infini.
Les points G, H, ou la seconde conique rencontre EZ,
sont a 'intersection de cette droite et d’un cercle Oy,
(u’on peut construire, si I'on connait trois points de la
courbe, comme dans le cas précédent.

Menons, par le point M de la parabole et par le point
M, de la seconde conique, MK ct MK, parall¢les a la
direction de AB ct coupant EZ en K et K, et proposons-
nous de trouver les points R, S ou les cordes communes
paralléles coupent EZ.

D’apres la modification du théoréme de Newton éta-
blic au n° I du présent Chapitre, quand la courbe est
une parabole et quand 'une des séeantes est paralléle
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au diamétre, nous aurons

ct, d’aprés le théoréme de Newton lui-méme,

—— —— 3

AR® MK, MK,
ROEx<RG K H<K G~ p;
si py est la puissance du point K, par rapport au
cercle O,.
Divisant menibre & membre,

M < R MK
RIT < RG O]

Lh EK —©

ifli—
.\l] l\l

a étant unc longueur qu’on peut construire.

D’aprés cela, le point R et le point S, sur lequel on
peut répéter le méme calcul, appartiennent au licu des
points dont la puissance par rapport au cercle O, et la
distance & unc droite quelconque passant par E ( perpen-
diculaire & EZ, si 'on veut), comptée parallélement a
EZ, sont dans le rapport a; ce lieu, qu'on a déterminé
d’aprés le théoréme II, Chapitre II, n° I, est un cercle,
qui peut ¢&tre construit et dont l'intersection avec EZ
donne la solution de la question.

Enfin les deux coniques peuvent étre deux paraboles
ayant un diamétre commun.

Supposons que ce diamétre soit EZ, divisant en parties
égales les cordes paralléles a AB (fig. 66); admettons du
reste que nous connaissions des éléments en nombre
suffisant pour déterminer ces deux courbes; nous pou-
vonssupposer connus les points E, E,, ou clles rencon-
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wrent EZ, et les ordonnées paralléles 4 AB d’un point

de chacune d’elles, soient MK, M, K,. D’aprés ce que

Fig. 66.

nous avons vu au n° I du présent Chapitre, nous aurons
les égalités

ARY MK AR MK,

Ek — ke LR OEK

Divisant membre 4 membre,

ER MK _ K
ER m; Ek

Le second membre cst connu, on en déduitla position
du point R, connaissant le rapport de ses distances aux
points E ¢t E;; la seconde sécante commune passe a I'in-
{ini, la question est complétement résolue.

RemarQuE 1vmporTANTE. — Cette question peut étre
utilisée pour déterminer exactement les points doubles
virtuels de la projection sur un plan de I'intersection de
deux quadriques.

V. Tutorime pe Carnor. — Si 'on considére unc
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conique et un triangle situés dans un méme plan, la
conique rencontrant en deux points chaque coté du
triangle, le produit des six segments déterminés sur
chaque coté entre un sommet du triangle et ses points
de rencontre avec la conique, ces segments étant comp-
tés dans le sens du mouvement d’un point qui parcourt
le périmétre du triangle sans rétrograder, est égal au
produit des six segments comptés de la méme maniére
¢n sens contraire.

Considérons la conique de la fig. 67 coupée par les
colés du triangle ABC aux couples des points D et D,

Iig. (’)7‘

R R
0

[

) \\ \\ F

Set By, 17 et Fyg par an point O du plan, menons les
transversales PPy, QQ,, RR, respectivement paralléles
aux cotés AB, AC, BC du wriangle.

D’aprés le théoréme de Newion, on a les égalités

TADXAD, 0P x 0P,
AF < AF; — 0Q x< 0Q,’

BE < BE; _ OR x OR,
BD < BD, ~ OP x OP,’

CF x CF1 _ ()Q > OQl,
’ CE =< CE; ~ OR x OR}’
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multipliant membre 4 membre,

AD x AD, x BE x BE, x CF x CF, _
AF < AF; < CE < CE, <BD < BD, _ "

ce qui démontre le théoréme énoncé.

Entre autres usages de ce théoréme, on peuts’enservir,
quand on connait cinq points d’une conique, pour dé-
terminer le second point de rencontre, avec cette courbe
d’une droite quelconque passant par 'un des cinq points
donnés. ‘

Propriétés des coniques dont les points communs
appartiennent & un cercle.

VI. Soient O (fig. 68) une conique; A, B, C, D

quatre points communs & cette conique et & un cercle;

Fig. 68.

Bi Az A

construisons un des couples de sécantes rectilignes,
passant par ces quatre points, soit AC, BD se coupant
en w.

Si par un point quelconque, A, du plan nous menons
les paralléles A,C,, BoD, aux droites AC et BD res-
pectivement, les points communs A,, By, C;, D, de ces
sécantes avec la conique appartiennent 4 un méme
cercle.

Ann.de Mathemat., 3¢série, t. X. (Février 18g1.) 7
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Fn effer, d’aprés le théoréme de Newton, on a I'éga-
lité
)\A“!X)\C? _ U)AX(JJC'
AByxAiDy,  wBxwD’

mais, d'aprés une propriété connue des sécantes au
cercle, le second membre est égal a 1: donc il en est de
méme du premier; dés lors, d’aprés la réciproque de cette
propriété, qui est vraic et aussi connue, la proposition
énoncée est évidente.
. En sccond lien, les deux sécantes considérées AC,
BD sont également inclinées sar 'un des axes de la
courbe, soit PQ.

Pour le démontrer tracons la sécante A, C, paralléle
a AC, ct faisons passer par A, et C, un cercle dont le
centre, 0, soit situé sur 'axe PQ. Ce cercle passera par
les points Dy, B respectivement, symétriques de A, et
C,, par rapport a PQ; la droite B, D, sera symétrique de
A, C, par rapport a PQ; ces deux droites se couperont
sur PQ ct seront également inclinées sur cette droite. Il
suflit donc de montrer que By D, est paralléle 3 BD : or
cela est évident; car, sinous menions par By une paral-
léle 4 BD, le second point de rencontre de cette droite et
de la conique appartiendrait au cercle 8, d’apreés la pro-
position précédente, ct, si ce second point était distinct
de D,, c’est-a-dire si B, D, n’était pas paralléle a BD, le
cercle 8 aurait avee la conique cing points communs et se
confondrait avec clle, ce qui est contraire 4 Phypothése.

1l résulte de ces deux théorémes :

1° Que, si les points communs de deux conigues sont
situés sur un cercle, les axes de ces coniques sont paral-
leles aux bissectrices des angles d’un de leurs systémes
de sécantes rectilignes communs, et, en conséquence,
‘paralléles entre eur;

2° 'Que, si un des systémes de sécantes rectilignes
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communs de deux coniques est composé de deux droites
également inclinées sur l'un des azxes de une d’elles,
les points communs des deux coniques appartiennent &
un méme cercle; car les points communs de deux paral-
léles & ces droites menées par un point de I’axe avec la
conique correspondante sont symétriques deux a deux
par rapport a cet axe et, en conséquence, sur un méme
cercle;

3° Que, si deux coniques ont leurs axes paralléles,
leurs points comnuns sont situes sur un cercle, et qu’en
conséquence leurs couples de sécantes communes sont
composés de droites également inclinées sur les axes.

Soient, en effet, deux coniques dont on suppose les
axes paralléles, et se coupant aux points A, B, C, D
(/ig- 69)-

Faisons passer un cercle par les points A, B, C, et
menons par le point B, BR paralléle & AC; soit encore
PQ l'un des axes et I'une des coniques, ou une paralléle

Fig. 6.
LN
I,
77 NL

acet axe. Sile cercle passant par A, B, C passe égale-
ment par D, le théoréme résulte des propositions pré-
cédentes; mais il ne peut en étre autrement, car s'il
rencontrait les deux coniques en des points différents,
soient D/ ¢t D’ les trois droites BR, BD’, BD”,issues du
méme point, seraient également inclinées sur une méme
droite PQ, ce qui est contradictoire avec un théoréme
connu: la proposition est donc établie.
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VII. Construction du cercle osculateur en un point
d’une conique. — Si trois des points communs d’un
cercle variable et d’'une conique fixe viennent se réunir
en un seul, la limite du cercle variable porte le nom de
cercle osculateur de la conique en ce point C ( fig. 70).

Dans ce cas, les trois systémes de sécantes rectilignes
qui passent par les quatre points communs de la co-
nique et du cercle se réduisent a un seul composé de la
tangente i la conique au point d’osculation, C, et de la
droite CM qui unit ce point au quatriéme point com-
mun qui en reste séparé. Dés lors, en construisant la
tangente CT au point C de la conique, et la droite CM,
de telle sorte que les droites CM et CT soient également
inclinées sur 'un des axes de la courbe, soit PQ, puis

Fig. 7o.

P

M

déterminant le point M, ou CM rencontre la conique,
le cercle osculateur sera défini par les conditions d’étre
tangent a CT en C et de passer par le point M.

VIIL. Propriétés de certaines sécantes communes au
cercle et a U'hyperbole équilatére. — On donne le nom
d’hy perbole équilatére a celle dont les asymptotes sont
rectangulaires; il en résulte que les axes de cette courbe
sont égaux, et qu'il en est de méme de deux diamétres
conjugués quelconques d’apres le second des théorémes
d’ArorLonius. Dés lors le parallélogramme construit sur
deux diamétres conjugués est un losange, et les asym-



(101)

ptotes qui en sont les diagonales, n° XVII, Ch. I, 'sont.
bissectrices des angles de deux diamétres conjugués.

On donne le nom de cordes supplémentaires d'une
conique a deux cordes unissant un point de la courbe
aux extrémités d'un méme diamétre. Il en résulte que
deux cordes supplémentaires d’une conique sont tou-
jours paralléles a4 deux diamétres conjugués, ceux qui
unigsent le centre au milieu de chacune de ces cordes,
et de la que deux cordes supplémentaires d’une hyper-
bole équilatére sont également inclinées sur les asym-
ptotes.

De ces définitions ou propositions, et de celles sur les
sécantes a une conique et a un cercle on peut déduire la
proposition suivante :

Tatorime. — St Lune des sécantes communes & un
cercle et a une hyperbole” équilatére passe par le
centre de Uhyperbole, la sécante associée passe par le
centre du cercle.

Soient A, B, C, D quatre points communs a 'hyper-
bole équilatére dont les asymptotes sont PQ et RS, et a
un cercle (fig. 71); de plus, supposons que la sécante
AD passe par le centre O de I'hyperbole.

Menons AX, AY respectivement paralléles aux asym-
ptotes PQ, RS; la bissectrice AZ de I'angle XAY est
paralléle & un des axes de la courbe et fait avec AY un
demi-angle droit. Prolongeons CA suivant AL, BA sui-
vant AM, et menons AN paralléle a CD; AN étant pa-
ralléle a la corde CD supplémengaire de CA, AN et AL
font des angles égaux avec AY, d’ou NAY = YAL; AB
¢t CD étant deux cordes communes de ’hyperbole et
du cercle sont également inclinées sur les axes ; il en ré-
sulte que AM, prolongement de BA, et AN, paralléle a
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CD, font des angles égaux avec AZ, et ZAN = ZAM.
Ajoutant membre 4 membre

ZAN + NAY = ZAM + YAL,

et le premier membre étant égal 4 un demi-droit, la
somme des deux membres est égale a un angle droit;

Fig. 71.

donc MAL = CAB =11 droit, et le cercle circonscrit au
quadrilatére ABCD a son centre sur BC, ce qu'on vou-
lait démontrer.

(A suwre.)

ERRATA AUX TABLES DE LOGARITHMES DE SCHRON.

Log. de 17139, au licu de 9855, lisez 9835.
Log. de 18492, au licu de 9839, lises g9839.

*
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BIBLIOGRAPHIE.

RecueiL p’exercices stk LE CALCUL INFINITESIMAL,
par F. Frenet, Professeur honoraire a la Faculté des
Sciences de Lyon. 5¢ édition, 1 vol. in-8, x1v-536 pages.
Paris, Gauthier-Villars et fils; 18g71.

La succession réguliére des éditions d’un Livre de cette na-
ture suffit a I'éloge de son auteur. Ce Recueil, auxiliaire de
I'enseignewnent, n’a pu, en effet, conserver la place conquise
dés I'abord que grace aux continuels et laborieux perfection-
nements apportés a I'ccuvre par son auteur pour la tenir au
niveau des exigences de plus en plus grandes des programmes
et des examens.

C’est ainsi que ses dimensions ont presque triplé depuis son
apparition, qui remonte a 1856.

La précédente édition, notamment, avait réalisé un progrés
marqué sur les précédentes par l'addition de questions nom-
breuses relatives, surtout, a I'intégration des équations aux dé-
rivées partielles du premier ordre. Mais, en méme temps, une
lacune commencait a s’y manifester, résultant de la place nou-
velle et de plus en plus large faite chaque jour a I'étude géné-
rale des fonctions, et spécialement des fonctions elliptiques,
dans 'enseignement de I’Analyse infinitésimale.

Cette lacune est aujourd’hui comblée, grace a un Appendice
étendu, composé par M. Laurent, examinateur d’admission a
VEcole Polytechnique.

Cet Appendice présente un heureux choix de nombreux
exercices sur la théorie des fonctions d’une variable imagi-
naire, sur le calcul des résidus, sur les fonctions 8, H et sur
les fonctions elliptiques. I comprend en outre des problémes
sur les équations aux dértvées partielles et sur les équations
aux différentielles totales. Enfin les solutions de ces diverses
questions sont précédées de plusieurs Tableaux présentant la
réunion de toutes les formules importantes qu'on rencontre
dans Pétude des fonctions elliptiques.
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Ainsi enrichi encore par ces additions nouvelles, le Recueil
de M. Frenet conservera la place incontestée qu’il occupe au
premier rang parmi les Ouvrages classiques pour I'étude des
hautes Mathématiques. J. C.

CONCOURS GENERAL DE 1890.

MATHEMATIQUES SPECIALES.

Mathématiques.

On donne une surface du second ordre S, un point fixe A
sur cette surface et une conique C située dans un plan P.

Les trois droites qui joignent le point A aux sommets Aj,
A, A; d’un triangle T situé dans le plan P rencontrent res-
pectivement la surface S en des points a4, @s, @; autres que A.

1° Démontrer que le plan a,a,a; passe par un point fixe M
quand le triangle T se déplace dans le plan P en restant con-
jugué par rapport a la conique C.

2° Trouver le lieu décrit par le point M, quand la conique
C varie en restant circonscrite a un quadrilatére donné.

3° Trouver le lieu décrit par le méme point M, quand la
conique G varie en restant inscrite dans un quadrilatére donné.

Physique.

I. Densité des gaz. Expliquer comment I'étude compléte de
la densité d’un gaz peut dispenser de 'étude de sa dilatation.

II. Avant les mesures précises, on pouvait hésiter, pour re-
présenter la loi de la réfraction, entre la formule sini = n sinr
et des formules analogues, telles que {=nr, tang{= n tangr.
Reprendre complétement la théorie du prisme en substituant
ces derniéres formules a la formule exacte.

Reconnaitre, en particulier, si la propriété du minimum de
déviatlon subsiste toujours, et déterminer le foyer du prisme.
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Chimdie.

I. Acide sulfureux. Préparation. Propriétés. Décrire les réac-
tions o cet acide intervient, soit directement, soit par ses
sels, dans la préparation des différents composés oxygénés du
soufre (abstraction faite de tous détails de préparation indus-
trielle).

II. On chauffe avec un excés d’acide sulfurique concentré
&, 320 d’oxalate neutre de potasse.

Le produit gazeux de la réaction est dirigé dans une enceinte
en verre, close, communiquant, d’'une part avec un manométre
a mercure, d’autre part avec un matras en porcelaine vernie a
Iintérieur, contenant 208" de chaux vive et 208 de carbonate
de chaux.

L’espace total offert aux gaz est de 1'*,300.

On demande quelle sera la force élastique finale et la com-
position du gaz, I’enceinte étant maintenue & o° et le matras
en porcelaine étant chauffé a 86o°.

On ne tiendra pas compte de la dilatation du gaz contenu
dans le matras chauffé a 860°, le volume de ce gaz étant assez
petit par rapport a la capacité de I'enceinte pour que cette
correction soit négligeable.

La formule de I'oxalate neutre de potasse est C*O¢, 2 KO.

La tension de dissociation du carbonate de chaux a 8go° est
85mm,

L’équivalent du potassium est 39.

III. L’action de I’eau sur un équivalent de trichlorure de
phosphore dégage 63%!,6; celle de la potasse étendue sur un
équivalent de trichlorure de phosphore dégage 132%,4; celle
de la potasse étendue sur un équivalent d’acide chlorhydrique
étendu dégage 13%,7.

On demande la chaleur de formation a I'état dissous du
phosphite bipotassique.

PHILOSOPHIE.

Mathématiques.

I. On donne quatre points A, B, C, D situés sur la circonfé-
vence d’'un cercle O. On prend, dans le plan du cercle O, un
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point P, et on méne le cercle circonscrit au triangle PAB, et
le cercle circonscrit au triangle PCD; ces deux cercles se cou-
pent au point P et en un autre point Q.

1° Trouver le lieu décrit par le peint Q quand le point P
décrit une droite donnée dauns le plan du cercle O.

2° Trouver le lieu décrit par le point Q quand le point P
décrit la circonférence d’un cercle donné dans le plan du
cercle O.

3° Trouver la ligne sur laquelle devrait rester le point P
pour que les cercles circonscrits aux triangles PAB, PCD
fussent toujours tangents, quelle que soit la position du point
P sur cette ligne.

II. On donne deux cercles tangents intérieurement; le
point de contact est O; le diamétre OA du plus grand cercle
est égal 4 a, le diamétre OB de l'autre cercle est égal a &. A
un point P de la circonférence du premier cercle on fait cor-
respondre un point Q de la circonférence du second cercle tel
que I'angle POQ soit droit. Déterminer le point P de facon
que la distance du point O a la droite PQ soit la plus grande
possible.

MATHEMATIQUES ELEMENTAIRES.

Mathématiques et Mécanique.

I. A tout point M d’une parabole on fait correspondre un
point m déterminé comme il suit :

Soit N le point de rencontre de la normale en M a la para-
bole avec I'axe de cette parabole; soit P le point de rencontre
de la perpendiculaire a la normale MN menée par le point N
et de la paralléle a 'axe de la parabole menée par le point M.
Le point m est le point de rencontre de la normale MN avec
la perpendiculaire a 'axe dela parabole menée par le point P.

Cela posé, trouver, dans chacun des quatre cas suivants, le
lieu du point m que l'on fait ainsi correspondre a un point M
d’une parabole.

1 Le point M est fixe, et 'on considére toutes les paraboles
qui passent par ce point M et qui ont pour foyer un point
donné F.

2° Le point M est fixe, et I'on considére toutes les paraboles
qui passent par ce point M et qui ont pour directrice une
droité donnée DD".
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3° Le point M est mobile sur une droite donnée TT’ et, pour
chaque position du point M, on considére la parabole qui est
tangente a la droite TT' en ce point et qui a pour foyer un
point donné F.

4° Le point M est mobile sur une droite donnée TT', et,
pour chaque position du point M, on considére la parabole
qui est tangente, en ce point, a la droite TT, et qui a pour
directrice une droite donnée DD’ située dans un plan qui con-
tient la droite TT'.

II. On donne un losange OACB; par le sommet C on méne
une droite quelconque qui rencontre la droite OA en un point
D et la droite OB en un point E. On méne les droites AE, BD,
et I'on désigne par la lettre M leur point de rencontre.

1° Montrer que, quand la droite DCE tourne autour du
point C, le point M décrit une courbe fermée, circonscrite au
triangle OAB, et construire la tangente au point A et la tan-
gente au point B a cette courbe.

2° Soit 0 P'angle donné AOB; soit X I'angle variable formé
par la droite mobile CD, prise dans le sens CD, avec la droite
fixe BC, prolongée au deld du point C dans le sens BC. On
suppose d’abord I'angle X compris entre o° et 180°— 6, et,
dans ce cas, on désigne par « I'angle BAM et par B l'angle
ABM: former, dans ces conditions, 'équation qui lie les angles
variables «, X et I'angle 8, et 'équation qui lie les angles B, A
et 0. Indiquer, dans le cas o X est compris entre 180°— 6 et
180°, quelle signification il faut donner aux lettres a et B pour
que les équations trouvées dans le cas de A compris entre o° et
180° — 6 soient encore applicables.

Former I'équation qui lie a, B, et 'angle donnée 6, quel que
soit A.

Calculer, en fonction de 9, les valeurs de « et de 3 qui satis-
font au systéme d’équations composé de I'équation entre a, B
et 0, trouvée ci-dessus et de 'équation « + § = 6. — Cas d'in-
détermination. Interprétation géométrique.

SECONDE.
Algébre et Géométrie.
I. Résoudre I'équation

4x? 27a? _ ba

) - 4 = .
) 2 —_far .
272+ 8axr 20 +j7ar—ja 20— a
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{I. Un losange ABCD, dont les diagonales AC et BD ont
pour longueur respective 2a et a, est la base d’un prisme
droit illimité : sur les arétes latérales de ce prisme on porte,
dans le méme sens, les longueurs

AA'=3a, BB =4a, CC=a.

1° Calculer le volume du solide compris entre le plan des
points A’, B’, C' et la base du prisme.
2° Evaluer la surface totale du méme solide.

TROISIEME.
Arithmétique, Algébre et Géométrie.

I. Quelle est la plus petite valeur de la différence entre deux
nombres entiers qui sont 'un multiple de 105, 'autre multiple
de 504?

Quels sont les deux nombres dont la différence répond a
I’énoncé, et qui ont 1270 080000 pour somme de leurs carrés?

II. On considére le quadrilatére inscriptible convexe ABCM :
les sommets ABC sont fixes, mais le sommet M est mobile.

1° Trouver le lieu géométrique du point de rencontre P des
droites qui joignent les milieux des cdtés opposés.

2° Déterminer les positions limites du point P, et calculer
la longueur du chemin parcouru par ce point pour passer de
P'une de ces positions a I'autre. On désignera par a, b, c les
longueurs des cdtés du triangle ABC et par «, 8, ¥ ses angles;
toutes ces quantités sont connues.
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DEMONSTRATION DU THEOREME FONDAMENTAL
DE LA THEORIE DES EQUATIONS;
Par M. E. CARVALLO,

Examinateur d’admission a I'Ecole Polytechnique.

Tutorime. — Zoute équaticn entiére f(z)=o a
une racine.

M. Amigues a donné récemment une démonstration
habile de ce théoréme (*). Dans le fond, la méthode est
celle de Cauchy; I'intérét de la nouvelle démonstration
est d’¢tre purement algébrique et de ne pas introduire
la Trigonométrie. Dans une voie opposée, il importe de
rechercher la forme la plus simple pour les éléves. Je
propose la suivante.

La fonction [mod f(z)]* est toujours positive; clle est
linie et continue pour les valeurs finies de z ct croit
indéfiniment avec z : donc elle a au moins un mini-
mum. Je dis que, pour ce minimum, on a f(z)=o.
Pour cela, il suflit de prouver que ce minimum n’est
pas atteint tant que f(z) n’est pas nul. Clest sur ce
dernier point que porte la simplification que je propose.

Soit z =& + yi une valeur qui n'annule pas f(z),
zy=x — y i 'imaginaire conjuguéede z, f, la fonction
conjuguée de f, c’est-a-dire celle que 'on déduit du po-
lynome f" en remplacant tous les coefficients par leurs
conjugués; f,(z,) scra 'imaginaire conjuguée de f(z).
On aura donc

[mod f(2)]2 = f(3)/1(51) = F(5, 5).

(') Comptes rendus, t. CXIL; 26 janvier 18g1.
Ann. de Mathemat., 3¢ série, t. X. (Mars 18gr.) 8
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Je donne 4 z un accroissement §; z, prend I'accrois-
sement conjugué g. L’accroissement de F scra donné
par la formule de Taylor a deux variables

AF =F(zs+, 51+ {)—F(s,5,)
1/, 0 d \”»
=2;1<*52+¢'(E> F
= L) fila) e D S(R))

Dans cc développement, soit % (z) la premiére déri-
vée de f(z) qui ne s’annule pas; f (5,) sera la premiére
dérivée de f, (z,) qui ne s’annule pas. Dés lors, tous les
termes qui précédent le terme de rang n sont nuls; de
plus, celui-ci se réduit ala somme des deux termes ex-
trémes du crochet, savoir §” f7(z) fi(z)+C} fi(z1) f(2);3
c’est la somme de deux imaginaires conjuguées. Soient
(5, ), (a,a), (b, ) les modules et les arguments de {,
Sf"(z)er fi(z). Le premier terme {7 f7(z) £, (z, ) aura pour
module p?ab et pour argument nw + a—+ B. Dans la
somme de ce terme avec son conjugué, les parties ima-
ginaires se détruisent et les parties réelles se doublent
pour donner 29" ab cos(nw + a2+ ). On a done

‘79” ab

AF =
n!

cos(nw+ 2+ B)+....

Dans cette somme, on peut disposer de w, de facon
que l'on ait cos(nw + o+ 3)=—1; puis on pourra
prendre o asscz petit pour que le premier terme donne
son signe i la somme, c’est-a-dire le signe (—). L’ac-
croissement AF est alors négatif. Donc la valeur consi-
dérée de [mod f(z)]?, différente de zéro, n’est pas un
minimum. Cc. Q. F. D.
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SUR LES EQUATIONS ALGEBRIQUES:

Par M. DaNier-E. MAYER,
Ingénieur des Ponts ct Chaussées.

La présente Note a pour objet :

1° La démonstration d’'un théoréme sur les racines
des équations dans un cas particulier;

2° L’indication d’une méthode pour le calcul appro-
ché des racines d’une équation.

PREMIERE PARTIE.

Tutorime. — Si, dans une équation algébrique, a
coefficients réels ou imaginaires, il existe un terme
d’exposant k, dont le coefficient ait une valeur abso-
lue (ou un module) plus grand que la somme des va-
leurs absolues (ou des modules) des autres coefficients,
l’équation donnée admet m — k racines dont les va-
leurs (ou les modules) sont supérieurs & 1, et k racines
dont les valeurs (ou les modules) sont inférieurs & 1.

Pour le démontrer, écrivons 'équation sous la forme

Lo P

L2 p"'+x,m+'n2z‘~’+...+r,,,_/,..r"l"-',
z T

3 ot ok
¢l considérons d’abord le cas ou py, po, oo oy Ty Tay o b s
sont des quantités toutes réelles, positives, ct dont la
somme est égale & 1.

Imaginons un jeu, auquel prennent part m joueurs,
avec des chances de gagner chaque partie, différentes
pour chacun d’eux ct respectivement égales a

Py P2y ey Phy Ty T2y eees Tk
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Ils conviennent que, a chaque pactie gaguée par un des
k premiers joueurs, la cagnotte lui devra une somme
égale a1, si c’est le premier joueur, 2 si ¢’est le second,
ooy K si Clest le ki, et que, au contraire, & chaque
partie gagnée par un des derniers joueurs, celui-ci de-
vra 4 la cagnotte une somme égale 4 1 si cest le
(k+1)ime o si c'est le (k+ 2)me, ..., m—Fksiclest
le dernier.

Le jeu s’arrétera quand la fortune de la cagnotte
aura atteint ou dépassé + P ou — Q.

11 est clair que, dans ces conditions, le jeu peut finir
de m facons dillérentes.

En effet, si la cagnotte arrive aux valeurs négatives
fixées pour la fin du jeu, cette éventualité peut se réa-
liser de k facons différentes, soit que la fortune de la ca-
gnotte devienne exactement égale & — Q, soit que,
aprés avoir atteint la valeur —(Q — 1), elle soit portée
par un succes du Aéme joueur & —(Q + Ak —1), soit
qu’elle atteigne une des valeurs intermédiaires entre ces
deux extrémes.

Et, de méme, si c’est par les valeurs positives de la
cagnotte que le jeu finit, cela peut se réaliser de m — k&
fagons diflérentes, soit que la valeur finale atteigne P, ou
P4+i1,ou(P+2), ...,ou (P+m—k—r).

Cherchons 'espérance mathématique d’un parieur
qui doit recevoir 1", si I'une de ces m solutions, qu’il a
choisie, se rdalisc.

Sinous désignons par x la fortune de la cagnotte, au
moment considéré, ct par f(x) Pespérance cherchée, on
voit d’abord que f(x) est défini par la relation

f(@)=pif(z —0)+psf(z—2)+...+pif(z — k)
+m fle+1)+mf@+2)+. . +Tpt f(x+m—k).

» . » .
Appelons oy, 2, « .., %n les m racines de I’équation
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algébrique
1 P2 P L.
|=%+;2—+...+;/7+1t,w+7t2z'?+...+ﬂm_kx’” L,

il est aisé de vérifier que I'expression A a7, ou A, est
une conslante arbitraire, satisfait a I'équation aux dif-
férences finies qui donne la valeur de f(x). On a, de
méme, une seconde solution A,23, ... et, en écrivant

S(@)= Aot + Ayal+. ..+ Apal,

on a la solution compléte, puisqu’elle contient autant
de constantes arbitraires A,, A,, ..., A, que nous
avons de données pour déterminer f(x).

Supposons que la combinaison choisie par le parieur
ct dans laquelle il doit recevoir 1 soit celle ou, a la fin
du jeu, la cagnotte atteindra exactement + P. Les con-
stantes Ay, Ay, ..., A, seront déterminées par les rela-
Lions

— P P ' P
T=Aja, 4+ Agas+.. .+ Ay,

0= AP AG APV L A (an )P,

0= AaPrm—h=l L A olPrm—h-t A, (a,, )PEm—it)
0= A a7+ Asay .. .+ Ayt
0o=A, AT(Q+1)+ A, a;(Q-H)—O— oAy a;,‘,‘Q'H),

0= Ay HF=D . Ao QHA—l L A, 0 QR

qui, en supposant connues les racines o, oy, « oy on,
sont des équations du premier degré par rapport aux
constantes 4 déterminer. .

On peut résoudre ces équations, remplacer Ay, A,, ...,
A, par leurs valeurs en fonction de ay, 0, ..., 0y €t
I'on aura I'expression de f(x) en fonction de 2, 25, .. .,

L.
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Or, il est évident, d’aprés les données du probleme,
que, quelle que soit la valeur de x, comprise entre + I’
et — Q, f(z), quireprésente 'espérance mathématique
du paricur, a une valeur réelle, positive et plus petite
que 1. Cela est vrai, quels que soient P et Q.

Si l'on fait Q infini en valeur absolue, le probléme
de probabilité conserve une signification précise. Cela
veut dire que le jeu durera jusqu’a ce que la fortune de
la cagnotte atteigne ou dépasse P, sans limitation des
valeurs négatives par lesquelles elle peut passer. Il y a
encore m — k éventualités possibles pour la fin du jeu,
de P a (P4+m—k—r1) et f(x) représente encore
I’espérance mathématique du parieur qui recevra 1 si
la cagnotte atteint exactement P; f(x) est encore une
quantité réelle, positive et plus petite que 1.

Je dis qu’il faut pour cela que, dans I'expression de
S(x) en fonction des racines a,, aqy ..., &m, le coeffi-
cient de toute racine, dont la valeur (ou le module) est
inférieur a l'unité, devienne nul lorsque Q devient in-
fini.

En ellet, soit qu’on considére un terme AoZ corres-
pondant a uneracine réelle ou le groupe de deux termes
H7(A coswx + Bsinwx) correspondant & deux racines
imaginaires conjuguées, on voit que si o ou H sont infé-
ricurs a 'unité, on pourrait toujours, si ces termes ne dis-
paraissaient pas, donner a x des valeurs négatives assez
grandes pour que la valeur absolue de ces termes devint
supéricure a toute quantité donnée. Et ces termes ne
pourraient se détruire 'un Vautre puisque, pour des
valeurs dili¢rentes de o ou de H, ils seraient d’ordre de
grandeur diflérent. La fonction f(x) ne pourrait donc
conserver une valeur plus petite que 'unité, ni méme
une valeur limitée.

L’expression de f(xr), dans le cas ou Q est infini, ne
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contiendra donc que des termes correspondant a des
racines supérieures ou au moins égales a 'unité.

De méme, si 'on cherche I’espérance mathématique
du parieur qui devrait recevoir 1" dans le cas ou la ca-
gnotte atteindrait — Q avant d’avoir atteint ou dé-
passé P, et si 'on fait P infini, I'espérance mathéma-
tique de ce pari aura une expression qui ne contiendra
que les termes correspondants a des racines dont les
valeurs (ou les modules) sontinférieursou au plus égaux
a Punité.

Or, dans un cas comme dans I’autre, nous apercevons
a priori combien de termes doivent subsister dans I'ex-
pression de f(x).

En effet, s’il s’agit d'un jeu qui doit finir quand la
cagnotle aura atteint ou dépassé P, sans limitation des
valeurs négatives, il faut qu’on ait, dans I'expression
de f(x), m — k constantes a déterminer, dont la valeur
changera suivant que le paricur aura choisi I'une ou
I'autre des m — k éventualités possibles.

Et, §'il s’agit du jeu qui doit finir par la cagnotte né-
gative, il faut que f(x) contienne & constantes a déter-
miner.

On arrive donc a cette conclusion que I'équation algé-
brique donnée contient :

m — k racines supérieures ou au moins é¢gales a Punité,
k racines inférieurcs ou au plus égales a I'unité.

L'unité est elle-méme une des racines de 1'équation.

Done si Yon considere les deux paris distincts, 'un
que la cagnotte arrivera a + P, sans limitation des va-
leurs négatives, I'autre que la cagnotte arrivera a — Q,
sans limitation des valeurs positives, les expressions de
I'espérance mathématique seront telles que dans un cas
Pespérance tend vers une quantité diflérente de zéro, ct
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que dans I'autre cas clle tend vers zéro, lorsque P et Q
augmentent indéfiniment.

Or, pour savoir laquelle des deux espérances tend
vers une limite différente de zéro, et laquelle tend vers
zéro, il suffit de rechercher si, d’aprés les conditions du
jeu, la probabilité est favorable 4 ’accroissement positif
ou négatif de la cagnotte, c’est-a-dire si I'expression

—(pr+o2pr+...hkpp)+mi+2ps+...=(m—k) pp_i],

qui n’est autre que la dérivée du second membre de
P’équation algébrique par rapport a z, et oul’on fait
& =1, est positive ou négative.

Si cette expression est positive, 'équation donnée
admet, outre I'unité,

m — k — 1 racines supérieures a I'unité,

k racines inférieures a l'unité.
Si elle est négative, 'équation admet
m — k racines supéricures a I'unité,

k — 1 racines inférieures a I'unité.

Nous n’avons pas tenu compte, dans ce qui précéde,
de la possibilité que 'égquation donnée ait des racines
multiples; mais il est aisé de voir que, si n racines de
Péquation algébrique deviennent égales, les n termes de
Pexpression de f'(x)

‘:\112‘« —i——;\gaf +...+ Ani',",‘

deviennent
Aot - Agr XX 27+ .+ Ayt ar,

qui contient le méme nombre de constantes arbitraires,
et les raisonnements que nous avons faits dans le cas
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général subsistent sans changement dans ce cas parti-
culier.

Il nous reste a étendre ces considérations au cas le
plus général auquel s’applique le théoréme, c’est-a-dire
au cas ou un ou plusieurs des coefficients de I’équation
précédente se trouvent, dans une équationnouvelle, mul-
tipliés par une quantité réelle, positive ou négative, plus
petite que l'unité, ou par une quantité imaginaire, de
module plus petit que I'unité.

En continuant de considérer les coefficients py, po, ...,
Ty T2, -.. de Péquation précédente, ’équation nou-
velle pent s’écrire

1= Bﬁ -+ &_S_-_, -+ riSi

7 72 PR P

T OB TG T oo+ Tk Cp—pe MR

Siy Say «vvs G4y Ty ... €tant des quantités quelconques
de modules inférieurs a P'unité.

Continuons a considérer le jeu précédemment défini,
avec les mémes chances p,, p2y ..., ™, T, ... des
joueurs, les mémes enjeux, et les mémes conventions
pour la fin du jeu. Mais modifions les conditions du
pari. Au lieu de recevoir un franc, si I’éventualité qu’il
a choisie, parmi les m possibles, se réalise, Je parieur
recevra une somme déterminée d’aprés le nombre des
parties qu’aura gagnées chaque joueur. Si I'on désigne
Par 72y, gy «o.y Rky Vs Yoy + ..y Ym_k Je nombre de parties
gagnées par les joueurs d'indice correspondant, le
compte, positif ou négatif, réel ouimaginaire du parieur,
sera

ST 8%t < Sph < ot < 6% <. L X (6 g )V Bk,

Si Pon désigne par ©(x) Pespérance mathématique
A e} l 7 ) ]. q
du parieur en fonction de la fortune x dela cagnotte,
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Pexpression qui permet de calculer la valeur de cette
espérance est

o(x)=p1S1e(x—1)+ psSyo(z—2)+...
+prSre(x 4+ k) +mio o@—+1)+ 09 (2 4+ 2) +...
- Tm—k cm—k‘?(x'*' ”l_/f)y

et sil’on appelle 8,, 8,, ..., B les racines de 'équa-
lion nouvelle, on aura

o(2) = A1BT+ A BY +...+ A B

Or il est évident que I'espérance mathématique de
ce nouveau pari, en valeur absolue, ou son module, si
clle est imaginaire, sera toujours inférieur a 'unité.

En eflet, la quantité & donner ou recevoir par le pa-
rieur sera nulle, si P'éventualité choisie par le parieur
ne se réalise pas, ct dans tous les autres cas elle sera
le produit de quantités inféricures a 'unité.

En conséquence, la démonstiration que nous avons
faite précédemment ct qui, en somme, ne reposait que
sur cette idée que f(x) était une quantité limitée, s’ap-
plique a fortiori a ¢(x), avec cette seule différence qu’il
n'y a plus de racine égale a I'unité, et que, dans ce cas
plus général, il y a

.
m — k racines de valeurs ou modules supérieurs a P'unité,

k racines de valeurs ou modules inférieurs a 'unité.
C. Q. F. D.

DEUXIEME PARTIE.
Sil'on a a résoudre une équation algébrique
(1) I =p1x+p2x? ...+ ppa™
et qu'on forme 'équation aux diflérences finies

(2) f(x):plf(.r+l)+pz_;f(1‘—;—2)+...+p,,,f(x+nz):
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on peut écrire, en appelant a;, a,, ..., %, les racines
de (1),
(3) f(r)y=A1a]+Ayaf ...+ Aaf,
Ay, Ay ooy Ay étant des constantes arbitraires qu’on
déterminera par les valeurs initiales qu’on choisira pour

Sf(x):

Prenons, par exemple,

f(m—1)=o,
f(m—2)=o,
f(—"l) =0,
flo)=1n
on aura
JS(=1)=py,

S(—2)=p1*+ pa
S(=3) =pi(p1*+p2) +Ppap1+ pss

ctil sera facile, et méme rapide (si les valeurs numéri-
(ues des coefficients ne sont pas trop compliquées), de
calculer un grand nombre de ces valeurs de f(x) pour
des valeurs négatives croissantes de la variable.

Or, sil’on suppose qu’on ait écrit ay, oz, .. ., @y dans
l'ordre des valeurs croissantes des racines ou de leurs
modules, il apparait, d’aprés la relation (3) que, sia, est

_Sf=m)

une racine réelle simple, le rapport Fom tendra
— “+1)
vers ay.

Si, au contraire, o, et o, sont des racines imaginaires
conjuguées, ce sont les deux termes correspondants a
ces racines qui prévaudront dans le calcul de f(x),
dout les valeurs successives ne suivront plus la loi
simple du cas précédent.

Supposons connucs quatre valeurs successives a,, a.,
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as, a;, dela fonction A, a7+ A,aj, c’est-a-dire

(4) a; = A;d‘{m—}— Aﬂ;m,

(5) Ay = Aqap+) - Ay gimE))
(6) az = A,g,;“’”’?)_*_ Azag(m-o-z),
(7) ay = Ay agptm+3) o Ayap(mH3))

il sera aisé de calculer o, ct a,.

En effet, soit
1= 12 + q,2°

Péquation du second degré dont «; ct 2, sont racines;
on peut former ’équation aux différences finies

o(2) = g19(x + 1)+ g20(x +2),
ct si 'on pose

Pem= Qy,

O—(m+1) = Q2,
, . . "
ct quon détermine P et pa par les conditions

Ay = q1a + q2Qy,

Ay = q1a3 + g2Q,

les racines «, et a, de 'équation 1 = p, x + p,2x? salis-
feront aux équations (4), (5), (6) et (7).
De ce mode de détermination de p, et p, résultent les

formules

a, X &y — ay X as
7= o

ayas — (ay)?

b

(az)? —a, < a,
LAl T A e
ap X az — (ay)?

2=

qui ne dépendent que des rapports de a,, a,, a; cta,.
Or si, apreés avoir calculé, au moyen de la relation (2),
un cdrtain nombre de valeurs de f(x), on calcule ¢,
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et g, comme si l'on avait

f-(m+1) = Qy,
f—(m+2) = Qy,
f—(m+3) = as,

f—(m—!—!c) = ay,

on commettra une erreur d’autant moindre que m sera
plus grand, et en résolvant I'équation 1 = ¢, x + g,x2,
on aura des valeurs approchées de a; ct a.

La régle pratique sera donc la suivante :

Calculer des valeurs successives f(—1), f(—2), ...,
f(— m), et surveiller le mode de variation de 'expres-
sion

[ S~ 2= [Sf=imsn] [f-onrn)]-

Si cette expression tend vers zéro, avec des va-

leurs, soit toujours positives, soit toujours négatives de

%’"L", c’est la valeur de ce rapport, lorsqu’il sera
—(m~+1)

devenu sensiblement constant, qui dounera la racine
réelle a, la plus petite de toutes les racines.
Si, au contraire,

[ St —= [ Sfmpme] [ S=im+3)]

ne tend pas vers zéro, et si le rapport S=onr

—(m—+2)
tantodt positif, tantot négatif, on verra toujours, sauf le

cas d’exception des racines ou modules d’ordre multiple,

cst

Pexpression
[f—(rn+3)]2 _ [f—»(m+2)] [,f——(!}z+k)]
[f—(m+2)J2 - [f—(m+1)J [f—-(m+3)]

tendre vers une limite constante positive. Clest cette
limite, prise avec le signe —, qui donnerait rigoureuse-
ment ¢,, et c’est la valeur approchée de cette limite,
prise avec le signe —, qui donuera la valeur approchée
de ¢,.
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Quand on se sera arrété dans le calcul des valeurs
de f(x) d’apres les consuleranons précédentes, on éva-
luera, au moyen des quatre derniéres valeurs calculées
par la formule

[f—(m+ \] > [ f—(m+ﬂ] —[ f- (m=+2. ] f—(m-i—';)]
L=l fin+n]—1f-omrel?

ctlon trouvera, en résolvant’équation 1=¢,x + . 22,

les valeurs approchées des deux racines imaginaires qui
occupent le premier rang dans le Tableau par ordre de
grandeur croissante des racines ou de leurs modules.

1l est clair que, dans la pratique, cette méthode scra
d’autant plus expéditive que le rapport entre les valeurs
ou les modules des quantités cherchées et celles qui
viennent immédiatement aprés dans Iéchelle des ra-
cines sera plus grand en valeur absolue.

Telle que nous I’avons exposée, la méthode ne s’ap-
pliquerait pas au cas ou les racines cherchées sont
d’ordre multiple.

Dans le cas ou ces quantités, sans étre rigoureusement
égales a celles qui suivent, en scraient trés voisines,
la méthode, tout en restant théoriquement exacte, de-
viendrait pratiquement inapplicable.

Pour calculer la plus grande racine réelle, ou les deux
plus grandes racines imaginaires de I'équation donnée,

- » 1 e , . 1 ,
il suffira de considérer I’équation en et de procéder

comme plus haut.

Enfin il serait possible, au moyen de transformations
convenables, de modifier la place des diverses racines
dans 'échelle des valeurs, de maniére & pouvoir appli-
quer la méthode successivement aux diverses racines.

Nous nous réservons de compléter par I’étude de ces
divers points les indications succinctes que nous venons

de dohner.
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Nota. — Nous donnons ci-aprés deux exemples de
I’application de la méthode, I'un au calcul d’une racine
réelle, 'autre au calcul de deux racines imaginaires
d’équations du quatriéme degré.

APPLICATION DE LA METHODE AU CALCUL DE LA PLUS PETITE RACINE
DE L'EQUATION ALGEBRIQUE

=2 + 2+ 2 +2'.

Tableau des valeurs successives de

—m
fix)=flx 40+ f(42)+ f(x+3) + flr+i). log f(x). :/';,:’"+') )

SO 3)=o0
S D=0
f( 1)=o
70 o=
fi= )=rxr=1
fl= ) =1x1+1=0
f — 3 :2—I-I—|—l:!;
J= D =f+2+14+1=8
S(=5) =8+f+2+1=15
J(—= 6)=15+8+4~+2=29
Sl= 7) =29+15+8+4=56
Si— 8) =56+29+15-+8=108
S(= 9)=1084+-56-+29+15=208
J(—10) =208+4-108-+56-+29=401 2,6031444 -
J =11 =f01-+208-+108+36=773 2,8881795 :'7I496§9
Ji—=12)=773+401-4208-+108=1/g0 3,1731863 i’Ziggg .
J(=13)=1490-+773-+4o14-208=2872 3,4581844 . 03;2
S(=14)=2872-+14go+773+40o1=>5536 3,7431961 ‘—’2‘?9
S =15 =5536+2872-+1490+773=10671 4,0282031 1,7149910
J(=16)=106714-533642872-+14go=2056g 43152132 ]’7l69919
f =17 =20569-+10671-+5536-+2872 =39643 4,5982213 ' ’7l7991?
[ =18 =39648+4-20369-+10671-+5531=76424 4,8832398 b9

Conclusion. — La valeur approchée de la racine est 0,51879.
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APPLICATION DE LA MiTHODE AU CALCTL DES DEUX PLUS PETITES RACINES

DE L'EQUATION

V=23 — dxr+ 2 — Lot

Tableau des valcurs successives de

logq, =

Ay, — sy
o

10§ (—q:) =
,0“_"73)2"73"5 .

fl)z=af(ra1) =3 f(r42) 4+ f (0 +3) —4 f(x+4) 7 dgraay

S o)=1

F(= =2

Fl— 2) =f—3=1

S(— 3)=2—64+1=—3

f(— 4) =—b6—3-+2—f=—11

f — 5 =—2249g+1—8=—20

Sfl— 6)=—fo-+33—3—4~+—14

S — 7 =—28+60o—r11+12=33

f — 8 :66—|—42——20+4/|:I32

f — 9 =264—99—14-+80=231

S —10 =462—396-+33-+56=155

S —11 =310—693-+132—132=—383

S —12 =—766—}65+231—b28=—1528

S —13 =—3056+1149-+1550—g24=—2076

f —-14 :—5352+4584~383—620:—1771

S —15 =—3542-+8028—1528-+1532=—4490

f —16 :8980+5313—2676+Gl12:17729

S — 17 =35458—13470—1771-+10704=30921

S —18 =61842—53187-+)490--708)=20229 0,5320813

Jf —19 =40458—92763-+17720—17960=—52536 0,5319672

S —20 =—105072—60687-+30921—70916 =—205754 0,3319021

S —21 =—4115084+157608+4-20229—123684=—357355  0,5319429

J —22 =—7147104-617262—52536—80916=—230900 0,5319531

Dapdy— )t

0,416034%
0,4159%93
0,4159)22
0,4159327
0,4159370

Les quatre premicres décimales des logarithmes des coelficients cherchés pa-

. raissent bien déterminées. En prenant

log(—q,) = 0,5319),

logq, = 0,41595,

les deux racines imaginaires de I'équation donnée, qui sont en bas de I'échelle

des valeurs absolues, résultent de I'équation du deuxiéme degré

1= 2,606z — 3, 0 2.



ETUDE GEOMETRIQUE DES PROPRIETES DES CONIQUES
D'APRES LEUR DEFINITION (!):
Par M. I.. MALEYX.

IX. Propriété des sécantes rectangulaires al’hyper-
bole équilatére. — Soit O le cercle directeur et S le
sommet d’un cone ( fig. 72).

Supposons-le coupé par un plan suivant une hyper-
bole équilatere, le plan SXY mené par le sommet du
cone parallelement au plan sécant le coupera suivant
les deux génératrices rectangulaires, SI, SK.

Dans le plan de la section imaginons deux droites
rectangulaires, I'une sera paralléle & un diamétre trans-
verse et rencontrera les deux branches de la courbe,
Pautre sera paralléle a un diamétre non transverse et ne
rencontrera que 'une des branches, soient ces cordes ab
et cd. Menons par le sommet S, SP paralléle a ab et SP,
paralléles a cd; 'une de ces droites sera extérieure a

(") Voir t. X (1891), p. 9r.
Ann. de Mathémat., 3° série, t. \. (Mars 18¢g1.) 4]
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Pangle droit KSI, soit SP, I'autre SP, lui sera inté-
ricure, 'angle PSP, étant droit.

Le plan des paralléles ab, SP coupe le plan de la di-
rectrice suivant la droite PAB, et le cone suivant les
génératrices SaA, SbB; celui des paralléles cd, SP,
coupe le plan de la directrice suivant la droite CP, D, et
le cone suivant les génératrices ScC, dSD; de plus, les
cordes rectangulaires, ab, ed, se¢ coupent en un point g
de P'intersection SG des deux plans dont on vient de
parler. On démontrerait, comme au n° I du présent Cha-
pitre, qu’on ales égalités

gaxgb gl_’z Sg
GAx<GB — PA=<PB “\sG
'gcxgd _

GC =< GD ~ P, C><P

ou, d’aprés les propriétés des sécantes au cerc]e,

gaxgb §32 <Sg>2

GA<GB ~ PIx<PK “\SG
gex gd §}T,2 Sg\?
GCx<GD ~ PiIxPK SG/

Divisant membre & membre, en ayant égard a la pro-
priété des sécantes au cercle,

—2

gaxgb  SP “ Pyl < PyK

gex gd P2 TP < PK
Al |

b

et, comme 'angle PSP est droit, si SH est perpendicu-
laire sur PP,, on a

st ru
Sk .’
d’oty, substituant,
P, I x PK
gax gb P H
ge<ed PIxPh

PH
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Or SH est Paxe radical des cercles circonserits aux
wriangles KSI, P,SP, et I'on sait, d’aprés ce qu'on a vu
aun® I, Chap. II, théoréme II, que I'un de ces cercles,
le second par exemple, est le lieu des points dont les
puissances, par rapport au premier, sont a la distance
des mémes points a leur axe radical dans un rapport
constant convenablement choisi.

P,IxP,K PIxPK

PH P

_ , . ga < gb
sont numériquement égaux : dés lors le rapport -‘zr-c‘—«g—

I en résulte que les rapports

est numériquement égal a 1; mais, comme les deux seg-
ments ga, gb sont de sens contraires, tandis que les
deux autres gc, gd sont de méme sens, on doit consi-
dérer ce rapport comme égal a —1.

De la on peut déduire le théoréme suivant :

Si une hyperbole équilatére est circonscrite & un
triangle, elle passe par le pornt commun des hauteurs.

Et comme corollaire :

Si deux hyperboles équilatéres ont quatre points
communs, elles doivent coincider, & moins que l'un des
points ne soit le point commun des hauteurs d’un
triangle dont les trois autres sont les sommets.

X. Tutorime pE Frecier. — Si par un point de la
circonférence d’un cercle on méne des paralléles a
deux diametres conjugués d’une conique, la droite
qui unit les seconds points communs de ces paralléles
avec la circonférence passe par un point fixe qui porte
le nom de vroint pE Fricier.

Soient O le cercle donné, A le point donné sur sa cir-
conférence ( fig. 73).
Menons par le point A les paralléles AM, AN a deux
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diamétres conjugués d’une conique située dans le méme
plan; il s’agit de montrer que MN passe par un point
fixe.
Les couples de droites, telles que AM, AN, forment
un faisccan en involution; transformons la figure par
avons vecteurs réciproques en prenant A pour pole et

l"ij.:. BE

/

une puissance quelconque Ky la circonférence O a pour
transformée la droite XY, et les points, tels que m et n,
forment unc involution, n" HI; Chap. 11, soit o le centre
de cette involution: unissons Aw par une droite.

La droite dont MN fait partic a pour transformée la
circonférence passant par les points A, m, n, et ren-
contrant A w en p3 e point p est five a cause de I'égalité
wm>wn=mnA>Xuwp, e pn'micr membre ¢tant fixe
dCapres la délinition de Tinvolution. Or nous avons
aussi, P étant le point on MN conpe A w,

Ap < AP =K,

d"apres notre transformation ; le point p et le nombre K
dtant fixes, il en est de meéme de P.

Le théoréme de I'régicr est encore vrai si au cercle on
substitue unc conique, cela se voit en considérant cette
courbe comme la perspective d'un cercle.

L’application de ce théoréme permet de construire
facilement deux rayons d’un faisceau cn involution fai-
sant entre cux un angle donué, quand le faisceau est



(129)

déterminé par deux autres couples de rayons conjugués,
et, en particulier, de construire, en direction, deux dia-
meétres conjugués d'une conique, dont on donne le
centre, faisant entre cux un angle donné, quand on con-
nait les directions de deux autres couples de diamétres
conjugués. Nous ne nous y arréterons pas.

Comme seconde application trés intéressante, on peut,
au moyen de ce théoréme, déterminer simplement les
rayons conjugués communs a deux faisceaux en involu-
tion de méme sommet ou, ce qui revient au méme, les
diameétres conjugués communs de deux coniques concen-
triques. 1l suffit pour cela de faire passer un cercle par
le sommet commun des deux faisceaux, de déterminer le
point de Frégier relatif 4 chacun d’eux et d’unir ces
deux points par une droite; les points ou la droite coupe
le cercle appartiennent chacun i un des diamétres con-
jugués communs. On raméne a cette question celle de fa
détermination des diameétres conjugués paralléles de deux
coniques situées, comme on voudra, dans le méme plan.

Le point de Frégicr s’est présenté spontanément dans
la construction que nous avons donnée au Chapitre I,

n° VI.

Trtorevr v averications. — S¢ par un point du
plan d’un quadrilatére on méne des couples de paral-
leles aux directions des asymptotes de chacune des hy-
perboles circonscrites au quadrilatére, ces couples de
paralléles forment un faisceaun en involution.

Soient EFGH le quadrilatére, AOB, COD les asym-
ptotes d'une hyperbole circonscrite (fig. 74). Coupons
la figure par une droite quelconque, rencontrant les
cotés du quadrilatére en P et P/, Q et ', et hyperbole
en R et R'; puis unissons ces six points a un point
fixe o, pris arbitrairement dans le plan, par des lignes
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droites. D’aprés le théoréme de Desarcues, ces six droites
forment un faisceau en involution, et il en scra encore
ainsi si la sécante PR’ s’éloigne & P'infini; mais alors les
rayons wP et o P, wQ et w() deviennent paralléles aux
systéemes de cotés opposés au quadrilatére, wR et ol
deviennent paralléles aux asymptotes de I'hyperbole;

Fig. 74.

donc les paralléles aux asymptotes de ’hyperbole menées
par le point w sont deux rayons conjugués du faisceau e¢n
involution, déterminé par les systémes de paralléles aux
¢OLés opposés du quadrilatére menées par le méme point,
ce u'il fallait démontrer.

Ce théoréme est susceptible d’applications nombreuses
par son association a celui de Frtcier.

1° On en déduit les directions des asymptotes de
Uhyperbole passant par cing points. 11 suflit pour cela
de construire lesrayons conjugués communs a deux fais-
ceaux cn involution déterminés en menant par un point
du plan des paralléles aux systémes de cotés opposés de
deux quadrilatéres inscrits.

2° On peut encore construire, par ce moyen, une
hyperbole passant par quatre points donnés, connais-
sant l'angle des asymptotes; on est ramené pour cela a
déterminer deux rayons conjugués d'un faisceau en in-
volution comme faisant entre eux un angle donné.
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3° Comme cas particulier de la question précédente,
on peut construire une hyperbole équilatére passant
par quatre points donnés cn recherchant les rayons con-
jugués rectangulaires d’un faisceau en involution défini.

On voit ainsi que le probléme n’admet généralement
qu’une solution; toutefois, ct ¢’est la une REMARQUE 1M-
PORTANTE, i les couples de cotés opposés du quadrila-
tére étaient rectangulaires, c’est-a-dire si trois des
points étaient sommets d’un triangle dont les hauteurs
concourraient au quatriéme point, le quadrilatére étant
non convexe, les seules coniques gu’on peut lui circon-
scrire sont des hyperboles; en second lieu, deux des
couples de directions asymptotiques, celles des systémes
de cotés opposés, étant rectangulaires, tous les s)s-
témes de rayons conjugués du faisceau sont rectangu-
laires, et toutes les coniques circonscrites a ce quadri-
latére sont des lyperboles équilatéres. Ces derniéres
conséquences complétent le théoréme et le corollaire
démontrés ala fin du n° 1X du présent Chapitre.

XIL. Tutorime. — Si U'on coupe une conique par
une hyperbole équilatére, dont les asymptotes soient
paralléles aux axes de la courbe, trois des points com-
muns et le point diamétralement opposé au quatriéme,
dans la conique, sont situés sur un méme cercle.

Démontrons le théoréme pour le cas ou la conique
est une ellipse, la démonstration pour le cas ou clle
est une hyperbole est entiérement analogue, ct P'on
peut conclure qu’il est vrai pour la parabole, en la
considérant comme limite de l'une des courbes précé-
dentes.

Soient O I'ellipse dont les axes sont AA', BB ( fig. 75);
» P'hyperbole équilatére dont les asymptotes VI, RS
sont respectivement paralléles a AA’, BB, Soient les
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quatre points communs des deux courbes M, N, P, Q,
et M, diamétralement opposé a M dans lellipse.
Prenons un point quelconque C sur hyperbole et
menons par ce point des paralléles aux asymptotes ; Iel-
lipse, I'hyperbole et le systéme des sécantes rectilignes

1

Fig. 5

MN, PQ, déterminent sur chacune de ces paralléles un
systeme de six points en involution (théoréme de De-
sakcures) et comme dans ces deux involutions le point
conjugué de C est a infini, C est le centre de chacune
delles. De la les deux égalités

CE > €D = CF < CG ct CE; < CGD, = CI, < CG;.

Divisons membre amembre en tenant comptedu théo-
reme de Newrox,
GE > CD 02 . GF =< CG
CE, < CD, _ «*  CF, x CG,’
en désignant par @ et b les demi-axes de Dellipse.
Unissons M, N par une ligne droite : MN, M, N for-
ment un systéme de cordes supplémentaires, et les dia-

meétres OK, OH, qui les divisent en parties égales et sont
chacun paralléles a celle qu’il ne coupe pas, sont conju-
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gués. Ces diamétres interceptent sur la tangente en B

les segments BH, BK, dount le produit est égal a a?
(n° IV, Chap. 11); dcla

B_ b b
«*  BIl 7 BK’
et, par comparaison avec l’égalilé précédente,

CF CG (4 b

CF, *CG, ~ BH * BK'

Les deux triangles rectangles BOH, GCG, sout sem-
blables comme ayant leurs cdtés paralléles, d’ou

CG b

CG, ~ B’
d'apres I'égalité précédente, il en résulte

CE b

Gr, ~ BK’

Done les deux triangles rectangles BOK, CFF, sont
semblables, Teurs angles sont égaux etleurs hypoténuses
OK, IT*, sont également inclinées sur BK et CEy, ou
sur la parallele AA'; il en est de méme de PQ et M, N
parallele & OK 5 donce les points P, Q, N, M, appar-
tiennent & un cercle (n° VI du précédent Chapitre).

C. Q. F. D.
(A suivre.)

ERRATA.

S . x ,. X
Page 83, derniére ligne de la note (*), au liew de P lises o
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SUR LE DEVELOPPEMENT DE VR
EN FRACTION CONTINUE;

Par M. J. DOLBNIA.

Je me propose d’exposer ici la démonstration trés
simple des quelques théorémes insérés dans le Mémoire
d’Abel Sur Uintégration de la formule différen-
tielle, etc. (V).

Tutorime I. — R étant une fonction entiére de x,

' Rse développe en fraction continue illimitéc

‘/R:i—%— !

ay —+

ag ., I
e

a4+ —y

i ¥
0L %y tyy %oy ...y & SOnt des fonctions entiéres, ); est
lun des quotients complets quelconque. Je dis que y;
est racine de l’équation

Ay?+2By;—C=o,
ol

Pis qi étant des fonctions enticres, et les coefficients A,
B, C satisfaisant a l’égalité

B2— AC=R.

(') QEuvres complétes, t. 1, p. 104 et suiv.; 1881.
74 s P ]
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Démonstration. — Posons

a —+ N
ay + — -
%2 - .+ l—-—lii_—i)
Aj—1 qi—
I
o —+ I
a4 +
19—!—."_‘_ L
(Zl_1+—=&1
a; qi

alors on aura
VR = Pi)i+pPi— ,
qiYyi+ qi-1
ou

(P}—aiR) >}
“o(pipi-i — qigia R) yi+ (P}, — gL R) =o.
D’ou il suit que
A=pi—aiR,
B —AC=(pig—i—q:pi-1)*R=R, c. Q. F.D

Tutoreue 1. — Soit

VR =2+
a +

2 . 1
2 e

1
-+ A —
i
oty est 'une des racines de l'équation
(Pt —qiR)yi
+2(pipi-1— qiqi-1 R) yi+ (Pt — g7 R) = 0.
Si
ri—qiR=a,
a étant constant, pour i impair, nous aurons

a =1,
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Démonstration. — Des équations
pi—qiR=a,

Piqi-i— qipi—y = (—1)i"1 =1,
on déduit
i—aqi;—
qiqi-1R—pipi—y = E—qq'—! >
d’ou il suit que
Pi—agia

q:
¢st une fonction entiére. Mais, comme
op;>08q;>8qi1 (1),

il est évident que ag;_, est le reste de la division de p;
par ¢;. Par conséquent,

1 aq ;-
&—7.—{——-—(7’ 1?

qi qi
ou
P
q a4
N qi—1
Mais
pe = &+ - !
qi 2% —+ !
Ay ~+ . 1
2T
4
donce
I
t
9+
ay +.
)
q; 1
(l = A; -+
Tt alay 4 —
- aa3+..

°

D’aprés une propriété bien connue des fractions conti-

(1) 8p, est le degré de la fonction p, (OEuvres complétes, t. I,
p. 108 et suiv.).



nues, nous aurons (')

; 1
B L S
i1 1
ql oLjmg +— ——————————
@a., 1
7}
Done
1
U A ——e———
Aj—q . L1 1
et — =ty —
Ay
a—1aq -~ !
T ——
a=lo;
Cette égalité entraine les suivantes
a = axy,
%—g = a~a,
Aj—g = A a3,
a2y = a*ta,.
Si 7 est impair, en posant
1=2k +1,
nous aurons
o= a* gy,
ou
Opy = A iy,
a*! =1,
¢t enfin
a=rI. C. Q. F. D.

Tuvorime 1. — Si, dans le développement de \/ﬁ
en fraction continue, [’un des quotients complets y; sa-
tisfait a I’équation

i ay}+2by;+c=o,
ot

a==%(p}—9iR)

est une quantité constante, la fraction continue est
nécessairement periodique.

(*) SERRET, Cours d’Algébre superieure, t. 1, p. 30: 1866.
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Démonstration. — Etant donné
—_ I
VR=a+ _—
ay -+
dg —+. I
1 ,
a; 4+ —-

De I’équation
ay}+2by;+c=o,
nous tirerons

— b+ R
V=T
1
—b+a+ —
yi= ——,
et, en posant,
— b+ =8

a
nous aurons

I
y,v:p—Q— ;17.

Cela posé, distinguons, avec Abel, deux cas.

Premier cas. — Le nombre i = 2k + 1, k élant en-

tier. Dans ce cas
a=1,
donc
I
Yi= p -+ —
Y
donc la fraction conlinue

\/E=a+
oy +
Qg 4. 1

I

%q
Qg .

cst évidemment périodique. En outre, nous avons vu
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que pour { impair
A—m = Em41-

En posant successivement
m=0,1,2,3,...,(k—1),k,

nous obtiendrouns

&= dy,
@j—q = U2,
cetaeeenay
Rfer2 == ke

Par conséquent les quotients incomplets de la fraction
continue formeront la série suivante

%y Oy X9,  eeey  Ggy Xhaty Gy e..,  %g, Ky, ﬁ’

Deuxiéme cas. — Posons

i=2k.
Nous avons
f—1 e —
yi=p ay
Mais
1
Y=o+ ;
%o —+
az+.
e "
O~ —
3
donc
1
ay = as+ -
a—tag+
aaz-+. 1
e
ata;+ —
ayi
ou
i
ay = ax+ ;
a—’a2+
ao . 1
st
1
Va4
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et par conséquent

Il suit de 14 queles quotienis incomplets forment la

série

.
o, Ay, Ao, ..., %y B

azxy, oa=Voy axy. ... a“lz, al,
La période se compose des nombres suivants
ay, Ay, ..., A, B, aw, a-lay, ..., a“tz;, aB.

Ainsi, dans les deux cas, /R se développe en frac-
tion continue périodique. C. Q. F. D.

NOUVELLE DEMONSTRATION GEOMETRIQUE D'UN THEOREME
DE M. FAURE;

Par M. Erxest DUPORCQ,

Eléve de I'Ecole Monge.

Tutorise. — Les cercles circonscrits aux triangles
conjugués par rapport & une conique fixe coupent or-
thogenalement un cercle fixe, concentrique & la co-

nique.
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Pour démontrer ce théoréme, du & M. Faure, pre-
nons un point S sur la perpendiculaire élevée au plan P
de la conique G par son centre O, ct imaginons une
sphére passant par le point § et normale a la droite OS.

Si ABC est un triangle conjugué par rapport a la co-
nique, les droites SA, SB et SC sont conjuguées par
rapport au cdne, ayant pour sommet le point S et pour
dircetrice la conique C; en étendant a 'espace le théo-
réme de Frégier généralisé, on voit done que les plans,
tels que abe, déterminés par les points ou ces droites
coupent la sphére, passent par un point fixe m, qui est si-
tué sur la polaire prise par rapport au cone du plan Q
tangent en S a la sphere @ d’ailleurs, cette droite n’est
antre que SO, car, les plans P et Q étant paralléles,
leur intersection, rejetée a Uinfini, a pour pole, relati-
vement a la conique C, le centre de cette conique.

Transformons la figure par ravons vecteurs réei-
proques, en prenant le point S pour origine d'inversion
et un module tel que la sphére ait pour transformée le
plan P : le plan abc a pour transformée la sphére SABC.
qui passe done par le point M, transformée du point fixe
niy de la droite $O.

Le point O a donc méme puissance par rapport a
toutes les spheres telles que SABC, et, par suite, par
rapport aux cercles circonscrits aux triangles conjuguds ;
ces cercles sont donc orthogonaux a un cercle fixe,
concentrigue @ la conigue. On en détermine aisément
le rayon, en considérant un triangle conjugué particu-
licr, ayant, par exemple, pour sommet un sommet du
rectangle construit sur les axes, et deux cotés confon-
dus tangents a la conique en un de ses sommets ().

(*) 11 est facile de voir, d’aprés ce qui précéde, qu’on peut, de
meéme, démontrer le théoréme de M. Faure au moyen d'unc sphére
Ann. de Mathemat., 3 sléric, t. X. (Mars 18g1.) 10
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SUR LE LIEU DES CENTRES DE COURBURE D'UNE COURBE
GAUCHE ET SUR LES COURBES GAUCHES A COURBURE

GONSTANTE;
Par M. P. ADAM,

Ingénieur.

Le licu des centres de courbure d’'une courbe plane
est Penveloppe des normales a cette courbe; il n’en est
pas de méme pour unce courbe gauche; mais, dans ce
cas :

Le liew des centres de courbure est Uenveloppe du
cercle normal & la courbe considérée et ayant pour
diameétre le rayon de la sphére osculatrice qui aboutit
« cetle courbe.

On voit que cette proprié¢té conduit a la premiére,
comme cas particulier, quand on fait grandir indéfini-
ment le rayon de la sphere osculatrice en chaque point
de la courbe gauche.

Voiel, pour démontrer cette proposition, un procédé
géométrique trés élégant que M. Darboux a bien voulu
nous indiquer.

Soit T' I'aréte de rebroussement de la surface polaire
de la courbe gauche C considérée. Chaque tangente OO’
aT est la droite polaire d’'un point correspondant M
de Cj le plan OO'M est normal a C, et le pied O de la
perpendiculaire abaissée de M sur OO’ est le centre de
conrbure de C au point M. Le lieu de O’ est une courbe

arbitraire, mais en placant toujours le point S au point de contacl
de cette spheére et d'un plan tangent paralléle au plan P
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(' tracée sur la surface polaire et dont, par suite, la
tangente O'T" est située dans le plan normal O O’M.

Déroulons la surface polaire sur I'un quelconque
0,0, M, de ses plans tangents, en lui donnant une sé-
rie de rotations élémentaires convenables autour de ses
génératrices successives O, O'. 11 est visible que les
points de C ne quitteront pas cette courbe et viendront
en My, de sorte que la courbe C se réduira au point M.
Les courbes T et € se transformeront en deux courbes
planes Ty et G 5 Pangle droit O O’Mviendra en O, O M,
en restant droity la tangente O'I" viendra en O, T, et
comme les éléments de T et de €y situés en O et O, ne
quittent pas les tangentes OO" et O'T, il s’ensuit que
0’0} ¢t O, T, sont des tangentes a [y eva O

Done :

C, est la podaire de T, par rapport au point M,.

Or, d’aprés unc propriété bien connue de la podaire
d’une courbe plane Ty par rapport & un point M, de
son plan :

Cette podaire est 'enveloppe des cercles décrits sur
les rayons vecteurs My Oy comme diameétres.

I1 suflit donc de revenir a la surface polaire ct de se
rappeler que OM est un rayon de la sphére osculatrice
en M 4 la courbe C pour obtenir la propriéié qu’il s’a-
gissait de démontrer.

On peut démontrer cette méme propriéié assez rapi-
dement par le calcul. 11 suffit d’établir que la tangente
O'T” est située dans le plan normal 4 C et qu’elle est
perpendiculaire a la droite O'O” quiva du centre de
courbure O au milieu O” de MO.

Appelons x, y, z les coordonnées du point M. On
sait que les coordonnées du centre de courbure O et du
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centre O de la sphére osculatrice sont respectivement

a+R2 et x+Ra—To" @»

ds

et les droites O’ T/ et 0’0" ont leurs cosinus directeurs
proportionnuls respectivement a

s AR ‘ dR
@ s s

Nous VOll]OllS montrer quce

? ( dx’ , dR
ala—R -~ 2o - -
o\ ds ds |
et que

. , AR o’ JdRY
E(Ru-——Tz 2;>(aeR PR :fs‘) =o0

On le vérifie de suite en se servant des relations
‘ xL
(1) ' ds T TR T

Pour pousser plus loin I'analogie entre les deux pro-
priétés énoncées au début de cette Note, cherchons une
expression de arc élémentaire ds de la courbe C' des
centres de courbure, au moyen du rayon R, de la sphére
osculatrice.

En appelant £, 4, { les coordonnées du centre de
courbure (), on a

g2 A2+ dr? + 32

'2) dst T T st



Or

ce ui donne

ct, en tenant compte des relations (1),
& . dR R«
as _ et hRr
ds ds T

’ . d02 .
Portant ces valeurs dans I'expression (2) de T il
vient

ds? (dR : R
dst ~ \ds)

- T
Mais le carré R} du rayon de la sphére osculatrice
s‘exprime par

9 I 92 dR 2 .
Ri"—_ R‘z—r T- <7[;> 5
par suite,
d  R:
st T T2
ot bien
N ds ds
. R T

Soit. MN celle des normales a la courbe C qui est
tangente a la sphére osculatrice, c¢’est-a-dire qui est
perpendiculaire 4 OM; MN n’est autre chose que la di-
rection conjuguée a G sur la sphére osculatrice, ce qui
revient a dire que MN admet une enveloppe v; v est
done 'une des développées de la courbe C, et, par suite,

. Y /\I 4 /l/\
endésignant pars Pangle NMO', ou son égal O'OM, on
a, ¢n vertu d'une lformule connue,

s

-T = //’?i
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(3) donne donc
ds= R, de.

Soit 7, 'are O'M dua cercle OO'M déerit sur OM

comme diameétre. On a

1= Re.
d’on
d3y = Ry dy + 2 dRy = ds — 3 dR,.

Ainsi, dans l¢ cas d'une courbe gauche, la difléren-
tielle ds de la courbe lieu des centres de courbure n2’est
pas égale, en général, i la différentielle dz, de Varc de
cercle normal O'M dout ce lieu est 'enveloppe. Elle ne
le devient que si R, = o, ¢’est-a-dire Ry = const.

Done :

Les courbes gauches pour lesquelles le rayon de la
sphére osculatrice est constant sont les seules dont la
courbe des centres de courbure soit une développée par
rapport awcercle OO'M ayant pour diamétre le rayon
de cette sphere.

A ce Litre, ces courbes offrent de intérct : elles for-
ment une transition entre la courbe gauche quelconque
ct la courbe plane.

Nous allons voir que ces courbes pour lesquelles le
rayon de la sphére osculatrice est constant offrent
d’autres caractéres géométriques remarquables.

Appliquons, en eflet, leur surface polaire sur le plan,
comme nous 'avons fait précédemment dans le cas gé-
néral; le rayon OM de la sphére osculatrice devient
0O, M,, ct, comme ce ravon est constant, deux cas se pré-
sentent

1> Ou bien I'y se réduit a un point;

2° Ou bien I'y est un cercle de centre M.

Examinons ces deux cas avee quelque détail.
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Dans le premier cas, T est aussi réduit a un point et,
par suile,

La courbe C est une courbe sphérique.

Le triangle rectangle OMN donne alors

OM = 00’ x ON,
¢est-a-dire
R} = 00"x ON.
Done:
v et C sont deux courbes inverses 'une de ' autre

par rapport au centre O de la sphére.

Il résulte de la que la tangente O'T" a4 C' doit étre
dans le plan normal OMN comme la tangente a vy, et

P o

que T"O'N = O'NM, ¢’est-a-dire que O''T” est tangente
au cercle OO'M de diamétre OM. On retrouve ainsi,
dans le cas particulier d’une courbe sphérique, la pro-
priélé que nous avons énoncée en commencant cette
Note. On peut, d’ailleurs, de ce cas particulier, déduire
immédiatement la méme propriété pour le cas général
d’une courbe gauche quelconque, en remarquant que
quatre éléments consécutifs de cette courbe appartien-
nent a la sphére osculatrice.

Soit O” le point de rencontre de la droite polaire OO/
avec la spheére sur laquelle est tracée la courbe C'; le
point O” et I'arc de grand cercle O” M sont le centre de
courbure sphérique et le rayon de courbure sphérique
de la courbe C. L’are de grand cercle O”M et arc O'M
du cercle OO'M (arce’ qu'on peut appeler le rayon de
courbure vrai) ont méme longueur. Si done on appelle
ds, la différenticlle de I'arc O” M, ou, ce qui est pareil,
la différentielle de la développdée sphérique, on aura

dsy = ds, = d>s.
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Ainsi, dans le cas d'une courbe sphérique :

Le rayon de courbure sphérique et le rayon de
courbure wrai ont méme longueur; la développée
spherique et la courbe des centres de courbure, qu’on
peut appeler la développée vraie, ont aussi méme lon-
gueur.

Le licu du centre O” du cercle OO'M est homothé-
tique de la courbe C par rapport au point O. Donc ce
licu est normal au plan du cercle OO’ M.

Il en résulte que :

C et €' sont tracées sur une surface canal S ayant
pour diamétre OM le rayon de la sphére ;

mais c’est unc surface canal toute particulicre, car elle
est tangente a unc sphére; ou encore, les sphéres qui
aldmettent ¥ pour enveloppe passent toutes par un point
fixe O; C est, dailleurs, une ligne de courbure de .

La surface canal  est le licu du cercle OO'M de dia-
metre OM. Réciproquement :

Si pour une courbe gauche C, le lieuw S du cercle
OO'M normal a cetre courbe et déerit sur le rayon de
la courbe osculatrice comme diamétre est une surface
canal, cetle courbe est spherique.

On peut Pétabliv analytiquement, mais c’est une
chose évidente, car le point O, diamétralement opposé
au point M sur la surface canal, doit décrire, comme ce
point M, une trajectoive I' normale au plan du cercle
OO'M; e, comme cette trajectoire est tangente au plan
OO'M, clle ne peut étre quun point; le point M reste
donc a distance constante d’'un point fixe O et la courbe
C est sphérique.

Pour terminer ce qui est relatif aux courbes sphé-
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riques, remarquons que la développée y est ici une
ligne géodésique sur le cone de sommet O, car le plan
osculateur TMN a y est perpendiculaire au plan OMN,
lequel est tangent au cone considéré.

Passons maintenant au second cas, celui dans lequel
I', estun cercle de centre M,. Alors C/ coincide avec T,.
Ainsi :

Quand on applique sur le plan la surface polaire
d’une courbe dont la sphére osculatrice a un rayon
constant, [’aréte de rebroussement de cette surfaceet la
courbe des centres de courbure se transforment en un
seul et méme cercle.

Dans le cas d'une courbe sphérique, la transformée C|
reste quelconque. Il est donc a remarquer que la courbe
sphérique qui semblerait devoir étre un cas particulier
de la courbe dont Ja sphére osculatrice a un rayon con-
stant en est, au contraire, un cas tout différent qu’il
faut traiter a part, comme nous I'avons fait.

Puisque C| coincide avee T'y, on a

M, O} = M, 0.
¢’est-a-dire
R — R,.

On retrouve ainsi ce théoréme connu :

Une courbe gauche dont la sphere osculatrice a un
'ayon constant est une courbe a courbure constante, et
son rayon de courbure est égal au rayon de la splere
osculatrice. L'aréte de rebroussement de la surface
polaire coincide donc avec le lieu des centres de cour-
hure.

Ce résultat met encore en relief la différence trés
grande qu’il v a entre la courbe dont la sphére oscula-
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trice a un rayon constant et la courbe sphérique, puis-
que cette dernicre n’a généralement pas son rayon de
courbure constant.
La réciproque de ce théoréme est vraie :

Si la courbure d’une courbe gauche est constante,
il en est de méme durayon de la sphére osculatrice, et

l’'on a R=1R,.
Cela résulte immédiatement de la relation
R? = R2a T2 @)
. ds

Voyons ce qu’est, dans le cas particulier qui nous
occupe, I'aréte de rebroussement T de la surface polaire,
ou, ce qui est pareil, la courbe €' des centres de cour-
bure.

Pour obtenir U il sullit, partant d’une origine cuel-
conque o, située sur Iy, de donner a ce cercle, autour de
ses tangentes suceessives, des rotations ¢lémentaires dé-
finies par unc loi quelconque; dans ce mouvement, le
centre My du cercle Iy déerira précisément la courbe C.
Or, étant parvenu a un point quelconque Oy de 'y, le
point M, décrit autour de la tangente Oy Ny un élément
perpendiculaire au plan M, O, T, déterminé par la por-
tion de T’y non encore déformée.

Done le licu des positions successives de la partie
non déformée de I'y est une surface canal £ dont ’axe
nest autre chose que la courbe C décrite par le point My
I' ¢st une courbe tracée sur cette surface canal tangen-
ticllement aux positions successives du cercle Ty, et
comme les plans de deux cercles Ty consécutifs se cou-
pent suivant une tangente communce Oy Ny, ¢’est-a-dire
comme ces deux cercles n’ont qu'un point commun Oy,
¥ est une surface canal a aréte de rebroussement réelle
¢t unique I'. Enfin, les rotations successives du cerele T,



(191)
autour de ses tangentes n’altérant 'angle de contingence
de ce cercle que d'une quantité infiniment petite par
rapport a cet angle, ' a la méme courbure que T'y; T est
donc une courbe a courbure constante comme C et sa
courbure est la méme que C.

Inversement, considérons le cercle de centre O, et
de rayon Oy M, dont le plan est normal aT, ¢'est-a-dire
est perpendiculaive 4 Oy Ny; ce cercle n’est autre que le
cercle osculateur 4 C en M, et il engendre une deusxicme
surface canal ¥ d’axe T et d’aréte de rebroussement C
cette aréte de rebroussement est unique, parce que deux
cercles osculateurs successifs d'une courbe gauche ne se
rencontrent qu’en un point.

On peut, en définitive, énoncer le théoréme suivant
dont la premiére partie st une proposition classique
due a Monge :

1
&
lieu de ses centres de courbure a aunssi sa courbure

Si une courbe gauche a sa courbure 3 constante, le

constante et égale & celle de la proposée. Chacune de
ces deux courbes est I'aréte de rebroussement unique
d’une surface canal de rayon R ay ant pour axe l'autre
courbe et admet pour cercles osculateurs les cercles
générateurs de la surface canal sur lagquelle elle est
tracée.

Par exemple, la courbe des centres de courbure d’une
hélice circulaire est une seconde hélice qui a méme
courbure que la premiére, et chacune de ces denx hélices
est Paréte de rebroussement unique d’une surface qui
admet 'autre hélice comme axe.

La réciproque de ce théoréme est évidente :

Si l'on considére une surface canal ¥ @ aréte de
rebroussement unique T, cette aréle est & courbure con-
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stante et elle admet pour cercles osculateurs les cercles
générateurs de la surface canal. I'axe C de cette sur-
Sfaceestl’aréiede rebroussement unique d’une deuxieme
surface canal ¥ de méme rayon que la premiére, ayant
comme axe 'aréte de rebroussement de la premiére et

comme cercles osculateurs les cercles génerateurs de X'

Terminons par quelques généralités relativement aux
courbes gauches quelconques.

Pour une courbe quelconque, la surface licu du
cercle OO'M n’est généralement pas Ienveloppe d’une
sphere; mais C est encore une ligne de courbure sur
cette surface, comme dans le cas d’une courbe sphérique,
lmisque]es tangentes m enées a cette surface normalement
4 C admettent une enveloppe v; quant a la dévelop-
pée v, elle est encore une ligne géodésique sur fa surface
polaire de C, puisque le plan TMN osculateur a v est
perpendiculaire au plan tangent OMN a la surface po-
laire; du reste, les autres développées de G sont aussi
des lignes géodésiques sur la surface polaire.

~ el C' sont lices encore par la relation

002 ON = OM~ = R?:

ce sont done deux courbes inverses, avee pole et puis-
sance d’inversion variables.

Remarquons enfin que la relation obtenue plus haut

laquelle devient, pour le cas d’une courbe plane,
ds =» <o

montre que, dans ce cas, la vraie valeur de Ry do n’est
autre que la différentielle d= de 'arc de la courbe des
centres de courbure.



NOTE DE GEOMETRIE:;
Par M. T. GLUGNET,

Ingénicur des Manufactures de I'Etat.

Tutorime. — 8, d’un point w de l'axe d’une co-
nique ( fig. 1), comme cenlre, on décrit une circonfe-
rence de rayon quelconque, les cordes d’intersection
MM, M'M| du cercle et de la conique sont @ égales
distances du pied K de la normale menée par o.

IFig. 1. Fig. 2.

En effet, soit une tangente quelconque RS 4 la cir-
conférence ( fig. 2), on peut la considérer comme cn-
gendrant un cone d’axe wS quelconque, passant par w
ctsitué dans le plan de la figure.

De méme, la conique, en tournant autour de son

Ann. de Mathcémat., 3 série, . X. (Avril 1891.) 1
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axe w0, engendre une surface de révolution du second
ordre.

L’intersection de ces deux surfaces se projette sur le
plan OwS des axes, suivant une conique, dont on a
deux diamétres conjugués a I'aide des sphéres limites.

L'une de ces sphéres est déterminée parle cercle o R
¢t donne le diametre py!’. L’autre sphére est déterminée
par le cercle wKv, tangent a la conique, et fournit le
second diametre Koo K.

Or K est le pied de normale oK et KK, passe au
milicu de pp'. C. Q. F. D.

Corollaire. — Si d’un point o dc Paxe d'une co-
nique on décrit, comme centre, une circonférence tan-
gente au sommet, le pied de la normale w K, menée de

Fig. 3.

Ky M,

ce point a la conique, est a égales distances de la tan-
gente au sommet ct de la corde d’intersection MM, du

cercle et de la conique ( fig. 3).

Remarque I. — Ce corollaire donne une construc-
tion trés rapide de la normale. 11 suffit de déerirve le
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cercle tangent en A; de tracer la corde MM, (), ct de
mener par I, milieu de Ay, la perpendiculaire IK a
I’axe.

Réciproquement, si I’on connait le pied K de la nor-
male, on en déduit la détcrmination de la corde MM,
d’intersection de la conique et du cercle de centre o et
de rayon wA.

Eten particulier la corde réelle MM, ( fig. 4), lorsque

(*) On peut, dailleurs, déterminer géométriquement cette corde
MM, I suffit, en effet, de considérer la surface de révolution engen-
drée par la conique autour de son sccond axe OB et Ia sphére de
grand cerele w A, Ces deux surfaces se coupent suivant une courbe
projetée suivant un cercle sur un plan paralléle au plan projetantw O.

Ce cercle, dont on a déja le point a, se¢ détermine a Paide d’une
parall¢le II quelconque.

D'ou le point m ct la corde MM, (fig. 2).

Cette construction s’applique ¢galement au cas ou le cercle n’est
pas tangent au sommet. Il suffit alors de prendre deux paralléles
pour détermincr le cercle de projection dont l¢ diamétre de front
donne les deux cordes cherchées.
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les points d’intersection du cercle et de la conique sont
imaginaires.

Remarque II.— La construction qui précéde permet
de construire rapidement la développée de la conique.

Fig. 4. Fig. 5.

K

Remarque I11. — Si I'on méene la perpendiculaire
C:=0 4 AB, ¢n son milieu, les normales issues de < et
de o ont leurs pieds en H et K, sur les paralleles aux

axcs passant par C ( fig. 5).

Fig. 6. Fig. 7.

My

Remarque IV. — Le théoréme et le corollaire pré-
cédents sont évidents lorsque la conique se réduit a
deux droites qui se coupent ( fig. 6 et 7).
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Remarque ¥. — Soit une parabole de foyer I' et de
paramétre p ( fig. 8). On a cncore, si wK est la nor-
male,

AX = Xp.

Mais
AN=Av—Xw=Aw—p

cl, par suite,
Ap=2AX=200w—2p=AR —ap.
Cette relation
Ap=AR—op
détermine la corde d’intersection du cercle w A et de la
parabole. Mais clle montre en outre que
AR —Ap=uR=1p=4AF.

b A ’ 1
D’ou ce théoréme :

Tutonise. — La fleche de Uarc intercepté par une
parabole, dans toute circonférence tangente en son

sommet, est constante et égale au double du para-
melre.
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Remarque. — 1l suit de la que la position limite de
la corde MM est obtenue lorsque AR lui-méme est égal
a 2,).

Dans cc cas, le cercle est osculateur et 'on retrouve

ainsi le paramétre pour la valeur du rayon de courbure
au sommet.

SUR LE DEVELOPPEMENT DES INTEGRALES EN SERIES :
Par M. WORONTZOFF.

En posant
/‘F(,T)dm = d(xr)+ C,

on a
a-+bm
f F (&) dr = ®(a -+ bm)— ®(ay+ bym)= f(m) = ®(a)— P(a,
Sag+bym
kz=n—1 B
E JQ'L ([)M')(a)
12300k
k=1
k=n—1 .
— N B wwiay) -k
1.2.3.0.04
k=1
ou .
=1 o
h = = - 2 mT 7 (0 m
1.3 n—1)"
— Oyn—1yn X , N .
= ‘_..'_,_?_,,,_'"_—_) [brdi (a=-b0m)y—- bFPW (ay+ byOm)]
L2y e (n—1

bm
_— I f P (@ —+bm — 3)30-1 03

0

by m
— [ D (qy- bym — 3)sr—103 .
oy .

Comme

o
(“(,(()' S ag) — / I?(',')I‘)Jv. DU (= Fl-1(2).
’ .
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on obtient, en prenant m =1,

k=n—1y

a+b
i [ F(x)dr = [ F(x)or + Z ]‘(I. U(a)
g+ by ay ]
hk=n—1 =
- y —LFJ@H Iy
i T2 (@) B
k=1
b k=n—1
2 ak
= [ F(x)or - Z Y pu-n(p)
b, 1.2.3..0. 4
k=1
hk=n—1 P
a5 2 )
- . Th—1) Y
E 1.2.3.../;1 (bo)~+Rg,
k=1
S — (1— O)n—1 pr For—n 0 R T —t) [ .
XAl o= - _(/1—1)[) F Ha-=0b)— bR Fn=1(ay—0by)]
=1 — (n—1) - — z)3n—19z
1.2.3. ”_”l [ F (a 0 ) 0z
by
— FJ:-U((,U,; [)0_ ;);n-—l ();\l’
<0
' (1 — Oyn—1 T )
h“:|.-,z,3...\/z—~|)lal[”I“ (b+0a)—af Fn=-1(by+0ay))

“0

i Wy ”
! ——f Fn=0(a,+ bo—;);'l—lt)zl.
H 0 )

Cette formule, pour a —+ b= a,+ b,=c, donnc

| — ,_,A__l___,_[ [ Irin— 1’((!———1) ) sn—193
1.2.3...(n—1)

k=n—1

/ « et . v
F(T)().l: Z (__ll.__ _((,’ / c) F//“_l)((l)

o/
a,

I“M-—n (ao)—+ hy,

— )yt
1= N a—epFeDa+0(c — a))

—(ay— )t Fir=V[ay—0(c — a)]!

SENERV/EN| «a
\ = =0 f Fint (5)(s — ¢)n=105 (1);
\ 123 (n—1) /.

") Nous supposons ici que fes fonctions F(x), F'(x), ..., F* 11 () sonl finies
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d’ou I'on déduit, pour ¢ ==a + a,(b = a,, by=a),

1.2.3 (n——l)

a a/{
— I —_ Fl&—1)
S = B o P )
@ k=1
k=n—1 %
— q(i_‘ (k—1) + A,
Z I.2.3...IcF (@)+ha,
(2) k=1 )
hy — _(_I_—.DL
T3 (n—0
< [a” Fin=1) (qy+ 0a)— af Fr-1(a—+ 0 a,)]
_ (a—y—ao )n_l _
\ >_'- a, (I’L——l) -
et pour ¢ = o,
a k=n—1 et
— o8
l F(x)odr = 2 ;_(_;_I)__ ak FE=1(q)
0 k=1
Ir:n—l( )] .
[V — 1) . .
D e v SR GO
k=1
(3) (Théoréme de Bernoulli.)
1y 1_1—_0)’L
hig = (— 1) 3...(n—1)
< [an F(IL—U(Oa)_ a F(n—l)(oao)]
— a
— (_')” f Fie—1)(5) 57103,

Si I'on pose, dans la formule (@), b= by=c¢, on
trouve

a+c k=n-1

' o (ak—af)
F(x)dx_—_ —“_]_1(1, 1)(0).4._11,
'-[(.4—(- 21 1.2.3.

k=1

et continues entre £ = @, et & = c. aussi entre £ = « ¢t  := ¢, par
suile entre & = a, et = a.
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— 01 o
h = ;—;(Is——(;{_—‘) [ar Fin=0(c + Oa)—af Fn=U(c+ 0ay)]
1 a
- Fle—1) I — z)zr—193
x.2.3...(/t—1)[ b/o‘ (ase ) ©

@,
_f F(ll—'l)(a0+c_z)zll—1 0317
0 -

ou, en mettant @ — ¢ et @, — c au lieu de a et a,,

k=n—1
a@ _ \k—— _— &
f F(z)oz= ¥ [(a—c)f—(a ‘“’”F{k«l)(c)ﬂuh@
@ k=1

1.2.3...k

—_fyn—t .
- 1.2(.1‘3 .. .zn —1) g (@—e)yrFe=te+0(a—c)]
——((lo—~C)’LF(”—”[C—I~6((10—C>];,
(4) - !

1.2.3...(n—1)

a@a—
> [ f Fin-1(a@ — 3)50—1 03
0
ay,—c¢
_f Fm—n(ao_z)zn—l 03 (1)]
0

En faisant successivement dans cctte série ¢ = a, et

¢ == 0, on obticnt les formules bien connues

k=n—1
5 “F = (@a—a gy _y
) S, iz = Z e Teoy ST
° k=1
J— —1
his = _ =) (a— ay)P Fe=[ay—0(a— ay)]

1.2.3...(n—1)

a—dad,

I
= — Frn—1) — 3)znh—19z3:
I.2.3...(n—l)f0 (a )snhos;

d’ou, pour n =1, si () est une fonction finie et con-
tinue entre x = a, et x= a,

f F(z)or =(a— ay) Flay+ b6(a — ao)]

(') Les fonctions F(z), ¥ (z), ..., F&)(x) sont supposées
finies et continues entre & = ¢ etz = a,, aussi entrc x =cel & = a,
par suite entre x = @, et z = a.
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ct
k=n-—1
(6) f F(z)dr= (a—_a”)F“_“(‘))‘%hs;
N 1.2.3...
o k=1
(l~0)"' 1
- —_— T (n— — —1)
hg = —= (n_”[a'l =1 (a)— af Fle-U(ay)]
I N a
= —_— (n—1) z)zt—103
oo (n—1)| t[‘ Firti{a—z)sn=toz
[ TFln— ‘(a0—~~)"L—1z) J
d’ou, pour n =1,
o a (l“
F(m)o.v:aF(Oa)———aUF(()aO):[ F(x)dx—[ () dax.
ay o <o

Remarque. — Si I'on applique la formule

a
[ F(x)dr=aF(Ha)
o

aux intdgrales

hy == ———o— [ W @y=a—r)ri—1ozr
* l.‘),.j...(ll——l) S )
i an ( 1\
= —— /(II (,0__ a_;y/l)d
(FEN NS N A

afl / 1

[ . Ng—0o
= s o = I\ g+ —;f/) 405
1.2.3...(/¢—|)(/(/‘ J K”O a v

-0
ou
o1
ro=y"=31, F(r)=/W(ay+a—x)xri,
laF(ba)=afu (ay-~a—0a)(Da)=t=ar(1— 0"t £ (ag-+0yal

on obtient
(1 — 0 Yyr=1¢4n

/’ltr 3
1.2.0 .o (L —1t)

S (ay+0,a)

an

= " S ag+ ba)

1.2.)...1

“ — ()., = q

= —— [ (ay+ hha
1.2, (n—ln// (@ 2 @)
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ETUDE GEOMETRIQUE DES PROPRIETES DES CONIQUES
D'APRES LEUR DEFINITION ('):
Psar M. L. MALEYX.

XIIl. Normales & une conique passant par un point
donné dans son plan, Tagorime pr JoscnivsrinpL. —
Examinous le cas de ellipse, la question se résoudra
d’unce maniére analogue pour les autres courbes.

Soit O une ellipse dont les axes 24, 25 sont dirigés
suivant OX, OY, et a laquelle nous voulons mener une
normale par le point M ( fig. 76).

Fig‘. 7“.
b}

M
/_\v /l
N

N

Soit MP une de ces normales; P son point dincidence,
que nous définirons par ses distances PH, PK aux
deux axes 5 nous représenterons ces distances, ou coor-
données, par y, x respectivement. Nous définirons
aussi la position du point M par les distances analogues,
Sy, %, @ étant susceptibles de signes.

Menons la tangente PS en P, cette droite rencon-
rant OX en S; les deax wiangles rectangles MPQ,

(") Voir t. X (1Rg1). p. 12,
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PHS sont semblables comme ayant leurs cotés perpen-
diculaires : on en déduit

MQ 0S8 —0H B—y O0S—=

rQ PH a—z ¥

Mais les points I, S étant conjugués harmoniques
par rapport a A, A’, on a

—2

OA = 0Sx O, dou OS= “;

remplacant,

a‘l
— -z
y—8 =

r—a ¥ xy

D’aprés le n° I dua présent Chapitre, on a

a? — x? — b 2
substituant,
2 2
y—=5 _ aty
(1) E g T
xr—x bra

Cette équation peut se mettre sous la forme

(a?— 02y + 028x — a?ay =o
ou

Y ata _ —arb?a8
(») <y"“ T:zT) (‘”_ az—m> Coai—b

Si nous construisons les parallcles a OY, OX, situés a

des distances du point O respectivement représentées
o atx —0D28 les facteur ata , 23
pai p PrEm Tk estac Lulsx—az_bzaj +ai——b2’

— 02 @
représentent les distances du point P a ces deux paral-

leles.
Il résulte de la relation (2) que le produit de ces di-
stanges est constant, ct, d’apres le premier des théorémes
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d'Apollonius, que le point P se trouve sur une hyper-
bole équilatere ayant ces paralléles pour asymptotes.

La relation (1) étant visiblement satisfaite pour le
point M ct pour le point O, ces deux points apparticen-
nent & Phyperbole équilatére. On peut construire cette
courbe dont on connait les asymplotes ct deux points;
ses points communs avee Pellipse feront connaitre les
points d’incidence des normales issucs de P, qui sont en
général au nombre de quatre.

On peut conclure du théoréme du numéro précédent,
que : trois des points d’incidence des normales mendes
d'un point & une conique et le point diamétralement
opposé au point d’incidence de la quatriéme, dans cette
conique, appartiennent & un méme cercle; c’est lale

THEOREME DE JOACH IMSTAHL.

NIV, Liev atovtrriQue. — Ktant données deux co-
nigues G et C,, ainsi que deuwx directions 1) et Dy,
dans le méme plan; par un point M du plan on méne

Iig. 77,

77
P
D,
Q
(P U] R /
Ca

D1

deux paralléles, la premiére & la direction D, rencon-
trant la conique C aux points P et Py, la deuxieme a
la droite D,, rencontrant la conique C, aux points Q
et Q5 on demande de déterminer le licu du point M
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par la condition que le produit MP >< MP, ait avec le
produit MQ > MQ, un rapport donné o ( fig. 77

Soient R et Ry les points ou la paralléle a Dy passant
par M rencontre la conique G, pour tous les points du
plan, et, dapres le théoréme de Newton, on a, 3 étant

un nombre f{ini,
MP NP,

MR=< MK, 7
Si, en outre, M est un point du lieu, on a aussi

MP s NP,
MO < MQ, —

Divisant membre a4 membre, on en conclut que, pour
tous les points M du lieu,

MOQ =< MO, 8
MR < MR, =

D’aprés ceute égalité, le rapport involatif d’un point
M da licu, par rapport aux couples de points de ren-
conire d’unc droite de direetion donnée avee les coni-
ques G et Gy, est constant, et il enrésulte, d’apres le
théoréme du n° VII du Chap. 11, que lelieu et une co-
nique passant parv les points communs des deux pre-

mieres.

XV. 8¢ dewx cones ont pour directrice une méme
conique, ils se coupent suivant une seconde courbe
plane. qui est une autre coniqgue (*). — Soient § et S,
les sommets des deux cones ayant pour directrice la co-
nique O (fig. 78); unissons S,S par une ligne droite

(") Depuis ma rédaction, je me suis apercu que la démonstration
géométrique de ce théoréme se trouvait dans le Cours de Geéome-
tric descriptive de M. Ch. Brisse, II¢ Partie, p. 2.
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coupant le plan de la directrice en P. Par la droite SS,
faisons passer un plan variable coupant celui de la di-
rectrice suivant la droite PAB ct les deux cones suivant
les deux couples de génératrices SA et SB, S, A et S, B.
Ces deux couples de génératrices se coupent aux points
A, B, v, wy; les points A, B décrivent la directrice, les
points ©, w, la scconde partic de I'intersection qu'il
faut démontrer étre plane.

el

Fig.

~

Or la droite w, w est la polaire de P par rapport aux
deux droites 0, S, ©,8,; il en résulte que les points ¢,
7, ol elle rencontre PS, et PB, sont conjugués harmo-
niques de P par rapport aux couples de points § et Sy,
Acet By le point = est fixe, puisque P, S et 8, e sont,
¢t quant a v, il déerit la polaire MN de P par rapport a
la conique; les points w, w; sont donc situés dans le
plan :MN qui est fixe, ct, en conséquence, la courbe
qu'ils décrivent est plane.

XVI. Note. — Le théoréme de Pareus nous a servi
aun® VI, Chap. 11, pour établir un théoréme important
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par ses conséquences, soit pour fournir une construc-
tion relativement simple des points communs d’une co-
nique et d'une droite, soit pour établir d’'une maniére
immédiate le théoréme de Desarcuss.

Il nous a paru intéressant de montrer comment, du
méme théoréme de Parrus se déduit le principe de des-
cription d'une conique par le point d’intersection de
deux rayons homologues de deux faisceaux hemogra-
phiques, et c’est la le but de la présente Note, par la-
quelle nous allons terminer notre étude.

Lemve 1. — Considérons un faisceau de trois droites
issues d’un point S (fig. 79), et une sécante qui les
renconire en a, b, ¢; le rapport des segments ca, cb

Iig. 9.

2 by c

\ ,,
m
P

est égal a celui des aires des triangles Sam, Sbm

ayant pour bases les rayons Sa, Sb, et pour sommetun
point m quelconque situé sur lerayonSe.

En effet, les deux triangles Sac, Sbe, considérés
comme ayant leur sommet en S, ont méme hauteur et
sont proportionnels a lcurs bases; et, si on les considére
comme ayant leurs sommets cn a et b, ils ont méme
base ct sont proportionnels & leurs hautcurs, d’ou les
égalités

. ZEZ_Sl)c:bq‘
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ap et bg étant les perpendiculaires menées de a et b
sur Sc.
D’ailleurs, les deux triangles amS, bm'S ont aussi
méme base et pour hauteurs ap et by respectivement;

des lors,
ap _ mas
bg ~ mbS’

cl. par (tompnrnison avee les égalités précédentes, on a

o mas

b mhs’
b . ’
ce quon voulait démontrer.

Levoe Ho — Le rapport anharmonique des quatre
points ay b. ey d, ol une droite coupe les rayons d’un

co da

falsceau S.abed ( /1;, 8()), sott o

s esl (l'gul au rap-

IFig. Ro.

port des rapports des distances de deux points m et n
pris arbitrairement sur les rayons Sc, Sd. aux rayons
Naet Sb, respectivement, soit ne-, e

mqg " oneg,
perpendiculaires sur Sa, et my, ng, perpendiculaires
sur Sh.

s mp, npy Slant

Eneffet, et d’aprés le lemme 1, on a

ca mas
ch T mhS

Avende Mathemat.. 3esérie, LNL (Aveila8gr.) 2
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da . nas.
db T b s’

divisant membre & membre,

ca _da maS na$
ch " db mbS’ nbs’

ou
ca da maS mbS

b db naS " nbS’

mais les couples de triangles maS et naS, mbS et nbS
ont mémes bases et sont proportionnels i leurs hau-
teurs; done, substituant aux rapports de ces triangles
ceux de leurs hauteurs dans la derniére égalité, on a

ca da mp

e = A Q. LD
ch " db T g T ong, “

Soit actucllement une conique ABDMNC : construi-
sons deux faisceaux ayant pour sommets deux points A

et Cde la conique, et dont les rayons homologues se
coupent sur cette comrbe en By D, M, N (fig. 81); il
s’agit de montrer qu’ils sont homographiques, <’est-
a-dive que les deax faisceaux A.BDMN, C.BDMN, ont
méme rapport anharmonique. Pour le démontrer, cou-
pons les deux faisceaux par la transversale #, o, et des
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points M ct n abaissons Mp, Np, perpendiculaires sur
AB,de méme. Mg, Ng,sur DC; My, Nr sur BC; Ms,
K 7 1 : i bl s
Ns, sur ADj il suffit de montrer égalite des deux rap-
. va  da NP
ports anharmoniques 7 spet i i
i h It 2

vz oz Mp Ny,
~3785 7 Ms Ny,
el
va' s Mse Npg
TR Mg TNy

dés lors, il sulfiv d’établir,

Mp  Npy Mreoo Ny
Ms © —\—:91 - \T(_j ’ ir/]
ou

Mp M= Npy Npy
Ms " Mg Ns; T Ng

ce qui est évident d’aprés le théoreme de Parrus,
ABCD coustituaut un quadrilatére inserit, et d’apres les
égalitds

Mp > Mg == 2=Mpr > Ms
ol

Npy > Ng;=2Nr; < sy,

Ines sous les formes

Mp Mr o Ny Ny
Ms Mg T YT NS Ng

(Fin)



REALISATION ET USAGE DES FORMES IMAGINAIRES
EN GEOMETRIE.

CONFERENCES DONNEES PAR M. Maxinniniey MARIE
au Collége Stanislas, a4 Sainte-Barbe, a I'Ecole Sainte-Geneviéve
et & I'lscole Monge ().

22, Les periodes de la quadratrice d’une courbe
algébrique peuvent encore disparaitre en devenant in-
finies. — Lorsqu’un anncau de la courbe réelle se trans-
forme en une branche parabolique, Paire correspon-
dante devient infinic ct la quadratrice perd une période,
parce qu’elle w’est plus exprimable.

Il en est de méme lorsque Pune des deux branches de
la courbe réelle, qui comprenaient des anneaux fermés
de conjuguées, passant i infini, ces conjuguées devien-
nent paraboligues.

C’est ainsi que Ja quadratrice d'une conique perd sa
période ct devient algébrique lorsque cette conique se
transforme en parabole. Si 'on considére cette parabole
comme dérivée de Pellipse, Vaire de cette ellipse, qui
formait la période réelle de la quadratrice, est devenue
infinic et a disparu. Si, au contraire, on considére la pa-
rabole comme dérivée de 'hyperbole, une des branches
de cewte hyperbole a passé i liufini, I'aire commune des
conjuguées de cette hyperbole a grandi indéfiniment et
la période imaginaire est devenue infinie.

1l en scrait ¢videmment de méme si des anneaux de
I'enveloppe imaginaire d'un licu devenaient parabo-
liques.

) oir tOING puodos.
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Mais la théorie des quadratrices des courbes parabo-
liques offre aujourd’hui des diflicultés inabordables.

Ces courbes présentent, avee les courbes pourvues de
points doubles a distance finie, cctte analogie géomd-
trique que ni les unes ni les autres n'ont jamais, cu
égard & leur degré, le nombre maximum de tangentes
paralléles a une direction donnéc, ct peut-éire est-ce la
Je point de vue ou il faudrait se placer pour en faire
I’étude, car toute réduction dans ce nombre de tangentes
e¢n améne forcément une correspondante dans le nombre
des anneaux fermés, mais il n’y arien de fait a cet égard.

Nous ne nous occuperons done plus des courbes para-
holiques.

Au contraire, c¢ que nous nous proposons est de
chercher, d’abord, le nombre des périodes de la quadra-
trice de la courbe la plus générale de degré m et de voir
ensuite comment elle pourrait les p(‘rdre toutes succes-
sivement, les coefficicnts de I'équation de la courbe
n’étant alors liés entre eux que par le moindre nombre
possible de conditions. En d'autres termes, nous vou-
lons déterminer la courbe la plus générale de degré m,
dont la quadrature serait algébrique.

23. D’une réduction accessoire d’une nouvelle unité
dans le nombre des périodes de la quadratrice, au
moment de la formation d’un point double & distance
finie dans la courbe correspondante. — Cette réduc-
tion se produit nécessairement au moment de la forma-
tion d’un point double qui fait évanouir la représentation
séométrique d'une période, parce que deux anncaux,
entee lesquels était compris celui qui vient de se réduire
“un point unique, viennent se confondre en un scul
circuit, en forme de huit, ot il n'est plus possible de
distinguer les deux anncanx I'un de Pautve, la condition
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de continuité obligeant le point décrivant [, y | a par-
courir les deux boucles en avancant toujours dauns le
méme sens.

Il suflira d’établir le fait dans le cas le plus général,
parce que les périodes de la quadratrice de la courbe la
plus générale de degré m devant, dans tous les cas par-
ticulicrs, rester les mémes fonctions des coefficients, si

Fig. 20.

P m— K
%
T« P

Pon peut constater, dans un cas absolument général,
que la formation d’un point double entraine la dispari-
tion de deux périodes dans la quadratrice, on pourra
conclure a la méme coincidence dans tous les cas parti-
culiers.

Supposons que la courbe ait toutes ses asymptotes
réelles et que ce soit un anncau fermé de la courbe
réelle qui doive s’évanouir : menons a cet anneau deux
tangentes paralléles qui n’aient la direction d’aucune
asymptote : les conjuguées du licu qui toucheront I'an-
neau considéré aux points de contact des deux tangentes
parall¢les seront néeessairement fermées, quelque loin
qu'ils s’étendent d’ailleurs, parce que la conjuguée a la-
quelle ils apparticndront, n’ayant pas d’asymptotes,
n’aura pas de branches infinies; les produits par \/— ¢
des aires de ces deux anncaux formeront deux périodes
imaginaires de la quadratrice du lieu.

Mais au moment ou ’anncaun de la courbe réelle s'é-
vanouira en un point isolé, les deux anneaux de la con-
juguée se rejoindront au point isolé et s’y couperont
sous un angle, an lieu de s’y toucher, de sorte que les
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deux périodes, précédemmem distinctes, s¢ fondront en
unc seule égale & leur différence.

Il en serait évidemment de méme si I'anncau qui de-
vrait s’évanouir appartenait a une conjuguée ct était, au
contraire, compris entre deux anncaux fermés de la
courbe réelle. Seulement les deux tangentes a la courbe
aw point double seraient alors réelles, au lieu d’étre
imaginaires.

Ainsi la formation d’un point double doit entrainer
une rédaction de deux unités dans le nombre des pé-
riodes. Le méme fait, au reste, se reproduirait dans les
meémes conditions si, un huit s’étant déja produit, il se
formait un nouveau point double sur son pourtour. Scu-
fement, au lien de deux boucles, il s’en présenterait trois,
en continuité entre elles.

i B —

Les trois boucles seraient, en tous cas, de méme na-

ture, ¢’est-i-dire toutes les trois réelles ou toutes les trois
imaginaires.
En résumé, on doit admettre que la formation de p
points doubles dans une courbe entraine une réduction
de 2 unités dans le nombre des périodes de sa quadra-
trice.

2%. Des autres conditions dans lesquelles peuvent se
produire des réductions dans le nombre des periodes.
-~ D'autres réductions peuvent étre amendes par beau-
coup d’antres circonstances : ainsi une période repré-
sentée par Paive d’un annean en forme de fuit disparaitea

Im‘squu les aires des deus boucles seront ¢eales: deax
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périodes représentées par les aires des deux anncaux
fermés de la courbe réelle se réduiront a une scule si
ces aires sont égales, etil en sera de méme si les anneaux
fermés de conjuguées, compris entre des branches dis-
tinctes de la courbe réelle, présentent la méme aire, etc.

C’est ainsi, par exemple, que la quadratrice de la
courbe

Vi ri= at
ne comporte que deux péri()dcsg cL:\/:T, w dési-
gnant 'aire de Panncaun de la courbe réelle; compris
entre les droites & =— 2= @ et 3 = == «. Mais aussi, dans
cet exemple, Ta courbe réelle, ses conjuguées a abscisses
et a ordonndes réelles, et enveloppe imaginaire de ses
conjuguées se confondent géométriquement.

Mais dans ces derniéres circonstances, la disparition
de chaque période - manquante tiendra a la présence
d’une relation particuliére entre les cocflicients de Iéqua-
tion de la courbe, tandis que la relation unique qui in-
troduit chaque point double entraine une réduction de
deux unités dans le nombre des périodes, de sorte qu’a
¢galité dans le nombre des périodes restantes, la courbe
dont Péquation contiendra encore le plus de paramétres
indépendants sera celle pour laquelle la disparition des
périodes manquantes sera déterminée exclusivement par
la formation de points doubles en nombre sullisant,
c'est-d-dire en nombre p, s'il a disparu 2p périodes.

25. Du nombre maximum de points doubles et du
nombre maximum de périodes non cycliques. — Si
une courbe de degré m se résout en deux autres, 'une
de degré (m — ¢q), et Pautre de degré ¢, n’ayant ni 'une
ni Pauwre de points doubles, le nombre des points dou-
l‘l('s (.l(A la "()ul'l)(' ('()“IP()S(_:(' sera

ANZIE N
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si a son tour la courbe de degré g se résout en deux
autres, de degrés (g —r) et r, navant pas de points
doubles, la courbe décomposée présentera

(m—agXg—ri+(m—q)r+rig—ry=(m—qg)qg+r{g—r)

points doubles.

1l en résulte que, plus une courbe de degré m se seg-
mente en courbes de degrés moindres, n'ayant pas de
points doubles, plus elle présente de points doubles.

Le nombre maximum de points doubles que puisse
présenter une courbe de degré m correspond done au cas
ot elle dégénére en m droites, ¢t ce nombre est

mim —1)
L

 veste alors 2 m coeflicients indépendants dans équa-

tion de la courbe, au lieu de

Cot == =)

9
les cocllicients de la courbe satisfont done alors a

(m =+ )(m—+2) minm — 1)

— 1 2M = e — —

2 °2
conditions.

mim —1)

Mais de ces conditions, il y en a (m—1)

fjui exprinent que les m périod\'s c‘\r’c]i(‘]ues sont nulles,

puisqu’elles le sont en elfet, et les

mm—1) (m——a)(m —1)
— (M =)= —————
2 2
aulres expriment chacune la présence d'un point double

dams 1 eaurhe.
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Si Pon supprimait les (m —1) conditions qui expri-
ment que les m périodes cycliques sont nulles, lesquelles
Ym — 1)

" condilions
2

. . (m
peuvent s'exprlmer a part, Jes

restantes exprimeraient encore la présence d’autant de
points doubles, ct, les (m — 1) premicres étant retivées,
la courbe redeviendrait irréductible.

Donc le nombre maximum de points doubles d’une
courbe irréductible de degré m est

(m —1)(m—2)
! ’

ct, par conséquent, la quadratrice de la courbe la plus
générale de degré m comporte

(m —0)(m—2)

ériodes non cycliques, et, si 'on rajoute les (e — 1)
1 Y s €Ly ] )
ériodes eveliques, on obtient (1 — 1)2 pour le nombre
1 yehiques, i
total des périodes de toute nature.

On conclut de cette théorie :

1 Qu’une courbe de degré m, qui présente

(m —2)(n —1)

e
points doubles ¢t que toutes ses asymplotes coupent
chacunc en trois points situés a Vinfini est guarrable
algébriquement s

wune courbe de degré m qui présente

'’ be de deg qui y t

(m—2)(m—1)
2

points doubles, mais dont les asymptotes sont quel-
conques, est quarrable par les fonetions civculairves in-

verses on par les fonetions logarithmiques;
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Qu’une courbe de degré m qui présente

(m —1)(m—2)
o Tt
points doubles est quarrable par les fonctions circulaires
inverses et par les fonctions doublement périodiques;
2° Que la courbe la plus générale de degré m, quar-
rable algébriquement, est celle qui présente

(m —1)(m —2)
—, z

points doubles et que ses asymptotes coupent chacune
en trois points a Pinfini;

Que la courbe la plus générale de degré m, quarrable
par les fonctions circulaires inverses, est celle qui pré-
sente LT l>2(£7_1) points doubles;

Que la courbe la plus générale de degré m, quarrable
parles fonctions circulaires inverses et par les fonctions
doublement périodiques, est celle quj présente

(m=—nm—2)_,

2
points doubles, cte.

Mais il ne faudrait pas conclure, du mode de quadra-
bilité d'une courbe, au nombre de ses points doubles,
parce que, comme nous 'avons dit, le nombre des pé-
riodes peat se réduire dans toutes sortes de circon-
stances. Ainsi la courbe ) + x' = a* cst quarrable par
les fonctions & deux périodes, ¢’est-a-dire par les fone-
tions elliptiques, et cependant clle ne présente aucun
point double. (A suivre.)
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GENERALISATION D'UN THEORENE SUR L'EQUILIBRE
DES SURFACES FERMEES (*);

Par e P. Ca. ROBERT, S. J.

Lemwie I. — FEtant donnée une surface fermée,
prouver quc (f(r.vfbl'(:m normales ¢ cette .clu"/hce et pro-
portionnelles a ses éléments se font équilibre.

La force I appliquée au point M est égale a

wdrdy i+ pr+ o2

ou, plus simplement, &
1w dw.

Imaginons un cylindre trés petit, parallele a Oz. Ce

Fig. 1.

| o

cylindre va déterminer un sccond élément ou, en gé-
uéral, un nombre paic ’éléments, puisque la surface st
fermée.

(') Les deux lemmes et les deux premicrs théorémes sont extraits
(en substance) du Journal de Liousille. ve série, to XTI, p. 243,
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La force appliquée en M est
mdw,.

Décomposons chacune des deux forces en trois paral-
leles anx axes. Les deux composantes suivant Oz sont

wdow cosy
et
1 dwycosyy.
Oron a
Bdw cosy = dwy cosyy;
car dwcosy et dw, cosy, représentent N'une et autre Ja
section droite du cylindre considéré.
Donc les deux composantes suivant Oz sont égales et
de sens contrairves, donc elles se détruisent.
On démontrerait de méme que les composantes sui-
vant Ox et Oy se déiruisent, done la surface est en
¢quilibre. C. F. Q. D.

Levve 1. — Soient deux surfaces paralliles, A et A
dewx points correspondants, ¢est-a-dire situds sur une
normale commune, ds et ds' les éléments superficiels en
ces pointz, et ds la distance constante des deux sur-
faces. Prouver la relation

ds' —ds=dsds |+ + ' >,
RTR
R, X' érant les rayons de courbure de la premicre sur-
Jace au point A.

Je décomposc ds en éléments infiniment petits for-
més par quatre lignes de courbure de la premicre sur-
face.

Les lignes de courbure sont orthogonales.
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A'B'CD" donnent les lignes de courbure de la surface
parallele (car les normales coincident).

On a, dans les triangles OA'B, OAB,

%= dr R+ ds

d’ou, successivement,



ct
ds
Iz = 225
‘ d~ R
(n ¢ de méme.
S ds
' db = 1_(_.
L ="y
Or
ds = af3,
ds" = (2 + da)( B+ d3),
d’ou

ds'— ds = 2.d3 + P da,

en négligeant o d infiniment petit d’ordre supérieur.
Donce
ds ds

ds' —ds = af =, + 28 -—,

R "R

ou, d’apreés les formules (1),
) P L1)s

/1 I
ds=dsds {4+ LY.
ds' — a (’us(\“ R’> C.Q.F. D
Trtorkme v M. Benrraxn. — 8i lon applique @

une .\'I{I'ﬁlCC ﬁ?l'l}lé(? (l(’S /;)I'C(fS IIOI'III(IZ(?S et propor-

i i . ..
il ) » ces forees se font équilibre.

tionnelles a d= < n
1

En effet, soit une surface paralléle a la premicre. A
la surface proposée j'applique des forces — wds; ces
forces se font équilibre (lemme I). A la surface paral-
lele distante de ds Japplique des forces + wds'; ces
forees se font équilibre (lemme1). Donesur chaque nor-

. l Y . . ’ \
male jai des forces égales a

w(ds'—ds),
cest=d-dire, en vertu du lemwme I, a

I [
S~ 7¢ .. Pr——" .
u s dls ( R -+ l’\')
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Tutorime v M. C. Jovwerr. — Si Don applique

& une surface fermée des forces normales et propor-

ds
tionnelles a TR Jorces se font équilibre.

Fn elfet, ala premiére surface Japplique des forees
égales a

)

a la deaxieme surface japplique des forces égales 3
7 1 N\

1
- gds [ ——— ]
s ( R — ds R+ ([.s')

Ces forees se font équilibre sur chaque surface,
d’apres le théoréme de M, Bertrand.

Cherchons la résultante sur chaque normale : cette
résultante a pour expression

L 1 ! 1 : I 1
w7 (5 = ) — 2 (- o)

(ll],()]] U‘ansform(: successivement en

S [RRds R ROV T L[
v N R s ned&]"‘“’[n"‘x

\ ds(R=R)(R+ ds+-R'--ds) = RR(B + /s 4 R’ + ds)
—(R-+ fi/‘)(liﬁ—(/.v)(i{';.;/x
RR'(R ~+ds) (W =+ ds) o

—\-—-

(
1 ds T T
ou, en négligeant les infiniment petits d’ordre supérieur,

20 ds ds - €. Q. F. D.
I’H Q- F

Cela posé, voici les théorémes que nous nous propo-
sons de faire connaitre :

5

Tuvoriate. — S0 lon applique & une surface, for-
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mdce des forces normales et proportionnelles « le—z,
ces_forces se font équilibre.

En effet, 4 la premiére surface j’applique des forces
égales &

ds L
HRR
a la seconde surface japplique des forees égales a

+ pdd’ »_—*—'—ﬁ—wﬂ .
(R +ds) (R = dy)

Sur chaque surface ces forces se font dquilibre,
d'apreés le théoréme de M. Joubert. Je cherche la résul-
tante sur chaque normale. Cette résuliante a pour ex-
pression
1

o dg’ —nds =
SR ds) (R ds) ¢ RR’
O
o N RR'+(R+R')ds |
ds' = ds [1 -+ ds (—H— -+ E—,)J =ds I— RRTTT I,
done sur chaque normale j’ai la force
w ds RR'+ (R R’") ds 1 v
' RR’ (R +—ds)(R' =+ ds) RR

La quantité entre crochets, devient

RR'+ (R+ R')ds—(R + ds)(R' = ds)
RR' (R +—ds) (R + ds) o
_ RR+~(R+R)ds—RR —(R+R')ds — ds*
- RR (R +ds) (R +ds) ’

On a donc sur chaque normale des forces égales a
— pds ds?

RzR"
Ann. de Mathémat., 3¢ série, t. X. (Avril 18g1.) 13
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c'est-a-dire des forces proportionnelles &

ds C.Q.F.D
R2R'2 TEr T
Tatorime cixtrar. — Plus généralement une sur-

face fermée quelconque reste en équilibre sous l’action
de forces normales et proportionnelles a
N,ds
T{n B’li ’
N, désignant l'cxpression
oR TR

Np = Npoi (R R') (5 — 2) + RR’ <‘)N”" : "N"“>.

Considérons d’abord le cas de n = 3.
Il y a sur chaque normale unc résultante égale a

o [ RR 4 (R R") ds ' '
pas]- RR’ (R+dspp(R—+dsp TReRr:)

Je néglige an numératcur les termes en ds?, ds3, ...,
et je ne w’occupe pour le moment que de la partie entre
crochets

[RR'+ (R~+ R') ds] RR'— (R + ds )2 (R'+ ds)?
o T2R2 (R -+ ds )2 (R + ds 2 ——

Le numérateur devient successivement

iR2R2+ (R + R'") ds RR'— (R = ds )2 (R + ds)?,
R2R2 4 (R + R")ds RR"— R2R2 — o (RR2+ R'R?)ds — . . .,

—~ RR'(R + R') ds.

Nous avons donc sur chaque normale des forces
égales a
1)

RR(R+R) g R+R

—pdsds =R RS
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ce qui vérifie la loi énoncée, vu que
Ny =—(R+R').

Vérifions encore pour n= 4.
On a sur chaque normale une résuliante égale a

o [RR A (RROds (Reds) (R+ds) R+ R
was RR’ (R dsp (R = dsp RS R ] ’

c'est-a-dire

I —(R+R)(R+ds)?(R'+ds)y

V[RR 4+ (R+R) ds]R2R2 (R =+ ds+ R’ ds) ] )
i
R3RB(R—+ ds)3(R'+ ds)3 ’

pds

Le numérateur devient, en négligeant les termes en
g 63
ds2, ds3, ...,

RIR3(R = R) — (R + R R3R®
+ds[(R+—R)2R2R2+-2 R3IRB— (R+ R)(3R3R2+-3R2R3)),
ds R2R2[— 2 (R + R")2+2RR'],
ds R2R2(— 9 R*— 2R2— 4RR'+ 2RR’):

done, aprés réduction, la fraction devient

2 ds(R2+=R2+ RR")
R¥R'* ?

ce qui est conforme & la loi énoncée, vu que
N, = — o2 (R2+ R2+ RR").

Il reste & montrer que laloi, étant supposée vraic pour
n—1, est vraie pour .

Je suppose donce qu'unc surface fermée reste en équi-
libre si on la soumet a des forces dirigées suivant la
normale en chacun de ses éléments et proportionnelles
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C Neer . ..
A e Je dis que la surface est encore en équi-
. . 0 . h N"
libre si les forces sont proportionnelles a R
En effet, raisonnant comme dans les cas précédents,
Jaural sur chaque normale une résuliante égale a

do | RR+(R+R)ds  Nijert+dy N, ]
" BRI (R—dsy 1 (R +dsyn—1 _ Ra-1R-1

en désignant par N =45 K+49 Je pumérateur N,_, dans
lequel on a remplacé R et R par R+ ds et R'+ ds;

¢’est-a-dire

\

‘ [[Re-R=1 4 (R R') dsRa—2 R/a-2 ] N} ds W dsng
— N (R ds)=1 (R + ds)n—2 )
Rr—1 R’/z——l( R -+ ds v)n—l (l{' —— ds)n.——l

(a) pds "

Je ne w’occupe pour le moment que da numérateur.
Le développement de N s, Rt-ds) par la formule de

Taylor a deux variables donne
SR = ds, R+ ds) = f(R, R') (_"—ds+_d— ds) f
. ' ! ¢ ’ - \dR JR’

1 0 0 2
_‘_T‘l<(—)ﬁ— dS*mdS) f'-.—,
cest-a-dire
ON,— ON 1
(R4 ds, R'+ds: _ W not, Zin—t
N = Nuo f(_ R R )‘{‘
I ON 1 . ON 1

—’—?“—2' \-—_GR g ——OB, ) [13:‘"'—....

Passant au dénominateur, ct développant (R —+ ds)~
et (R'+ ds)"=* par la formule du bindéme, on a
(R + ds)n=t = R=t 4 (n—1) Rn—2 ds + (_n_——_l}(ﬁn_—_z_)Rn_a ds?+. ..

(R'+ dS)” “t—=Rn4 (n— I)R'""idx -+ M_

—2) R'n-2ds2+.. .-
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Les premiers termes du produit

(R4 ds)n 1 (R =+ ds)n-1
sont donc

Rn-1 R'n—-1 ._;_( n— I) (Rn—2 R'n—1 + R'n-2Rnr~1 ) ds
+(..)ds2 4.

Cela posé, je reviens a la formule (2). Au numéra-
teur les termes finis

Rr-1R'n—-1 Nyoy— N,—g Re—-1R'n-1

se détruisent, et le coefficient du terme en ds a pour
expression

, ONp—y | ON,y
-1 -1 -
Rr-1R'n < ) + JT
—(R+R)Rr—2R'""-2N,_; —N,_; (n —1)R#—2R'»-2(R+R).

La formule (2) peut donc s’écrire (en négligeant les
termes en (s2 au numdéraleur et ceux en ds au dénomi-
nateur),

3 Bes | ) , , [ON = ON,—
=2 R'n—2 [Nn—l(R -+ R")(2 — n)+ RR < 0';{ L IR 1)]
) - Ren—2R'2n—2 T

¢’est-a-dire
N,

—_—. C.Q.F.D.
Rn R'n

ERRATA AUX TABLES DE LOGARITHMES DE SCHRON.

Page 18, log. de g830q. aw licu de 0.9025933, lises 0,992 5033,
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EXTENSION AUX PSEUDO-SURFACES DU THEOREME DE MALUS
RELATIF A LA MARCHE DES RAYONS LUMINEUX;

Par M. v'appi ISSALY.

Tuatoreme. — St des rayons lumineux sont normaux
& une pseudo-surface, ils jouissent encore de la méme
propriété aprés un nombre quelconque de réflexions
et de réfractions.

Il suffit d’établir le théoréme pour le cas de la réfrac-
tion, celui dela réflexion pouvant éire considéré comme
correspondant a une réfraction d'indice n=—1.

Nous suivrons, en cela, la méme méthode que M. Dar-
boux, pour le cas des surfaces (Lecons sur les surfaces,
n° 450).

M P)

Az

Soit (Fy) unc pseudo-surface quelconque tangente
en M au plan (P) et (ue nous envisageons, méme phy-
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siquement (nos vechierches antéricures sur la surface de
I'onde nous y autorisent, croyons-nous), comme la li-
mite de séparation de deux milieux. Soient MN la nor-
male au plan (P), et (8), (8') les deux courbes généra-
wrices de (I,), respectivement tangentes aux axes M,
My situés dans ce plan. Associés a la normale MN, ces
axes constituent le triédre mobile MNxy, auquel nous
supposerons la surface (F,) médiatement rapportée.

Choisissons comme triédre de référence un triédre
trirectangle quelconque OXYZ ou (T) et désignons
par (2, B, 1), (¢ &5 ¥')y (24s Byy 1v) les cosinus direc-
teurs, par rapport a ce triedre,’ des rayons, incident ct
réfléchi, MA, MA’ et de la normale MN.

simni

Pour que la loi de Descartes, = soit vérifiée,

il faut et il suffit que la diagonale ¢ du parallélogramme
construit sur les longueurs 1 ¢t n, respectivement por-
tées sur MA et MA’, coincide avece le prolongement de
MN.

Ccla étant, si I'on projette sur les arétes du triedre (T')
les trois longueurs précédentes, on aura

) ;A
5 o 4+ na'= oay,

g+ nf'=2,

(1)

- 1 n’—-'\~
[ Ry = 0y,

Or, pour tout déplacement sur la pscudo-surface (I%,)
dua pied de la normale MN, on a la relation évidente

(2) 1y dX + By dY -y, =0,
¢nméme temps que les conditions

dX =ads+ a' ds'.
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propres a caractériser la pseudo-surface (F,) et dans
lesquelles (a, &, ¢), (a', &', ¢') désignent les cosinus di-
recteurs de Mx et de My.

Substituant les valeurs (1) dans la relaton (2), il
vient

(3) (2dX 4+ B8dY +vdZ)+ n(«dX+B'dY ++y'dL) =o.
Ceci posé, prenons deux points (correspondants)

fixes M, et M), le premier, sur MA, a la distance p, le

deuxiéme, sur MA’, a la distance — % du point M. Les

coordonnées de ces points pourront éire représentées
par les systémes

X;=X —pa,

(M) Y=Y — 8.
( Ly =7 —pv;

S\'_\Ti

(2
(M) CYi=Y+ip
'2,1:ZTI Y

Si maintenant on admet que le rayon incident MA
soit mormal en M, i une pseudo-surface déterminée
(I',,), on aura, pour tout déplacement infinitésimal de

M, sur (F,),

() adX;+BdY,+(dL, = o,

ct comme
dX; =dX —ads-—pda,

il s’ensuit que

)

(5) 2dX + 8dY + y dl = ds.
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Remontant & I'équation (3), on en tire

n

(6) a’dX—&—r@'dY—L—*('dZ:._d(E).

D’autre part, des coordonnées du point M, on dé-
duit

dax;, =dX+a’d(%>+ ¢,
\

systeme de valeurs qui, eu égard & (6), entraine comme
conséquence

- ' ‘& o N L T
(7) a'dX| +B'dY| -+ dL| = o.

En rapprochant cette derniére relation des relations
A . ) .
analogues (2) et (4), on voit qu’elle exprime que le
rayon réfracté MA’ est normal en M) 4 une nouvelle
pscudo-surface (F,,), pseudo-surface, d’ailleurs, par-
faitcment déterminée, elle aussi, puisque, a chaque
’ s P que,
point My (F,, ), correspond un point unique M/ de (F,,).
Le théoréme généralisé que nous avions en vue se
trouve done par la-méme établi.

SUR LES PERIODES DES INTEGRALES ELLIPTIQUES ;
Par M. V. JAMET.

On connait la relation

ww)] — v = —7

2my =7
k2

. . , . / ! g ) 3o
ui existe entre les périodes 2w, ' et 204, O, des inté
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grales elliptiques de premiére et de seconde espéce, au
module k. Cette relation tire son origine de considéra-
tions purement analyliques; mais il n’est pas sans in-
térét de constater quon la rencontre quand on veut
évaluer le volume de Dellipsoide au moyen des coor-
données elliptiques.

Voyons d’abord comment, au moyen de ces coordon-
nées, I'expression de ce volume va se réduire a une in-
tégrale double.

Soit

I'équation de Pellipsoide, ot Ponsuppose a>>5b>c¢>o.
On peut exprimer les coordonnées d’un point (.r, v, z)
de cette surface par les formules suivantes

a(a—+ p)(a—+v)
(¢« —b)y(a—=c)’
b DD +u)(b+v)
) )T (b—ay(b—c¢)’
clc+p)(c+v)
(c—ay(c—b)’

3
I

)

1Y)

ct I'on obtiendra tous les points possibles de cette sur-
face en faisant varier y, par exemple, entre — aet — b,
v entre — b et — ¢. Ceci résulte du mode de séparation,
bien connu, des racines de DPéquation du troisiéme
degré en p

N

pecs 2 52

—+
a+p bap c+p

=1I.

L’expression d'un élément de surface de I'ellipsoide
est le produit des dillérentielles des arcs des deux lignes
de, courbure, qu’on obtient, I'une en faisant varier &
et laissant v invariable, 'autre, au contraire, en suppo-
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sant v variable et p constante. Soit ds cet élément. On
trouve
V—ids= \/}:;(H“")d.““’",
AV () F)
en posant
f(e)=(p+a)(p+0)(p+c).

On calculera le volume infiniment petit du céne qui
a pour directrice le contour de ds ¢t pour sommet le
centre de la sphére, en multipliant Iexpression de ds
par le tiers de la distanuce du centre au plan tangent
a Dellipsoide au point (p, v). Soit p cette distance.
On a

at

—_ A

N 5
42
a? b2 c?

x,7, 2 désignant les coordonnées cartésiennes du point
de contact. Mais, & cause des formules (1),

i)

2 g2 e

+ =
02 22 abe

-+

308

iy

Donc I'élément de volume d’un ellipsoide a pour
mesure
V—1 (p—v)dpdy
Vo)

Mais, a chaque systéme de valeurs de w, v correspon-
dent huit points de V'ellipsoide; done son volume total
est égal a

ayabe ,— —0 ~_“(‘u——v)dévf._(_lz'
s Y '/ /_b Vi 7 ()

Posons maintenant

#=—bsn2y —ccn2y =—c—(b—c)snig,
v=—c¢ —(b—c)sn2y,
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le module &2 des fonctions elliptiques employées étaut

. b—e¢

égal A ——s et cherchons les valeurs o, ¢, de I'argu-
ment ¢ qui correspondent & p=—a, p =—>, et les
valeurs ¢, 4, de ¢ qui répondent a v=—a, y=—12.

Nous trouverons
dn2gy=o, cn2d; = o,
et nous pourrons supposer

W — Wy
0= (>
2

-6
ERRS

De méme
cn2g, = o, sn?2y; = o,

et nous pourrons faire

w

‘J‘J]:;; q/u:O.

Alors I'expression du volume se transformera comme
il suit :

0

0
f (sn20 —sn2d) do d¥
)]

3 »+ W,
Lrore
o
—— 2 0
W) [ [y
3 l +w, ®
p S
0 2
—f d(,‘/f sn2o do
[2) W+ w,
2 2

2(wyw' — ww)).

aabe —
-5 V—ik

Comparant cette expression avec I’expression connue,

txy\Jabc, on trouve la formule qu’il s’agissait d’établir

' ' 27y —1
wyw — ww| = e
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SUR LE THEOREME GE)‘EML RELATIF A L'EXISTENCE DES
INTEGRALES DES EQUATIONS DIFFERENTIELLES ORDI-

NAIRES (1); ,
Par M. EmiLe PICARD,

Membre de I'Institut.

1. Envisageons le systéme des 2 équations du premier
ordre

du .

o = fi(r u,e . oow),
v .

ur = folx,u, v, oo, ),
dw
AT

Les fonctions f sont des fonctions continues réelles
des quantités réelles &, w, v, ..., o dans le voisinage
de @y, wgyvo, -+ oy wo. Elles sont définics quand ., u,
vy « .., v restent respectivement compris dans les inter-
valles

(ro— ty Zy—+ ),
(wy— b, uy+0),
(99 — b, vy =),

@ ¢t b désignant deux grandeurs positives.

De plus, on suppose que Ton puisse déterminer n

(") Celte démonstration si remarquable a été publice dans le
Bulletin de la Société mathématique de France (t. X1X; 1891).
Nous avons cru devoir la reproduire en faveur des candidats a la
Licence et 4 Agrégation.

Ann. de Mathemat., 3¢ séric, t. X. (Mai 18g1.) 14
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quantités positives A, B, ..., L, telles que

|flz,u', ¢, oo, ) — fa,u, e, ..., w)|
<AJu—ul+B. v —ol+.. .+ Lo —w]|

(ou |a| désigne, suivant I’'usage, la valeur absolue de a),
x ainsi que les u, v, ..., wrestant dans les intervalles
indiqués. Il en sera évidemment ainsi, en particulier,
siles fonctions f ont des dérivées particlles du premier
ordre, restant finies, par rapport a u, v, ..., w.

Ces hypothéses trés générales étant faites, on veut
démontrer qu'il existe des fonctionsu, ¢, ..., w de x,
continues dans le voisinage de x,, satisfaisant aux
équations différenticlles et se réduisant respective-
ment, pour x = Ty, & Ug, Vg5 - - -+ Vg

2. Nous procéderons par approximati(ms SUCCeSSIves.
Considérons d’abord le systéme

duy
—g;' :fi(l', Ugpy V0 ...,(VQ),
e P s
dw
Az —fn(l‘: Ug, Vo, y W0);

nous en tirons, par quadratures, les fonctions u,,
Viy «« o5y Wiy en les déterminant de maniére qu’elles
prennent pour x, les valeurs uy, vo, « .., @p. On forme
ensuite les équations

du,
dr =f1(I,ll1,Vy, w1 ),
dw,
T{;- = fu(®, 1, 0y, » ®1),

ct 'on détermine uy, v, « - ., 0, par la condition qu’elles
preunnent rcspectivement pour x, les valeurs ug, ¢4, -
#g. On continue ainsi indéfiniment. Les fonctions w1/
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Vi 1y -+ oy Wy scront lides aux suivantes wp, Yoy -« -,
wy, par les relations

du"}
ar S e, Oy )
dwnz
dx _fn(-T» Um—1) Vm=1+ -« oy Wp—q ),

¢l, pour x == xo, on a
U = Uy, Cm = 9y, ey W == 4.

Nous allons établir que, m augmentant indéfiniment,
Umy Vimy -« «5 W tendent vers des limites qui représen-
tent les intégrales cherchées, pourvu que x reste suffi-
samment voisin de x,.

Soit M la valeur absolue maxima des fonctions f,
quand les variables dont elles dépendent restent dan'
les limites indiquées. Désignons par p unc quantité au
plus égale 4 @ : si x reste dans l'intervalle

on aura
Jug — uy|<< Mg, . jwy— wo| < Mg,

Par suite, si Mp <0, les quantités wy, vy, ...y 10y
resteront dans les limites voulues, et il est évident
qu’alors il en scra de méme pour tous les autres sys-
temes de valeurs u, v, ..., w. Désignant par ¢ une
quantité au plus ¢gale a p, nous allons supposer que x
reste dans Pintervalle

(Zy—3, g+ ).
En posant

i — W
Um— 1= Uy, ey Woy— Wy = W ms
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on peut écrire

=f1 (2, Umery ooy V1) — f1 (L) Up—ay evy W pp—s)

= fn(xy Up—1y +=» “"//L-l)‘— ,fn(zy Upr=gs veey Wp—2)

Or on a
U < M3, ..., |Wy| <M.

Les équations précédentes, pour m = 2, démontrent
s | ’
ue U| R/Q § eee W sont inféricurs a
) I 2

(A-+B ...+ L)M2,

et, d’'une manié¢re générale, de proche en proche, on

voit que [Unl, «-., | Wy | sontinférieurs a

MB(A B ... Lym—1 3m—1,
* Or

Up=ty+ U+ Usg+...+ Upy;
par suite, 2y, Vmy « -+, Wy tendront vers une limite, si
(A+B+...+~L)d<1.
En prenant ¢ assez petit, cette condition sera véri-
fiée. Nous voyons donc que wpy ¢my -« -, W, tendront

vers des limites déterminées, w, v, ..., w, fonctions
continues de x dans U'intervalle

(ro— 9, g+ a).
5 étant la plus petite des trois quantités

b 1

“OM O AEBa...+ L

Uy vy « .., v seront représentées par des séries qui con-
vergent a la maniére d’une progression géométrique
déeroissante.
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On a d’ailleurs

X
Um = f J1(& ety ooy Wm—1) do + wy,
S

et, puisque les wmy 0y - oy Wy différent de leurs li-
mites d’aussi peu qu’on veut, pour m assez grand, quel
que soit x dans I'intervalle indiqué, on aura, a lalimite,

-
u:f Silz,u, 0,000, w)de + up;
Xo

ct, par suite,
du
T = filzr,u, 0, ..., w),
et de méme pour les autres équations. Les fonctions u,

¢y « v, wsont donc les intégrales cherchées.

AGREGATION DES SCIENCES MATHEMATIQUES
(CONCOURS DE 1889).

SOLUTION DE LA QUESTION DE MATHEMATIQUES
BLEMENTAIRES ;
Par M. E. GROSSETETE,

Professeur au lycée de Nevers.

On donne deux droites concourantes OA, OB et un
point P pris dans leur plan : 1° construire sur OA un
point M, tel que les deux cercles S et §' passant par les
points P et M et tangents & la droite OB se coupent sous
un angle w; 2° étudier la variation de I’angle sous le-
quel se coupent les deux cercles S, S' quand le point M
se déplace sur la droite OA; 3° soient Q et Q' les deux
autres points d’intersection des deux cercles S, §' avec
la droite OA; démontrer que le cercle circonscrit au
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triangle PQQ' est tangent & une droite qui reste fixe
quand le point M décrit la droite OA.

1° Supposons le probléme résolu et prenons la figure
inverse de la figure cherchée en choisissant le point P

RN
comme pole d’'inversion et pour puissance PO". Les
droites OA, OB ont pour inverses deux cercles a, b pas-
sant par P et O; les inverses des deux cercles cherchés
S et §' sont deux droites se coupant sous un angle o,
tangentes a la circonférence & et ayant leur point d’in-
tersection m sur la circonférence a. L'inverse du point
m est évidemment le point M cherché sur OA. Or m est
situé a la fois sur la circonférence a et sur la circonfé-
rence concentrique i b, licu des points d’ou 'on voit b
sous Pangle w. Ces deux cercles se coupent générale-
ment en deux points m, m’, auxquels correspondent deux
points M, M’ a I'interscection de OA et des rayons P,
Pn/. Il v aura done, en général, deux solutions.

2 Frudions la variation de I'angle o lorsque le point
M se déplace sur OA, c¢’est-a-dire lorsque le point m sc
déplace sur la circonférence a, d’abord a Vextirieur de
la circonférence b, en partant du point O. On voit sans
peine que angle o décroit constamment depuis deux
droits jusqu’a un angle w, défini par la relation

. Wy %

S ';- = my
dans laquelle « et 2 désignent les distances du point P
aux deux droites OA et OB et /lalongueur de la droite
qui joint les pieds de ces perpendiculaires. Pour cette
valeur, le point m est situé en . sur la ligne des centres
des circonférences « ct b. Le point M correspondant est
situé a Uintersection de OA et de Pp. en N, de sorte
qque, pendant que M décrit la droite ON, P’angle  varie
depuis deux droits jusqu’a l'angle w,.
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Le point m se déplacant ensuite sur I'axe u P, auquel
cas son correspondant M se déplace sur NA, I'angle ©
croit depuis la valeur minimum o, jusqu’a deux droits.
Le probléme n’est pas possible lorsque m décrit I’arc PO
intérieur a la circonférence a.

30 Soient Q et ' les deux autres points d’intersec-
tion des deux cercles S, S avec la droite OA. Leurs cor-
respondants dans la figure inverse sont les seconds points
d'intersection des tangentes mendes de m a la circonfé-
rence b avece la circonférence a; désignons-les par ¢, ¢'.
Le cercle circonscrit au triangle PQQ' a pour inverse la
droite ¢q'. Or : Etant donnés trois cercles ayant deux
@ deux le méme axe radical, si Uon inscrit & Uun
d’eux ¢ une suite detriangles abe, dont les cotés ab, ac
touchent respectivement les deux autresc' et ", le troi-
sieme coté be de ce triangle enveloppera un quatriéme
cercle ayant le méme axe radical que les deux autres
(voir Cuasves, Géométrie supérieure, n° 157). lci le
triangle a considérer mgq’ est inscrit dans la circon-
férence : @ P'un de ses cO1és gm est tangent au cercle b;
Pautre mq' est tangent au cercle b; ces trois cercles ont
méme axe radical ; donc ¢¢’ enveloppe un cercle ayantle
méme axe radical avec les autres. Ce cercle a pour in-
verse une droite passant par O. Donc la circonférence
circonscrite au triangle PQQ' reste tangente a celte
droite quand le point M décrit la droite OA.

N. B. — M. Farjon nous a adressé unc solution analogue.

ERRATA.

Page 12, ligne 8 en remontant, au licu de wt, lises fwdt.

Page 14, ligne 6 en remontant, au licu de 7, = Kloglh', lises
7. = logd'

. b
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AGREGATION DES SCIENCES MATHEMATIQUES
(CONCOURS DE 1889).

SOLUTION DE LA QUESTION BE MATHEMATIQUES SPECIALES;
Par M. GENTY.

On donne un céne du second degré C et deur qua-
drigues A, A, inscrites dans ce cone ; on considére une
quadrigue variable S inscrite dans le méme céne et
touchant les quadriques données A et A' en des points
wvariables o et o :

1° Démontrer que la droite 24’ passe par un point
fixe;

2¢ Trouver le liew de la droite d’intersection des
])lans tangenlts ala .\'lu“fmre S aux points o et a';

3° Démontrer que le liew du péle d’un plan fixe P
par rapport & la surface S se compose de deux qua-
driques bitangentes;

4> Trouver le liew de la droite qui passe par les
points de contact de ces deux quadriques, lorsque le
plan P se déplace, en restant paralléle & un plan tan-
gent au céne C.

I. Deux quadriques (A) et (A’) inscrites dans un
cone du second degré (C) sont inscrites dans un second
cone ((7) et clles se coupent suivant deux coniques;
les plans (Q) et (') de ces courbes et les plans des
courbes de contact avee 'un ou autre des cones cir-
conscrits se coupent suivant une méme droite et for-
ment un faisceau harmonique.

1I. Les surfaces () et (A’) sont homologiques de
quaire manicres différentes @ on peut prendre pour
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centre d’homologie I'un ou I'autre des sommets O et O
des cones (C) et (C') et pour plan d’homologic I'un ou
autre des plans (Q) et (Q').
Cela résulte immdédiatement des propriéiés bien con-
nues des ombilics et des cordes communes des co-
nigues.

IT. Si nous considérons trois quadriques (A), (A")
et (A") inscrites dans le cone (C), les centres d’homo-
logie de ces quadriques prises deux a deux (autres que
le point O) sont situés sur une ligne droite que nous

bl . . .
appellerons axe d’homologie des trois quadriques.

Les équations tangenticlles de ces trois surfaces pou-
vant se mettre sous la forme

¢ —ip=o, c—hv=o, g—Aip=o0,
axe d’homologic est représenté par les équations
p=v=ap.

Le théoréme reste vrai si I'une des quadriques est
remplacée par un plan (P). La conique, suivant laquelle
ce plan coupe le cone (C), peut, en effet, éire consi-
dérée comme une quadrique infiniment aplatic inscrite
dans ce cone. Le centre d’homologie de la quadrique (A)
et du plan (P) est alors le sommet d’un cone circonscrit
4 (A) et contenant la conique cn question.

IV, Les plans des courbes d'intersection deux a deux
des quadriques (A), (A’) ct (A”) passent trois i trois
par une méme droite.

Les équations ponctuclles de ces trois quadriques
dlant
S+l2=o, S+m?=o, S+ n?=o,

les plans des courbes d’intersection de ces surfaces deux
adeux passent trois par trois par P'unc ou l'autre des
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quatre droites représentées par les équations

l*=m=*n=o.

V. Le théoréme 1I, le théoréme IV et sa réciproque,
qui est évidente, conduisent immédiatement au corol-
laire suivant :

Si une quadrique (S) inscrite dans le cone (C) touche
(A) et (A") aux points « et @' respectivement, les plans
tangents en « ct o« se coupent sur 'un ou Pautre des
plans (Q) et (Q’) et la droite a2’ passe par le centre
d’homologie O'.

VI. Les quadriques (S) inscrites dans le cone (C) et
tangentes a (A) et (A’) forment ainsi deux séries, I'une
(qui correspond au plan (Q) et Pautre au plan (Q’). Je
dis que le lieu des pdles d’un plan (P) par rapport aux
quadriques (S) d’une méme séric (Q) est une qua-
drique.

I’intersection du licu en question avee le plan (P)
est la courbe (p), lien des points de contact avec ce
plan des quadriques (S) de la série considérée qui lui
sonl tangentes.

Soit (a) la courbe de contact de ces mémes qua-
driques avec (A);les courbes (@) et (p) sont situées sur
un méme cone ayant pour sommet le centre d’homo-
logic O” de la quadrique (A) et du plan (P).

Or les théorémes qui précédent conduisent trés sim-
plement & la construction suivante de la conique (a)
(Rocvent et ne Comserousse, 7raité de Géometrie,
§ 952 et 953). Le plan (Q) coupe le plan (P) suivant
unc droite (¢); cette droite et la polaire réciproque
par rapport a (A) de I'axe d’homologie O’'O” détermi-
nent un plan qui coupe cette quadrique suivant la
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courbe cherchée (a), qui est ainsi une conique. La
courbe (p) est donc aussi une conique.

En remplacant le plan (Q) par le plan (Q'), on ob-
tiendrait de méme les coniques (a') et (p'), lieux des
points de contact des quadriques (S) de la série (Q')
avec la quadrique (A) ct le plan (P).

Donc, en résumé, le lieu des poles du plan (P), par
rapport aux quadriques (S), se compose de deux qua-
driques (Z) et (') : je dis que ces deux surfaces sont
doublement tangentes.

En effet, les coniques (a) et (&') ont deux points com-
muns L et M et les plans tangents en ces points a la
quadrique (A) contiennent le point O”. Donc les co-
niques (p) et (p') se touchent aux deux points L, et M,,
ou les droites O"L et O"M percent le plan (P). La
droite Ly M passe d’ailleurs au point d’intersection K
des droites (¢ ) et (¢').

D’autre part, les quadriques () et (¥') onl une
courbe commune qu’il est facile de déterminer : c’est le
licu des poles du plan (P) par rapport aux coniques (v)
suivant lesquelles les plans tangents au cone (C') cou-
pent le cone (C). Ces coniques peuvent, en effet, étre
considérées comme des quadriques infiniment aplaties
inscrites dans le cone (C) et tangentesa (A) et (A'), et
il est évident qu’elles appartiennent 4 la fois aux deux
séries des quadriques (S). La courbe commune passe,
d’ailleurs, par les points L, et M, qui sont les points de
contact avee le plan (P) de deux coniques (y). Donc,
cnfing les quadriques (£) et (') se touchent en ces deux
points.

Supposons, enfin, que le plan (P) tournc autour
d"une droite (T) tangente au cone (C) en un point B.
La droite L, M, décrit une surface réglée qui a pour di-
rectrices rectilignes la tangente (T) et la droite dinter-
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scction (1) des plans (Q) et (Q'); je dis que ces deux
dircctrices sont divisées homographiquement par les
points R ct K ot une génératrice les rencontre.

Soit, en cffet, D le point de contact du plan tangent
mené par la droite (T) a la quadrique (A). Le centre
d’homologie O” reste évidemment sur la droite BD;
donc 'axe d’homologie O'O” reste dans un plan fixe et
sa po]aire par rapport a (A) passe par un point fixe M,
qui est visiblement situé sur une tangente a la qua-
drique (A) au point D5 la droite O”M rencontre (T) au
point R.

Au point R ne correspond évidemment qu’un seul
point K, et réciproquement; done, enfin, la droite RK
décrit une quadrique (A).

Dans le cas particulicer du probléme, la directrice (T)
est située a Pinfiiii, et, par suite, la quadrique (A) est
un paraboloide hyperbolique.

AGREGATION DES SCIENCES MATHEMATIQUES
(COXCOURS DE 1889).
SOLUTION DE LA QUESTION D’ANALYSE;
Par M. . GROSSETETE,

Professeur au lycée de Nevers.

Soient I et k les invariants de I'équation aux déri-
vées partielles
d?s ds ds

+b -~ +c3s=o,

L e =
(£ d.zdy+adx dy

et hy, ky les invariants de Uéquation (E,) obtenue cn
appliquant la methode de Laplace.
Trouver les formes que doivent avoir les invariants
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h et k pour que Uon ait les deux relations
hy=1h, ky=mk,

[ et m étant des constantes.
Déterminer les formes que prennent dans ces condi-
tions les coefficients a, b, ¢ de I’équation (E).

I. On sait (*) que, si P'on désigne par &y et &y les in-
variants de Péquation (E,), on a

d2logh

h,:z/z—-lc-—— ({.Z‘C/:}T’

ky= h.

Orici by = lh, ky = mk; on conclut que I'équation

donnant 7 est
I d2logh
h{l4+ — —o2)=""+—2>—.
m dr dy

. T . . ’ ’,
Silon pose [ + — — 2 = p, il faudra intégrer I'équa-
m ? °

Lion
d2logh
() dr dy =rph,
dans laquelle p est constant.
Pour cela, posons
logh =23, ol 2= .
(1) devient
d*s o
. dedy =~ P

C'est une déquation de Liouville; pour I'intégrer, nous
poserons
ds

((}{:Q7

(') DaRBoux, Théorie générale des surfaces, t. I, p. 28. Paris,
Gauthier-Villars et fils.



d’ou

ct, en prenant la dérivée par rapport a )y,

@Q _dQ
dJ'c[)f dz >
par suite
Q)
A Q@ =F()

SOll.l!J() )::_

cette équation.

v 'y
2 f(y)
Pour avoir la solution générale, posons

y ! f”(y)
Q=3 F

u étant une nouvelle variable; il viendra

du f”(}’ 2

-+ u,

d_.}/ —_ f( — U-= 0,
d’on, aprés avoir multiplié par ———=~ f ( V)
a f(y)
o u TSo=

Intégrant par rapportﬁ ¥ il vient

f(?)

+f(y)+o(x)=o, *
d’on
- =S
T S +e(x)
o=-1TWw___ 1w
i 2 S () () +e(x)
enfim

pg;ziQ: S'(y)e(z) |
: dz. [ f(y)+o(x))?’

) unc solution particuliére de
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done
pe _SNEE) m S (y)e'(x)
Pl +o(@)~ T—om—+1 [ f(y)+ol@)]t’
L )9 m S'(r)2e'(x)

T [f(y)+e@P T T—am a1 [f(y)+ (@)}

II. Pour déterminer les formes que prennent dans
ces conditions les coeflicients a, b, ¢ de I’équation (E),
nous calculerons les cocflicients a', &', ¢’ de I’équation
réduite

o

(' B i
D 1 e C =0
(E) dr dy % dr d_y ’
qui a les mémes invariants que la proposée et qui est
telle que @’b’— ¢’ = o. Dans ce cas, on peut déterminer

d,b', ¢ par les formules

*d ¥y
a’:j hdw, b’_—.f kdy., J=a'b),
" Yo

S y)e@) g S () [e(z)—9(x)]
L, PLI(y)+o(a))? PLAY)+ (@) f(y)+o(z0)]
_ mf(y) 9(2)— 9(20) ,
l—am—+1 [ f(y)+9(@)][f(y)+3(z)]
V= [ G@ () g L) L) =L(r0)
Jooopmf(y)-me(e))r pm [ (7)o@ f(y)+o(x)]
_g(=@) S —=1(y0)
CT=amad [F)+ e (NS ye)+ o (@)
o me (@) ' (y) [f(&")— o (@)][S(¥)—S(xo)l

”—l’n-*-l)’ [f(y)+e(@))2[ f(¥)+ o(z)] [ f(yo)+o(x) )
En faisant sur (E) une substitution de la forme

3'= Az,

dans laquelle } désigne une fonction quelconque de x
et ¥, on obtiendra une équation (E) répondant a la
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question. Les valeurs de a, b, ¢ sont alors données par
les formules
. dlogh

a=a-+ ——,
&y
dlogi
b = ’)I+ A )
dr
, dlogh dlogh 1 d)

c=ecrae—n " dy +7dx({}"

CONCOURS D'ADMISSION A L'ECOLE NORMALE SUPERIEURE
EN 1889,

SOLUTION DE LA QUESTION D’ALGEBRE:
Par M. e CaeitaiNe BARISIEN.

Déiterminer un polynome entier en x du septiéme
(legl'é Sf(x), sachant que f(x)-+ t est divisible par
(x—1)* et f(x)—1 par f(x+1)". Quel est le

nombre des racines réelles de I’équation f(x)=o?

D’aprés I'énoncé, il faut que on ait

—i(—i);i_l =A\Ax3 +Bx2+Cxr + D,
(r—1)*

S =0 e Bt i 1
() ’

avee
f(r)=ax"+ bab+ ca’s+ dar—+ cad+ fa?+ g+ h.
in remarquant, de suite, que A =A'=gq, il faut
identifier les termes des deux équations
ar4-bxb+ caS+dri+cxd3+ fx2+ gr +h—1
=(x—1)*(ax’3+ B2+ Cx + D),

Axri+bxS+ cxd+dar+cxd+ for+ gr -+ h—1
=(r+1)(ari+ B'zrr+ Cx+ D).
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On obtient de la sorte le systéme d’équations

B—jfa=10, B'4-4a =0,

C—4B+6a=c, C'+ 4B +6a=c,

D—4C+6B—jfa=4d, D'+ 4C'+6B'+4a=d,

— 4D +6C— 1B+ a=ce, 4D+ C'+ 4B+~ a=ce,

6D—4C—+ B = f, 6D+ 4C'+~ B = f,

C—4D =g, C 44D = g,
D=74+r; D'=7h—1.

On a ainsi quatorze équations du premier degré entre
quatorze inconnues a, b, ¢, d, e, f, g, I, B, G, D, B,
¢, IV. En éliminant les majuscules dans chacun des
deux groupes, on obtient les huit équations

(1) —35a—20b—10c—4jd=ce,
(2) 84a —+ 45b +20c+6d = f,
(3) 20a + 100+ 4c+ d=h-1,
&3 —70a—36b—15c—4d=g;
(5) —35a +20b—10c+ 4d=ce,
(6) —8ja +45b—20c -+ 6d =/,
(7) —20a-—+10b— jc+ d=h—1,
(8) —7oa+36b—15c+jd=g.

Ajoutons et retranchons les équations telles que (1)
et (5), nous aurons le systéme suivant

35a +10c +e =o, 50+ d = 0;
56+ 6d—f=o, 21 +5¢ = 0;
10b+—~ d—h=o, 20a -+ j¢c—i1=0;
soa-+15¢ + g=o, 9b—+ d =o0;

d’ott ’'on déduit sans difficulté

b =o, d=o, Jf=o, h=o,
5 21 35 35
A = -~ — = — —— — — —

3 c : e :
16 16 16 g 16
Ann. de Mathémat., 3¢ série, t. X. (Mai 18g1.) 10
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On a donc pour le polynome demandé

27— 2175+ 3523 — 352

5
f(@)= i

fb (bt — 2124+ 3522 — 3)5).

En posant x*= z, la quantité entre parenthéses de-

vient
(533 — 2152+ 353—35)

et ue s’annule que pour la valeur positive z = 2,526, ...:
les deux autres racines en z sont imaginaires.

Donc, en définitive, I'équation du septiéme degré en
x, f(x)a une racine nulle, deux racines égales et de

oi-

signe contraire, %= 0,0139 et quatre racines imag

naires.

N. B. — Voici, sans sortir du domaine de PAlgébre ¢lémen-
taire, une solution plus simple.

Les expressions

J(r)—1

(1) (21

étant, par hypothése, des polyndmes entiers du troisiéme de-
gré par rapport & o, il en est de méme des expressions

VACORVAGED,

Py S A

(r—+1)*

b

que I'on obtient en ajoutant & chacune des quantités (1) I'autre
dans laquelle oo a préalablement changé » en — 2. Le poly-
néme f(x)—+ f(— ), qui est du sixiéme degré au plus, devant
d’aprés cela étre divisible par (z —1)* (@ + 1) = (22— 1)*, est
identiquement nul; en d'autres termes, f(z) ne saurait ren-
fermer aucun terme de degré pair, et I'on a

Mx)=a"+pas+ qri-+ra.

En divisant alors A[ f(x)—1] par (z —1)* et observant quc
le dernier terme de ce quotient doit étre égal a — A, on
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trouve

f(x):x—a—w————_;\——'z: [$3~41'2+<5+-};>1‘—)\J,

4

ou il faut faire A égal a l—; pour que la condition f(1) +~1="0

<oit satisfaite.

Mais la solution la plus ¢légante est sans contredit la sui-
vante, qui repose sur l'emploi des dérivées et qui m'a été
communiquée par M. Brisse :

S(x)+1 étant divisible par (x —1)% et f(2z) — 1 par (z + 1)%,
leur dérivée commune /" (x) est divisible par (z —1)3 (z +1)3,
puisque  — 1 ¢t -1 sont premiers entre eux, etl'on a

Jfiz)y=h(x2—1)3,

% étant une constante, puisque f'(r) est du sixiéeme degré;
d’on

. L 3 ]
J(x)=2 ( —_—— 0 ¥ — .r) FERIR
.7 5

On détermine A et @ par les équations /(1) =—1, f(—1) = 1.
D'aprés I'expression de f'(«) et les signes de f(1) et f(—1).
les racines sont séparées. E. R.

SUR LE NOMBRE c¢;
Par M. V. JAMET.

Je me propose d’apporter une simplification notable
ala méthode créée par M. Hermite pour démontrer que
le nombre ¢ n’est racine d’aucune équation algébrique,
A cocflicients entiers (Sur la fonction exponentielle.
Paris, Gauthier-Villars, 1874).
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Résumons d’abord les considérations fondamentales.
Si I'(z) désigne un polynéme entier, de degré m, l'in-
tégralion par parties donne l'identité

ea f e=3F(5)ds =[F(0)+ F'(0)~...-+Fim (o) ea
Jy
—[F(a)+ F(a)+...+Fm(a)],

ou bien, en faisant, pour abréger,
F(5)+=T"(s)+ F{(5)+...+~Fm(z)=d(3),

(1) ea f ¢ F(3)ds = P(0)er— P (a).

e
D’ailleurs, en supposant vraie I’égalité
(2) Ny+Nie+Nse2+...+Nyer=o,

. T .
si, dans 'égalité (1), on remplace @ successivement par
1,2, 3,...,p, et sl 'on combine les égalités obtenues
avee Iégalité (2), on trouvera

[ a=p «
N, e e s (3)ds
(3) sEV“C L[ (%)
a=
? :—[No‘p(0)+Ni(i’(l)+Ngq)(2)—’r—...+N1)¢’“))]-

Si les coeflicients du polynéme I (z) sont entiers,
ainsi que les coeflicients N, le second membre de cette
¢galité sera un nombre entier : ce nombre sera divisible
par i,2,3,4, ...,n,si lon fait

F(s)=sn(s~n)t(s—2) . . (s—p)(a—3)(B—25)...(A—2=)

@, 3, v, - .. désignant quelques-uns des nombres 1, 2,

3, ..., p—1,écrits par ordre de grandcur croissaute;
¢’est dans le choix de ces nombres que réside la simpli-
fication annoncée. Divisons, en eflet, les deux nombres
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de I'égalité (3) par 1,2,3,...,n. Nous trouvons un
nombre entier, égal A
Il:]? a
1
L ¥ eaf e~ F(3) ds.
(4 1.2.3.4.‘.n2 @ o (=)
a=1
Je dis qu’on peut choisir les nombres o, 8,v, ..., A,
de telle sorte que cette expression soit différente de zéro,
mais inférieure (numériquement) a4 un nombre donné ¢,
si petit qu’il soit. En effct, décomposons chacune des
intégrales qui figurent dans I'expression ci-dessus en
une somme de termes, tels que

[

v

1 2 3
=2 F(5) ds + f =2 F(3)ds + f e=:F(3)ds+. ..
o 0 LNl
a
-+ e—*F(3)ds.
“a-1
Nous voyons alors que la somme qui entre dans cette
méme expression est une fonction linéaire, homogéne,
des intégrales, calculéesde zéro a1, de 1a 2,de 243, ...,
ct finalement de p —1 4 p; en outre, I'un, au moins,
des coeflicients de cctte fonction v’est pas nul : ¢’est
celui de Pintégrale prisc de p —1 a p; en effet, il se
réduit & Nyep. Je dis qu’on pent choisir des nombres o,
3%, « vy A, de telle sorte que tous les termes de cette
fonction linéaire aient le méme signe. En effet, consi-
dérons I'expression

1 2 3
A [ esF(syds+B [ e—zF(;)d;+cf e=2F (3) ds ...
< o 0

1

¢gale & la somme que nous voulons étudier, cu bien
¢gale et de signe contraire a cette somme, de maniére
quc le premier de ses coeflicients soit positif; soient ¢ la
limite supérieure de I'intégrale qui termine le premier
sroupe de termes a coefficients positifs, 7 la limite su-
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périeure de l'intégrale qui termine le premier groupe
de termes a coefficients négatifs, s la limite supérieure
de Vintégrale qui entre dans le terme final du deuxiéme
groupe de termes a coefficients positifs, et ainsi de suite.
Chacune des intégrales de la somme précédente aura le
méme signe que son coefficient, si nous faisons n pair,
€l

- G — R, —
2==q, B=r =8, R A=y,

v désignant la limite supérieure de 'intégrale qui ter-
mine ’avant-dernier groupe. De cette maniére, on est
assuré que I'expression (4) n’est nulle pour aucune des
valeurs paires de n, et cela suffit pour mener la démons-
tration a bonne fin.

En effet, quand z varie de zéro a p, les produits

(@ —3)(B—-—3)...(h~ 3)

S(5—1)N5—2)...(5—p)

restent numériquement inférieurs, le premier a un
nombre u, le deuxiéme 2 un nombre v, indépendants,
I'un et Vautre, de n, ct si 'on appelle H la plus grande
valeur numérique des coefficients A, B, C, ..., on voit
que I'expression (4) est numériquement inférieure a
ll «’I

) 1L e e N

P 1.2.3...n
or, cette derniére expression tend vers zéro, quand n
cst de plus en plus grand. c. ¢. F. n. ().

W

(*) On pourra consulter aussi sur une simplification de la méthode
de M. Hermite une Note de M. Stieltjes (Comptes rendus, 1890)-

¥



THEORIE DES DETERMINAN
Par M. E. CARVALLO,

Examinateur d’admission a I'Ecole Polytechuique.

1. Introvucrion. — M. ['. Caspary, dans un trés
intéressant Mémoire ('), a exposé une méthode a la fois
synthétique et analytique pour I'étude de la Géoméurie,
Les principes en sont dus aux génies de Cauchy (2) et
de Grassmann (*). L’auteur indique qu’ils se prétent a
une théorie simplifiée des déterminants, mais il n’en dit
rien de plus. De son coté, Grassmann, dans son remar-
quable Ouvrage Die Ausdehnungslehre, néglige cette
théorie, quoique son exposition clit 4 gagner par une
étude préalable des déterminants. Je serai heureux si,
comme je pense, 1'exposition suivante est jugée plus fa-
cile que les méthodes adoptées. Elle présente certaine-
ment Pavantage de faire ressortir le caractére de pro-
duit que posséde un déterminant et qui est, en général,
méconnu. Enfin elle prépare a ces méthodes puissantes
de Cauchy, Grassmann, Hamilton, dont MM. I'. Cas-
pavy, Laisant, Tait, ont fait d’intéressantes applications,
mais qui n’ont pas encore, daus la Science ct surtout
dans Penscignement, la place qu'elles méritent. Facili-
ter le présent et préparer I'avenir, tel est mon but.

2. Diérinvitions. — Le dénominateur commun des

(') Bulletin des Sciences mathematiques, 2° série, t. X1II; sept.
lr“ﬁﬂ.‘

(*) Comptes rendus. t. XXXVI et XLII: Lwercices d’Analyse et
de Physique mathematique, t. 11T et 1V.

%) Die Ausdehnungslehre. Berlin, 1842 ct 1862,
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valeurs des inconnues x et y tirées des équations

c
(1 g

¢

ar —+ by,

Il

adxr+by

est ab' — ba'; il est déterminé quand on donne le Ta-
. b . . .

bleau des coeflicients | Z, b | Delale nom de détermi-

nant donné a ce Tableau. Le nombre ab’— ab’ est la
valeur de ce déterminant (*). On I'obtient commodé-
ment par une sorte de multiplication. Multiplions, en
elfet, membre & membre la premiére équation (1) par
la deuxiéme, en respectant l’ordre des facteurs. 1l
vient

(2) cc'=aa'xx + ab'ry + ba'yx + bb' yy.

Si maintenant on cesse de regarder x et » comme
des nombres pour en faire de purs symboles dénués de
toute signification, et que Grassmann appelle unités (*),
il suffit de faire sur ces unités la convention générale
unique

Xy =—yx
c¢t, conséquemment,

xx = o, Yy =o.
Le coefficient de xy, dans le développement (2), est

alors la valeur ad’ — b4’ du déterminant.

MuvrripLicaTioN ExTERIEURE. — Celte convention gé-
nérale unique que le produit de deux unités change de
signe quand on intervertit Uordre des facteurs suffit

(*) Cette distinction cntre le déterminant et sa valeur peut pa-
raitre subtile; elle simpose dans certaines questions.

(*) Cauchy emploie, pour désigner ces symboles, le nom dc clefs
anastrophiques; voir le Memoire sur les clefs algébrigues dans
le TOI:]C IV des Exercices d’Analyse et de Physique mathématique.
p. 330, E. R.
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pour engendrer les déterminants par voie de multipli-
cation. Cette sorte de multiplication qui en résulte,
Grassmann Pappelle multiplication extérieure et la re-
présente par des crochets pour la distinguer de la multi-
plication usuelle ou algébrique. Enfin, pour éviter
toute confusion, au lieu d’employer la notation ci-des-
sus, je désignerai les unités par la letire x affectée d’in-
dices, les fonctions linéaires de ces unités par la lettre y;
lesnombres, éléments des déterminants, seront désignés
par les lettres a, b, ¢, .... Ainsi le produit extérieur
des quantités y = ax, + bx., y'=a'x,+ V' x, qui dé-

finit le déterminant sera

a b

[y 1=[azy+ bxs)(a'z;+ b xs)] = (ab' — ba' )|z 2y ).

De la définition résultent immédiatement les proprié-
tés suivantes pour les produits cxtéricurs qu’on peut
former avec 7 unités @y, Xay « v .y Xy -

1° Dans ces produits, les facteurs peuvent étre or-
donnés dans tel ordre que I’on veut par des échanges
successifs de facteurs consécutifs, chaque échange
ctant accompagné d’un changement de signe.

2° Ceux qui contiennent plus d’une fois un méme
facteur sont nuls.

3° Quand on intervertit deux facteurs quelconques
non consécutifs, le produit change de signe; en eflet,
pour passer de[...ap.coxg. . A ooy xp ],
on peut échanger x, successivement avee les k facteurs
qui le séparent de xy, puis échanger x), et x,, enfin
¢changer ay avec les & facteurs qui le séparaient d’abord
de xp. Le nombre 2k +1 de ces échanges successifs
‘tant impair, le produit a finalement changé de signe.

Déreratinants. — 19 Etant donné n fonctions li-
néaires homogénes vy, va, ..., yva de n lettres xy,
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Ly ooy Tuy on appelle déterminant de ces fonctions
le tableau carré des n® coeficients.
2* La valeur du déterminant est le coefficient de
[xi,22...., 2, |dansle produit extérieur[y ,ys,.... ¥4
Silon appelle D cette valeur, on aura

[y1ye...yn]=Dlxizs... 28],
ce qui conduit a la notation fort commode

Do ¥y ¥l

ETEITN .r,,j’

qui est celle des déterminants fonctionnels (V).

3. Tutorime. — ('n déterminant change de signe
quand on échange deux lignes entre elles.

Ils’agit de prouver que si, dansle produit| 34 17y ... 3],
on intervertit deux facteurs ¥ quelconques, le produit
change de signe ct pour cela il suflit de démontrer que,
pour deux facteurs conséeutifs quelconques y, ct yy,
on a
(1) Ly pyal=—1rernl

Or un terme quelconque du premier produit se trouve
dans le second avec cette seule différence que les lettres
2 (ui s’y trouvent ont échangé leurs places. L’égalité (1)
est done démontrée ct le théoréme en résulte (comme
au n° 2).

Conorramres. — 1° Cette regle générale qui a servi

(") Cette définition établit une différence entre les lignes et les
colonnes d'un déterminant. Cela me parait esscntiel. Quand on
¢change les lignes avec les colonnes, le determinant luiméme
change. Sa valewr reste la méme, il est vrai; mais c’est la un théo-
réme ctil n'y a pas lieu de renfermer ce théoréme dans la définition
en s'efforcant de rendre celle-ci symétrique par rapport aux lignes
et aux colonnes,
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de définition a la multiplication extérieure (a savoir
que le produit de deux unités change de signe quand on
permute les deux facteurs) s’étend & des fonctions li-
neaires quelconques de ces unités.

a° 8i, dans un déterminant, on échange les lignes
avec les colonnes, sa valeur ne change pas. En effet, de
la définition (n® 2) et du théoréme (n° 3), il résulte
que les valeurs de deux déterminants sont formées des
mémes termes munis des mémes signes.

30 Tout théoréme relatif aux lignes sapplique éga-
lement aux colonnes, et I'e'czproqueme/zt.

4. Tutorime. — On a
la+a b+0 e+ a b ¢ a b
{ ay b, €y =|la b ¢ |+|a b ¢
|y I/ cy . ay by ¢, ay by cy |

C’est ce qu’exprime la formule évidente
Wy -=0npl=lyyrniyd+1y yiy:l
S. Développement d’un déterminant suivant les éle-
ments d’une ligne.

Soit a développer suivant les éléments de la premicre
ligne le déterminant défini par les formules

¥y = axy + bzxy + cx3,
Y = ax+ 0wy + ¢ x5,
~’V” — (l”.’l'1 + bllx2+ CIIJ‘:‘.
On a
|V Y 1=a'zy+ b'zg+ ' @3)(a" 21+ 0" xy+ " 23)].
Dans le développement de ce produit, le terme en

lxy25], par excmple, provient de

(h'ay— "3 (h" )"y
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. ; . ']
Le coeflicient de ce terme est donc le déterminant (o7 J
243

qu’on obtient ¢n supprimant la ligne y et la colonne x,
qui se croisent sur I'élément a. On a ainsi

L'y
[x2 3]

Je multiplie en avant le premicr membre par y, le
second par l'cxpression égale ax,+ bxs+ cx,, et je
développe le second membre en tenant compte des éga-

[y v"]
[z12:]

y1= [223] 4 32 [zy29].

lités de définition de la multiplication extérieure. Il
vient

lry'y'=a }fj } [21225]
N )
- |[2?1.1 :[rqx,r3j+c:zﬁar‘]‘[z‘;‘x,xz],

d’ou enfin

lryyl _ Wy L] [y,

(wiar2s] [wams] [xMJJ—r- [Tlxﬂ

. . V, "
Clest 'expression de la régle connue; LX) ot te

[2223]

déterminant mineur de I’élément a.
On obtient une géndralisation de cc théoréme en sé-
parant le produit

riye o ypyprr-o- ¥nl

cn deux autres,
(rie-opls [ypere-yul

J’ai donné en subslance la partie la plus élémen-
taire de la théorie des déterminants. C’est 4 dessein que
jai négligé quelques détails auxquels on suppléera sans
peine. La multiplication des déterminants se traite aussi
d'une fagon intuitive par la méme méihode.

)
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DEMONSTRATION NOUVELLE D'UN THEOREME
SUR LES NORMALIES;

Par M. H. ADER,
Eléve a PEcole Polytechnique.

En un point d’'une surface, les rayons de courbure des
sections normales sont proportionnels aux carrés des
diamétres d'une conique appelée indicatrice; on peut
déduire de la le théoréme des tangentes conjuguées.
(Bertranp, Calcul différentiel, p. 670. — Porncarg,
Nouvelles Annales de Mathématiques; 1874.)

Cela étant, on peut démontrer que, si la directrice
d’une normalie passe par un point A d’une surface, les
plans principaux relatifs a ce point sont tangents a la
normalie aux centres de courbure principaux.

Pour cela, démontrons d’abord que, si 'on considére
deux normalies dont 'une a pour directrice la section

par le plan NAT (AN étant la normale a la surface que
ous supposons verticale) et I’autre une courbe AC tan-
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gente en A i AT, et projetée sur le plan horizontal du
point A suivaut AC/, ces deux normalies se raccordent
lelong de AN. En effet, coupons par le plan NAT, voisin
de NAT; la normalie qui a pour directrice cette section
aavee la normaliec AC deux génératrices communes : AN
etlanormale au point P d’intersection de AC avec NAT),.
Si donc on fait tendre NAT, vers NAT, 4 la limite, les
deux normalies (NAT) ct (AC) ont deux génératrices

infiniment voisines communes ct se raccordent.

N
¥
Y
‘\
L}
Y‘ n
S
AN
"' L e
R, N ¢
A I P4
' \ .
N v
K \ //
E -
AT
A== S T
N _-
g -
o,/ N .-
/ PRI AN
ST - \
R/ o
“
T, \T,

11 suflit done de démontrer la propriété énoncée pour
une normalie ayant pour directrice une section normale.
Or, pour trouver le point de contact avec la normalic
(NAT) d'un plan passant par AN, il suffit de chercher
la limite du point d’intersection avec ce plan de la nor-
male au point A’ infiniment voisin de A. Si donc on

considére deux plans NA'T,, NAT,, les hauteurs de leurs
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points de contact au-dessus du plan horizontal sont dans

aa, , ..
le rapport —, aa,a, étant la projection de la normale
ada,

en A’. Or cette normale, étant perpendiculaire au plan

tangent en A’, a sa projection perpendiculaire a la trace
4 ’ , . .

de ce plan, qui n’est autre que la caractéristique du plan

T, L}

tangent en A, c'est-a-dive le diamere conjugué de AT
Les hauteurs des points de contact de NA'T, et NAT,
1 ' 2

3
BB
diculaire quelconque au diamétre conjugué de AT; par

. BB ,
sont done dans le rapport —1 BB, B, étant une perpen-
2

exemple, si B est sur Uindicatrice, la normale a cette
courbe est au point B. Ov si NAT, est perpendiculaire a
NAT, son point d’intersection avee la normale en A’ se
projette sur le plan NAT en ~'. Le pointde contact de ce
plan avee la normalie est la limite de v/, ¢’est-a-dire =,
centre de courbure de AC. SiTon suppose, de plus, que
NAT, est le plan principal correspondant a axe « de
Vindicatrice, pour démontrer qu’il est tangent en vy,
centre de courbure de la section principale correspon-
dant a T'axe b, il suffit de démontrer que
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¢’ est-3-dire que BK_ & ou BK b ce qui est une

2 est-a- o = — = — -
q BA a'? «’ q une pro

priété connue des coniques.

Le théoréme énoncé est donc démontré.
Remarque. — La démonstration donne en méme

temps le moyen d’aveir le point de contact d’un plan
tangent quelconque, le paramétre de distribution, etc.

GONCOURS D'ADMISSION A L'ECOLE CENTRALE EN 1889.
SorLuTioNs parR M. Lr Caeiraine BARISIEN.

PREMIERE SESSION.

)

Soient Ox, Oy deux axes rectangulaires et une
droite LI parallele & Oy dont I équation est x—a =o.
On considére le faisceau des paraboles qui passent par
le point O et qui ont la droite LI pour directrice.

1° Trouver le liew du foyer et le lieu du sommet de
chacune de ces paraboles;

2° Par un point quelconque du plan xOy passent
deux des paraboles considérées,réelles ouimaginaires,

’

déterminer la région du plan dans lagquelle doit étre
ce point pour que les deux paraboles soient réelles.

3o Etant données les coordonnées d’un point M du
plan x Oy, former l'équation qui a pour racines les
coefficients angulaires des tangentes au point O aux
deux paraboles du faisceau considéré qui passent par
ce point M. En déduire I'équation de la ligne S sur
laguelle doit se trouver le point M pour que les tan-
gentes au point O aux deux paraboles du faisceau qui
passent au point M soient rectangulaires.
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4° Soit M un point situé sur la ligne S, et soient I,
[ les foyers des deux paraboles du faisceau considéré
qui passent par ce point, démontrer que, lorsjue le
point M se déplace sur la ligne S, la droite FF' tourne
autour d’un point fixe.

I. Si 2, 3 sont les coordonnées du foyer de la para-
bole, ayant pour directrice la droite 2%/, son équation
est

(1) (x—aP+(y—Br=(z—a),
avec la condition
(2) a?— ?‘2=a21

qui exprime que la parabole passe par le point O.
Cette condition (2) exprime aussi que le lieu des
foyers des paraboles (1) est le cercle de centre O et de
rayon a.
L’équation de I'axe étant

(3) y=238,

pour avoir le licu du sommet des paraboles, il faut éli-
miner « et 5 entre les équations (1), (2) et (3). (1) de-
vient, en tenant compte de (3),

(‘T - 1): —(17 '—'a)7
d’ou
a=123r —a,
(2) devient alors

(20 —a)+y2=a?
ou

jx24+y?*— fax =o.

Cest une cllipse dont le centre est le milicu de OA.
OA est le petit axe de longueur a : son grand axe est de
grandeur 2 a.

Ann. de Mathémat., 3¢ sécie, t. X. (Mai 1891.) 16
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I. Par un point (p, ¢) du plan passent deux para-

boles déterminées par la valeur de « et 8 provenant des
deux équations

(p—ay+(g—Br=(p—a)y
a2+ B2 = a2 ’
En formant ’équation en 2, on trouve
4a2(p?+q?)—4ap(q2+2ap)+(g2+2ap)*— fja?q?=o.
La condition pour que les deux valeurs de « soient
réelles se réduit a
g+ dap —far<o,
ce qui indique que, si le point (p, ¢) est a 'intéricur
de la parabole,
(4) Y+ 4ar —4ar=o,
les deux paraboles passant par ce point sont réelles.
Elles se confondent si le point (p, ¢) est sur la parabole
- (4), ct elles sont imaginaires si ce point est a I'extérieur
de la parabole.

III. La tangente a l'origine de la parabole (1) ayant
pour équation
(a—a)n+By =o0:

son coefficient angulaire est

(5) =2

En éliminant « ct § entre cette équation (5) et les
deux suivantes

a? + B2 = a2,
g?=2(a—a)p+28q,

on forme sans aucune difficulté I'équation en p

13
(6) PG+ Jap)— fagp + g*= o,
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qui donne les coeflicients angulaires des tangentes au
point O des deux paraboles du faisceau qui passent par
le point (p, q).
Si ces deux tangentes sont rectangulaires, on doit

avoir p'p” = —1, c'est-a-dire

q*+2ap =o.
La ligne S de 'énoncé est donc une parabole.

IV. Avee la condition

q*=—aap,
la relation
g*=2(z—a)p+23g
se réduit a
xp+3q =o,
et comme
a2y B2 = a2,
on en déduit
a.q

Q= ——> w
Vri+ g

N/t

pour les coordonnées du foyer I, Celles du foyer I’
sont
a a,
i— % \_ _ap
Vpi+q?

CVpir g
I’équation de la droite FI est par suite
p—p

O —a

y—8= (# —a)
ct se réduit a

}’-‘:—"‘q—"

La droite FI* tourne donc autour du point fixe O.
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SECONDE SESSION.

- 1. Démontrer que les coniques représentées par
I’équation

(A) (1—m2)z2+ y24-omrr —r2=o,

oiw l'on suppose m variable, ont deux points communs,
et que, si les axes de coordonnées sont rectangulaires,
elles ont en outre un foyer commun.

2. Trouver l'équation (B) de la conique assujettie
aux conditions suivantes : passer par Uorigine, étre
tangente & une des coniques représentées par (A) en
un point P(x, y), prissur cette courbe, et enfin passer
par les dewx projections du point P sur les axes de
coordonndes.

3. Trouver le licu des points de contact avec les
courbes, représentées par A, des tangentes issues d’un
point .

de ’axe des y, lorsqu’on fait varier m.

4. Trouver le lieu des centres des courbes (B) cor-
respondant & une courbe fixe A quand on fait varier
la position du point P sur cette courbe.

5. Discuter 'éguation (B) en supposant que l’on
déplace le point P sur une des courbes représentées
par Uéquation (A); séparer les parties qui répondent
a des ellipses de celles qui répondent & des hyper-
boles, et trouver le liew des points de séparation lors-
qu'on fait varier m.

1. L'équation (A) pouvant s’écrire

3
(A) 24 3= (mr —r)?
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n'est autre que V’équation générale des coniques ayant
pour foyer l'origine et passant par deux points de 'axe
des y équidistants de I'origine de la quantité » (on sup-
pose les axes rectangulaires ).

1I. L’équation générale des coniques passant par
Porigine, le point P et les projections de ce point sur
les axes de coordonnées peut s’écrire )

(1) Az2+ Cy?— Azz’'— Cyy' = o.

La tangente au point (2')’) de cette courbe a pour
¢quation
(2) Axx'Cyy' —Az't—Cy2=o.

La tangente au méme point (x'y’) de la conique (A)
a pour équalion

(3) [z (1—m2)+ mr]+ yy' -+ r(ma’'—r)=o.
En identifiant ces deux équations, on trouve
?

Az C_  (Aa2+ Gy,

= >

2(—m2)+mr 1 r(mz’'—r)
d'on
A 2 —m2)+mr

G x'

En portant la valeur de ce rapport dans (1), équation
de la conique (B) a pour expression

(B) (22— zz’)[2'(1 — m2)+= mr]+2' (y2—yy' )= o.

II. En faisant x = ('), ¥ = h dans (3), cette équation
devient
(1) Y'h+r(me'—r)=o.

On a de plus

“h L2 2= (max'— r)?,
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En éliminant m ou plutot (ma’ —r), entre (§) et (3),
ona

VA — r2
Le lieu des points de contact se compose de deux

droites passant par 'origine et également inclinées sur
les axes. Les deux droites ne sont réelles que si 2> r.

IV. Les coordonnées du centre des courbes (B) sont

' ’

z ¥
= — —= Y.
2’ V=5
De sorte qu’en éliminant 2" et )’ entre ces deux équa-
tions et la relation (3), on trouve pour le lieu des cen-
tres I'équation

(6) Ha'+y2y=(2max—r):
¢’est unc conique homofocale de la conique (A).

V. Pour que la conique (B) soit une ellipse, il faut
que
T2 (1— m2)-~ mr]>o.
Si donc le point (2, y') se trouve situé sur I'arc de la
conique (A) limité par les points d’intersection de la
conique avee les droites

‘ xr = o,
(7) < mr
( T omr—t’

les coniques (B) seront des hyperboles. Sur tout le reste
de Varc d’ellipse, les coniques (B) seront des hyper-
boles. Aux points d’intersection, les coniques (B) seront
des paraboles.

Pour x = o, on trouve comme points d’intersection
les deux points par lesquels passent les coniques (A).
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mr
m?—

Pour x = <> ontrouve, en substituant dans (A),

r2

yr=

| — m?

En éliminant 2 entre ces deux valeurs de ax et y, on
trouve pour le lieu des points de séparation

Y= r2(zt-y2).

g

N ——

-r

Clest une courbe ayant pour asymptote l'axe des x.
Son équation en coordonnées polaires étant

r
.,
sinzw

P =
on trouve que les points d’inflexion correspondent a

tangw = Q/;
ct, par suile, a

SURFACES DE SYMETRIE DU TROISIEME ORDRE
D'UNE QUADRIQUE;
Par M. S. MANGEOT,

Docteur és Sciences, professeur au lycée de Troyes.

Mes recherches sur les surfaces de syméurie d'une
quadrique, cest-a-dire sur les surfaces dont chaque
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normale, limitée a ses deux points de rencontre avec la
quadrique, a son milieu au point d’incidence, m’ont
conduit 4 une méthode générale pour la détermination
de celles de ces surfaces qui sont algébriques.
Cette méthode a son point de départ dans les résul-
lats suivants, que je me borne a énoncer.

I. Les surfaces de symétrie de la quadrique a centre
unique

)

¥

(S) A

2%

rapportée a ses axes, sont toutes les surfaces dont
I'équation est homogéne par rapport aux trois quanti-
s x2, y%, ¢ (). Il suit de la que la condition néces-
saire et suffisante pour qu’une équation de la forme

(1) SAxmynzr=o,

(*) Les cones sont les surfaces de symétric des sphéres
(a=b=c=1).
En cherchant a généraliser ce résultat que les cones ayant leur
sommet a l'origine des coordonnées sont les enveloppes des plans
ux -+ vy -+ ws =o, on est conduil & ce théoréme, qui se démontre

facilcment :

Toutes les surfaces de symetrie de la quadrique

2 ~2
+Zb—+ =K,

QY

rapportee a ses axes, sont les enveloppes des surfaces de symetrie
particuliéres définies par l’équation ux®*—+ vy®+ wzt=o, ou u,
v, w désignent des fonctions d'une méme variable t; de plus les
caracteristiques de ces enveloppes sont des lignes de symetrie de
la quadrique (c'est-a-dire des courbes dont chaque plan normal
coupe la quadrique suivant une conique ayant son cenlre au
point ’incidence).
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ou les exposants m, n, p, ... sont des nombres positifs
quelconques, représente une surface de syméirie de
cette quadrique, est que ’expression
n n
m . P

D: 3+

ait une valeur constante pour tous les termes de I'équa-
tion.

Lorsque cette constante sera nulle, la surface sera
orthopolaire de la quadrique, c’est-a-dire que les deux
plans polaires d’'un méme point par rapport a la qua-
drigue et 4 la surface seront rectangulaires, non seule-
ment quand ce point se déplace sur la surface (condi-
tion qui suffit poar la symétrie), mais encore lorsqu’il
occupe une position quelconque dans espace (1).

II. SiTon égale 4 une constante le rapport de deux
des trois quantités x¢, yb, z¢, on obtient les équations
de toutes les surfaces de symétrie de la quadrique (S)
(ui sont cylindriques.

III. Pour que la quadrique (S) admette des cones de
symélrie algébriques autres que les plans de symétrie,
il faut et il suffit : 1° que la quadrique ne soit pas de ré-

cla—b)

volution ; 2° que le rapport a(b—0) » qui peut toujours

(*) En interprétant la condition D = const., on peut énoncer cette
proposition :

Pour que l’égquation (1) represente une surface de symetrie de
la quadrique (S), il faut et il suffit que les points qui ont pour
coordonnées les trois exposants m, n, p de chaque terme soient
situés dans un méme plan paralléle au plan diametral conjugue,
par rapport a la quadrique, de Uazxe du triédre trirectangle
OXYZ. Lorsque les points précédents sont dans ce plan diamétral
lui-méme, la surface est orthopolaire de la quadrigue.
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étre supposé positif, soit commensurable, et alors I'équa-
tion de ces cones est

ax¥ M4 ByM+N= o,

M
N
rapport précédent, et par o, 3 deux constantes arbi-
traires. Tous ces cones sont ainsi du méme degré M+ N.

si 'on désigne par - la fraction irréductible égale au

IV. Pour quel'équation entiére £ o.(x, ¥, 2)= 0, ou
or(x,y, 2z) désigne un polynome entier et homogéne en
x,y, z, de degré r, rcprésente une surface de symétrie
de la quadrique (8S), il est nécessaire ct il suffit que cha-
cune des surfaces o, = o soit ellc-méme une surface de
symétrie de la quadrique, et que, en outre, le degré
d’homogénéité D de chaque fonction o,, par rapport 4
x%, ¥, z¢, soit le méme pour tous les groupes o,.

Je vais indiquer briévement Ja marche qui m’a con-
duit, en partantde la, aux diverses formes que doit avoir
P'équation du troisiéme degré

F(z,y,3)= 93+ @2+ 91+ 9= 0

supposée indécomposable, pour qu’elle représente des
surfaces de symétrie de la quadrique (S).

Je laisse de coté celles de ces surfaces qui sont des
cylindres : leur détermination est immédiate (II). La
fonction F renfermera donc les trois variables x, y, z.

Je cherche d’abord les surfaces de symétric du troi-
sieme ordre qui ne sont pas des surfaces orthopolaires
de la quadrique. La valeur constante de D étant dilé-
vente de zéro, 9, doit étre nul. Je distingue alors trois
cas :

1° o, n'est pas décomposable en facteurs.

IYéquation 9= o doit définir un cone de symétrie
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proprement dit, ce qui exige que 'un des nombres M,
N soit égal & 1, l'autre égal 4 2. On peut prendre
M =1, N=2; la fonction v3 ala forme ax?z + By3,
et I’on doit avoir

La condition d'invariabilité imposée 4 D ne permet
pas de prendre plus d’un terme pour composer la
somme 9, -+ 9, et fait connaitre la forme que peut avoir
ce terme, en méme temps qu'une nouvelle relation a
laquelle satisferont a, b, c.

2" oy est un produit de deux facteurs.

L’un des deux facteurs, égalé a zéro, doit donner un
plan de symétrie, et 'autre un véritable cone de symé-
trie. L’équation de ce cone étant 2xz + By?=o0, on
doit avoir

2

b

Q=
Q) -

Comme précédemment, la fonction 92+ 04 renferme
un scul terme, qui se détermine aisément.

3° o4 est un produit de trois facteurs.

Si la quadrique n’est pas de révolution, ©; ne com-
prend qu’un seul terme, ct, en remarquant que ©, n’en
peut renfermer plus d’'un, on a a examiner les trois hy-
pothéses ou le nombre des termes de ¢, est égal a 2, 1
ou 0. On reconnait sans difficulté quelles sont les asso-
ciations de termes qui peuvent réaliser Pinvariabilité
de D.

Lorsque la quadrique est de révolution (a=5), en
partant successivement des diverses valeurs que P'on
peut prendre pour o, a savoir 2x + By, oz ou o, on
en déduit, toujours parla considération de D, la forme

qui convient a v,, puis a o;.
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En effectuant les calculs dont je viens de donner I'in-
dication, voici les diverses formes que 'on trouve pour
la fonction F. Jai placé, en regard de chacune d’elles,
la condition ou les conditions & imposcr aux axes de la

quadrique (S).

Formes de la fonction F(z,y, 3). Relations entre @, b, c.
ay3+ Bata+yat.oiiiaa, 3a= 4b= O6c
AY3 - BB A YYT i a= 2b= e
ayd+ BT+ YTy e 2= b=— ¢
ayd+Br2s YT 3a=  b=—3c
axiz+ Bayr4-yat...oiell 2= 3b= j¢
az23 + BXYEA Y YT a= 2b= 3c
ax?Z+ BTy AV a=— b=—3c¢
ayd+Bays+ Y2, . 3a= 20= ¢
ay3 By + YT a=— b=—3c
az34+ ByYPYTIe e 2a= 3b= ¢
azty+ Byryxs........ e . a= 20= 3¢
azd+ Baxi+yy...... e 3a= 6b= ac
az2Z 4+ BXE Yoo 2a= fjb= ¢
ay?z 4+ Byl a= 2b=—2c
azZys 4+ BT YYeiii a= 2b=— ¢
ayd+ Bys4+yr....oiiiin, 3a = = 2c
a2y + By YT, a=— b= oc
AT2E A+ BT A YY e a= b=— ¢
azyz+ Br+yy..ooooiiii a= =— ¢
azd+ Bl Yy ..o, Ja= 3b= oac
astz+ Bl vy oo, 2a= 2b= ¢
axd 4+ Ba2y +~yayr+yi4+es... a= b= 3¢
axd+ B2ty +yryr+oyi+es... sa= 2b= 3¢
azd+ Bty Yyt +Syitcxs.. a= b= oac

. 3 I 1

AT BYS i 2= 53

2 2 1

ay?s+ Bat..o.iil, 2= 33

. 1 2 1

1‘}'2; ()J‘ ..................... Z = -l—) -+ E
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On peut former, inversement, au moyen du Tableau
(ui précéde, les équations des seules quadriques a centre
unique qui admettent des surfaces de symétrie du troi-
sieme ordre mnon orthopolaires de la quadrique ct
autres que des cylindres. Je crois bon de les inscrire
dans un second Tableau, en faisant suivre Péquation de
chaque quadrique du nombre de classes de ces surfaces
de symétrie correspondant a la quadrique.

Voici ce Tableau :

Quadriques Quadriques
qui ne sont pas qui sont
de révolution. de révolution.

r2oy?-3z2=d.... } 2
e y2a032=d.... 3 1
r2— oy 152=d. 2 . 1
=3yt 4t =d 2 i
rr— yre32=d.... 2 R |
6r2+-3y2+aos2=d.... 1 1
62+ 4y?2+352=d.... 1 U |

1rt—2yr+ 5=

aa  a.a
S — 3y 32—

A ces quadriques, dans lesquelles les rapports des
axes sont déterminés, il faut ajouter encore trois fa-
milles de quadriques comprenant chacune des qua-
driques symétriques par rapport a une seule classe de
surfaces du troisiéme ordre, représentée par unc équa-
tion bindme.

Il reste maintenant a calculer les formes de la fonction
F(x,)', 5) qui correspondent aux surfaces de symétrie
orthopolaires de la quadrique (S). Ici la valeur con-
stante de D doit étre zéro : la quadrique ne peut étre que
du genre hyperboloide. La somme o3+ ¢, est divisible
par 'une des variables, ct le groupe ¢, n’existe pas. La
fonction ©» ne peut comprendre plus d'un terme. S'il

Ann. de Mathémat., 3¢ série, t. X. (Juin 1891.) 17
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existe, 93 n’est composé également que d’un seul terme.
Lorsque 2, fait défaut, o, renferme au plus deux termes.

Le Tableau qui suit fait connaitre les résultats de ces
calculs. Les rapports mutuels des axes de la quadrique
sont déterminés, sauf dans un cas. En regard de 'équa-
tion de chaque quadrique, sc trouve cclle des surfaces
orthopolaires qui lui correspondent.

2+ yrt—azt=d ax?s +By2z+vy=o0
222+ 2y — t=d axs? -+ Bysi-+y=o
r24+a2y?—asi=d ax?s +Pys +y=o0
222+ y:— 32=d 2232 +Byz +y=o0
Z:- fyr—ast=d azr?s —Bys2+y=o0
Ma?—32)+ u(y2—s2)=d Tys+Y1=0

En examinant les résultats inscrits dans les T'ableaux
précédents ('), on est conduit & cette remarque :

Quand un cone du second ordre admet une surface
orthopolaire du troisi¢me ordre qui n’est surface or-
thopolaire d’aucun autre cone du sccond degré, son
cone supplémentaire admet également des surfaces ortho-
polaires du troisi¢eme ordre, et plus généralement, siun
cone du deuxiéme degré est symétrique par rapport a
unc surface du troisiéme ordre sans que celle-ci soit
surface de symétrie d’un autre cone du deuxiéme degré,
son cone supplémentaire est lui-méme symétrique par
rapport a une infinité de surfaces du troisiéme degré.

(*) Les lettres grecques qui figurent dans ces Tableaux, ainsi que
a lettre d, désignent des constantes arbitraires.



(243 )

CONCOURS D’ADMISSION A L'ECOLE CENTRALE EN 1890.

Sorvrion PAR M. LE Capitaixg BARISIEN.
PREMIERE SESSION.

On donne deux axes rectangulaires x'Ox, y'Oy,
et deux points A, B, symétriques par rapport au
point O.

1 On prend sur Uaxe des x un point quelconque P,
et Uon consideére la parabole (P) qui est tangente aux
droites PA, PB au point A et au point B. Lieu du som-
met et lieu du foyer de cetie parabole quand le
point P parcourt ’axe 2’ O x.

2" On prend, surl'axe des y, un point Q quelcongue,
etl’on considére la parabole (Q) qui est tangente aux
droites QA, QB, au point A et au point B. Les deux
paraboles (P) et (Q) qui correspondent ainsi & un
point P pris sur ' Ox et & un point Q pris sur y’ Oy
se coupent aux points A et B et en deux autres points
C, D. Former I’équation de la droite CD et trouver le
lieu décrit par les points C et D quand les deux points
P et Q se déplacent, U'un sur ' Ox, Uauwtre sur y'Oy,
de facon que ’abscisse du premier soit toujours égale
@ Uordonnée du second.

L. Soient a et & les coordonnées du point A, et dési-
gnons les longueurs OP et OQ respectivement par o
st 9
et 2.

L’équation générale des coniques tangentes aux
droites AP et BP, aux points d’intersection de ces



droites avec AB est

[bx +~(at—a)y —ba][bx— (x+a)y —ba]
+ h(br—ay)? =o.

Pour que cette conique soit une parabole, il faut
que A = — 1, et la parabole (P) a pour équation

] (1) ayi+2b2r—2aby —b2a=o.

Désignons par p et ¢ les coordonnées du foyer de cette
parabole et par x —k = o I'équation de la directrice.
En identifiant I’équation (1) avec I'équation focale

(r —pl+(y—g)r=(r—Fk)p3

on a les relations

k—[): Ii:-,
ab
9=

pr+qr—kr=— b2,
d’ot ’on déduit

a? — 02—+ %2 ab a?+ b"—+ %2
p::————-——————, q:—, A—-~—-v

QA a 2
Pour avoir le lieu des foyers de (P), lorsque o varie,
il faut éliminer o entre les deux valeurs de p et ¢, ce
qui.donne
q:(ar—b%) —2abpg + a2b* = o,

Cette équation représente une hyperbole ayant son
ceutre a l'origine et 'une de ses asymptotes paralléle &
I'axe des x.

L’axe de la parabole (P) ayant pour équation

ab

—_ T
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on obtient le lieu du sommet en éliminant « entre cette
derniére équation et I’équation (1). On trouve ainsi

ay*—2bxy +ab=o;

Le lieu des sommets est donc une hyperbolé ayant
pour asymptote une paralléle & I'axe des x, son centre
a Vorigine, et passant par le point A.

II. Paranalogie avec la parabole (P), on trouve pour
I'équation de la parabole (Q),
(2) Bar+2a2y —2abxr —a?f =o.

L’équation générale des coniques passant par les
points d’intersection de (P) et (Q) est
o (ay?+2b2r+2aby — D22
(2) )
{ —u(Brissaty—o2abr—a2B) = o.
L’équation de AB est
bxr—ay =o.
Désignons celle de CD par

Ur 4oy —1=o0,

u ct vy ainsi que w, étant des cocfficients a déterminer.
L’ensemble des deux droites AB et CD, considérées
comme une conique, a donc pour équation

(ux +vy—1)(bx—ay)=o
ou

(4) ubx? +(vb — au) xy —avy?— bxr +ay = o.

Exprimons que cette équation est identiqued (3)5 il
vient les relations

>

u

—av —1 . !
B~ T« T a2(b—ap) wap—0)

vb = au,

=

b'a-+ a2l =o.
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De ces cinq relations, qui sc réduisent a trois, on dé-
duit

“= 2a(aB + bay’ V:;b(—aﬁ_—;—b—z).

L’équation de CD devient donc

; TLY (2.
() (:_—Z_L<1+{$>

Siz== 3, ona, pour cette derniére équation,

(6) z_y_2axrb)

a o a
En ¢liminant « entre (6) et (1), on a le lieu des
points G ct D) qui a pour équation

=+ b.

C’est une cllipse de centre O et d’axes Ox ct Oy,

SECONDE SESSION.

On donne une parabole rapportée a dewx axes rec-
tangulaires Ox et Oy : cette parabole a son axe pa-
rallele a Daxe des y; elle passe par Uorigine et le
point de laxe des x, dont Uabscisse est l; enfin elle
admet une ordonnée maxima égale a f.

On donne, en outre, une droite passant par l’origine
et par un point A(x =1, y =1"h):

1° Démontrer que si, pour une abscisse déterminée,
on porte en ordonnée la somme algébrique de l"ordon-
néetde la droite et de celle de la parabole correspon-
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dant & cette abscisse, U'extrémité de cette ordonnée
est sur une parabole (P) égale a la premiére;

2* Démontrer que les ares des coniques qui passent
par Uintersectiou d’un centre et d’une conique sont
paralléles aux axes de celle-ci;

3° Une circonférence decercle décrite sur OA comme
diamétre coupant la parabole (P) en quatre points O,
A,B.C, chercher le liew du point d’intersection des
sécantes communes OA, BC guand on fait varier h, et
construire ce lieu qui n'est pas du second degré;

{
Vi

le cercle décrit sur OA comme diamétre est tangent &

4" Chercher la valeur du rapport — pour laquelle

la parabole, quel que soit h.

La parabole ayant son axe parall¢le & Paxe des y,
passant par origine et par le point de I'axe des x d’ab-
scisse [, et ayant comme ordonnée maxima f, a pour
¢quation

12
(1) xi—lx—s—z—]_—y:o.

On a aussi pour I'équation de la droite OA

(2) hz— 1y =o.

L. Les ordonnées dela parabole (1) ct de la droite (2),
correspondant & la méme abscisse S, ont pour valeurs
respectives

ifsil—s) hs
2 !

De sorte que, si l'on pose

¢t si l'on élimine S entre ces deux derniéres équations,
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on obtient pour celle de la parabole (P)

3

0.

l
(* (2— — (4 X Y =

Les équations des paraboles (1) et (3) ont méme
coeflicient du terme en y. 11 est facile de voir d’'une ma-
niére générale que, pour la parabole dont I'équation est

l
3

(1) 22+ Az + By =o,

le coeflicient B est le double du paramétre de la para-
bole. En effet, soient (2, ) les coordonnées du foyer
ct y —k = o T'équation de la directrice de cetle para-
bole. Son ¢équation pourra s'écrire

(z— a2+ (y—B2=(y— K2
ou

(5) 22—axr — 28 —k)y+4+ 3 —kr=o.
En identifiant (4) et (5), on obtient

24 =— \, 2(k —B)=B, a4 2= k2;
d’ou on déduit les valeurs de 2, B etk

A, AR Aro B

> 9 T /{ = e—— .

> ! B iB

Or le parameétre p qui est la distance du foyer a la di-
rectrice a pour valeur

]):/\——g: E-

Done B=2p, ce qui démontre bien que les paraboles
(1) et (3) sont égales.

IT. Soit, en général, unc conique rapportée a son
centre et a ses axes, dont I'équation est

(6) b2z + a’y?— a?b? = o,
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¢t un cercle quelconque
) 22+ y?+-Mz+ Ny +P =o.

L’équation générale d’une conique passant par les
points d'intersection de ces deux courbes est

(8) b2xritaly?— a?b2+ p(x2+ yr+ Mz + Ny +P)=o.

Cette conique a bien ses axes paralléles a ceux de la
conique (6).

En particulier, les droites d’intersection de (6) et
(7) sont également inclinées sur les axes de (7), puisque
les axes de deux droites sont leurs bissectrices.

IIl. Les droites BC et AO étant également inclinées
sur I’axe de la parabole, I'équation de BC est de la
forme

hx+-1ly +p=o.

De sorte que I'équation géuérale des coniques passant

par les points d’intersection de la parabole P avec les

droites AO et BC est
ifer—l4f+h)x Uy -+ he —1ly)he 1y +up)=0
ou

{ 22(4) —1h2) =2y

{
o) | —2[l(4f+h)— phX])+=1ly(l— ph)=o.

Le cercle décrit sur OA comme diamétre a pour équa-
tion

(10) 22+ y*—lz —hy =o.

En identifiant (9) et (10), on obtient les relations

A=Ak =N U4 f+h)+uh) _ (A —=10)
1 T { o A

Al . . , . N ) .
Ces trois'relations se réduisent a deux, I'unc des trois
rentrant dans les deux autres. On en déduit les valears
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de 7o ctp

Y,

(124 24 fh)

it

w=

L’équation de la droite BC est done
112 k2§ fh)
4f
Pour avoir le lieu des points d’intersection de OA et
BC, il faut éliminer % entre (2) et (11), ce qui donne
pour I’équation de ce lien

(11) ho + ly =

(12) 8fxty = I[l(x2+ y2)+ 4 fxy].
Cette courbe du troisiéme degré a une asymptote

double paralléle a 'axe des y, rejetée a I'infini, et une
I J rejete )
asymptote parallele a 'axe des & dont I'équation est

— lZ .
V=57

‘7v

Lorsque [ < 2 f, la courbe passe par I'origine, qui est
un point double réel; quand /= 2f; la couwrbe passe
encore par origine qui est un point de rebroussement
de seconde espece. Enfing si [7>af, Vorigine est un
point isolé.

IV. Les tangentes a la parabole (3) en un point (§, 7)
a pour équation

z[8fE—l(4f+h))+ Ly —Il4f+h)E+Pn=o0.
Pour exprimer que la droite BC est tangente, il faut
p ] 8 3

identifier cette derniére équation avec 'éguation (11),
ce qui donne

8fL UGSl 1 (6f - R)E—In.

4Jh TAf T Tl hra i fh
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Lot Pon déduit

. Uh—2f) 1 s
W) E=m = Lafhesp ),

En éliminant % entre ces deux équations, on trouve

pour le lieu des points (&, #) la droite
2.f 13 4f2“ 2

2
Voyons dans quel cas les coordonnées £ ctr, satisfont

a Péquation de la tangente, quel que soit /. En substi-
wuant les valeurs (13) dans I'équation

T =

(24 h2+ 4 fh)
——F
if

nE—+iln=
on trouve
l=2af.
.l ;. .
Done, si 7= 2, le cercle décrit sur OA comme dia-

meétre est tangent a la parabole, quel que soit /.

CONCOURS D'ADMISSION A L'ECOLE POLYTECHNIQUE EN 18903
Par M. LE caritaiNe BARISIEN.

On donne, dans un plan, une hyperbole équilatére H
dont Uéquation par rapport & ses axes, pris pour axes
de coordonnées, est

) 22— yr=a’.

D'un point M du plan, ayant pour coordonnées

L=p, y =g, on méne des normales a cette courbe.
On demande :

1° De faire passer par les pieds de ces normales
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une nouvelle hyperbole éyuilatére, dont les normales
en ces points soient concourantes, et de determiner leur
point de concours.

2* En désignant par K une hyperbole satisfaisant i
cette condition, dans quelle région du plan doit étre
placé le point M pour gu’il y ait une hyperbole K cor-
respondant & ce point?

3° Quelle ligne doit décrire le point M pour que
Uhyperbole K soit égale a I'hyperbole H.

N. B. — On conservera les notations indiquées.

I. L’équation de¢ 'hyperbole équilatére passant par
les pieds des normales issues du point M est

(2) 28y —py —qr=o.

L’équation générale des coniques passant par les
points d’intersection des hyperboles (1) et (2) est donc

(3) 22— yi~+ohzy — pAy —qghx —a*=oc.

Ces coniques sont toujours des hyperboles équila-
teres. 11 S’agit de déterminer i de facon que les nor-
males aux quatre points d’intersection de (1) et (2) con-
courent en un point (z, 3) également a détermincr.

L’équation de la normale 4 'hyperbole (3) en x, ),

est
X —ur . Y—»
2 + 2 y —qh  —ay +20x—pA

Exprimons que cette droite passe par le point (2, £).
il vient

(2—z)(2y —2rx+phM)+(8—y) (22 +2 Ay —gh)=0
ct en développant

2N — y2)— jory +—x[28 — A(p - 2a)]

4" Ny
(4 - yloa 4+ h(q 4-28)]+r(pa—qgB)=o.
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Les normales a 'hyperbole (3) issues du point («, )
ont leurs pieds a I'intersection des courbes (3) et (4).
Une quelconque des hyperboles (3) étant

(5) FP—y P opxy — qpr —ppg — at=o,

en identifiant (4) et (5), on exprimera les conditions
de 1'énoncé.
Les équations d’identification sont

2 —a2 28— A(p+24a)
EE i T
_22+AMg+28)  AMpr—qB)
P —a?

Elles peuvent s’écrire

i6) hy = —1,

) 2 =28 — h(p + 22),
(8) 2p =22+ k(g +28).
(9) pr—qgp=—nas.

En éliminant ). entre (7) et (8), ona I'équation

/ 2 2 ° 9
P > ( o _ 4 > 9(p2+ q*)
{ — = + —_ = = — 1
v (== 7)) + (8= 7 TN
A un systéme de valeurs de p et ¢ correspondent done
deux systémes de valeurs de 2 et 3, relatifs aux points
d'intersection de la droite (9) avec le cercle (10).

II. Pour que ces points d’intersection soient réels, il
suffit d’exprimer que la distance du centre du cerele (10)
i la droite (9g) est plus petite que le rayon. On a ainsi

pr— g2+ 8a? 3vpr+ g2
= < " )
bypr+q? 4

ou

(p?— g2+ 8a?) < 3(p*+ q?)
on

pPi+292—fa?> o;
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a ct % ne seront réels, et par suite A, que si le point M
est a intéricur de Vellipse

(11) pi2qr=4at

Si le point M est sur Vellipse (11), on n’aura qu’une
hyperbole K, et la valeur de X correspondante est

r=2

q
Si, enfin, le point M est a P'intérieur de Pellipse (11)
les hyperboles (K) seront imaginaires.
III. Cherchons maintenant la grandeur de I'axe de
Ihyperbole (3).

‘n général, pour unce conique dont I’équation est
Ax?42Bay +-Cy2+2Da + 2By + F = o,
I’équation en R?* qui donne les carrés des demi-axes est

(AC—B)R'+(A+C)F, R2+ T2 =0
avec
AE2 4 CD2— 2 BDE
Fy= — 75— +F.
! 32— AC F
Dans le cas de 'hyperbole équilatére, A +C=o, et
'on a

A=1, C=—1, B =1,
p—_72* E=_— 2} I'=-—a
on trouve
“2:2[)(])\3—%—)\E(q?—p‘-’+4a‘-’)+;ia?'
3
, 4(A2+1)?




( 255)

Ep exprimant que R = a, on a 'équation
(12) [2pgM3+ 22 (qg2—p2+4a)+ a2 =16a*( A2+ 1),

On aura le lieu des points (p, ¢), tels que I'hyper-
bole K soit égale a I’hyperbole H en éliminant «, § et A
entre les quatre équations (7), (8), (9) ct (12).

L’élimination de « et § entre (7), (8) et (g) se fait
au moyen du déterminant

2 —2k 2g-+Ap
2l 2 2p—lg|=o,
q —p 2a?
qui, développé, devient
(3) 2 (@*—p*+4a2)—6pgh+ fa+2(p*—q*)=o.

Il reste a4 éliminer X entre (12) et (13). Cette élimi-
nation, qui parait, au premier abord, assez laboricusc,
estrendue facile par Partifice suivant.

L’équation (12) peut s’éerire

22(p*—qt—apg M) =4ar(22+1) (1—yi2r1).

Multiplions les deux membres par 14—/ +1, il
vient

) (VR 1) (P — g2 —apgl) =— ja2 (22 +1).
L’équation (13) peut aussi se transformer de la facon
suivante

a

3y 3(pr—qr—oapgh)=(p>— q*— fa®) (K2 +1).

Entre (12) et (13), I'élimination de A va se faire main-
tenant trés facilement. Divisons ces deux équations
membre & membre ; nous aurons

V11 4a?

3 P g*—4a?’
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d’ou
24a(p?— q2+ 2a?)

5 2___
" (pP—q*—jar)?

En portant cette valeur dans (13), on obtient

[(p2— q2)2—14a( p*— q?)— 32a+]?
—216a2p2q?(p?— g2+ 2a%)=o0

et définitivement

(p2— g2+ 2a?)
x[(pt— qr+2a2)(p?—q?—16a2—216a2p2qt=o].

Le licu se compose donc de I'hyperbole équilatére
p*—g?+2a=o
ct de la courbe du sixiéme degré
(p2—q2+2a?)(p?— q?—16a?)2—216a’p?¢? = o,
qu’il est facile de construire.

N. B.— M. Reynés, ancien ¢léve de I'Ecole Centrale, nous a envoy¢
aussi unc solution de la troisicme Partie.

AGREGATION DES SCIENCES MATHEMATIQUES
(CONGOURS DE 1890).
SOLUTION DE LA QUESTION DE MATHEMATIQUES
ELEMENTAIRES ;
Par M. E. GROSSETETE,

Professcur au lycée de Nevers.

On donne deux droites x0x', yOy', qui se cou-
pent en un point O, et sur la premiére un point A,
sur la seconde un point B. Une droite mobile ren-
comtre xOx' en M et yOy' en N, et l’on suppose que
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la longueur MN est égale a la sgmme ou a la valeur
abcolue de la différence des /ong:wul s AM et BN.

° Démontrer qu'il y a deux séries de droites qui
sntisfont a cette condition. Trouver combien on peut
faire passer de ces droites par un point donné P du
plan. Construire ces droites et distinguer parmi ces
droites celles pour lesquelles la longueur MN est la
somme des longueurs AM et BN de celles pour les-
quelles elle en est la différence.

2* Soit MN une droite appartenant & lUune des
deux séries; démontrer que le liew du centre du cercle
circonserit au triangle OMN est une conique qui a un
foyer au point O, et que U'enveloppe du cercle cir-
conscrit au triangle OMN est un cercle.

1° Prenons pour Ox la direction OA et pour Oy la
dircetion OB, et soit § I'angle AOB. Désignons OM
par &, ON par =, § étant positif dans la direction O,
négatif dans la direction contraire, 3 étant positif dans
la direction Oy et négatif dans la direction contraire.
Soit encore OA = a, OB == b. On a, dans tous les cas,

AM=t—a, BN=7—0;

et, dans le triangle OMN,

W2 = O_M2+6—N2—— 20OM.ON cos9,

MN étant égal a la somme, ou ala valeur absolue de la
diftérence des longueurs AM et BN, on aura, dans tous
les cas,

[E—a==(n— b)]P=E~+ 12— 287 cosd
ou

(h  2fr(cosl 1) —a(fEn)aEbd)+ (@ b)i=0.

Les signes supérieurs doivent étre prissimultanément;
il en est de méme des signes inférieurs. La relation pré-
Ann. de Mathemat., 3 séric, t. X. (Juin 18g1.) 18
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cédente permet de conclure que les points M et N tra-
) .. .
cent sur Ox et Oy deux divisions homographiques. On
peut donner a la relation (1) une autre forme. Posons

m:.rzi—a, ﬁ:}/:‘f‘—-b.
£ étant positif dans le sens O x et négatif en sens con-
traire, n étant positif dans le sens Oy, on obtient

(2) 22y (cosO 1) =2x(a —bcosh) + oy (b —acosh) + 2,

¢n posan t

AT}Q: 12 = a2+ b2— vab cos0.

Considérons les deux divisions homographiques tra-
cdes sur Ox et Oy et définies par la relation

(3) 22y(cosh +1) =2x(a— bcosh)+2y(b—acosl)+ (2

Soit M un pointde x'Ox correspondant a une valcur
de x, la valeur correspondante de y déterminera sur
»'0y un point N. Deux cas pcuvent se présenter :

1° La valeur de y est de méme signe que celle de «x,
alors la droite MN est telle que sa longucur est égale a
AM + BM;

2° La valeur de y est de signe contraire a x; MN est
telle que sa longueur est égale 4 la valeur absolue de la
différence AM — BN.

Considérons en second lieu les deux divisions homo-
graphiques tracées sur O.x et Oy et définies par la re-
lation

(3') 2zy(cosh —1)=o2x(a—Dbcosh) -+ a2y (b—acosl)+ 12

A un point M de x'Ox correspondant a la valeur x
répond un point N sur 3’ Oy déterminé par (3').
u¢ La valeur de ) est de méme signe que celle de z:
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alorsla droite MN est telle que sa longucur est égale a
la valeur absolue de la différence AM — B—J.\—,

2° La valeur de y est de signe contraire a x; MN est
telle que sa longueur est la valcur absolue de la somme
AM + BN,

Voyous combien on peut faire passer de ces droitos
par un point P du plan. Considérons les deux divisions
homographiques définies sur OA ¢t OB par la relation

{3y 2xy(cosh+1)=2x(a—bcosO)+ 2y (0— acosl) + {2

Si l'on joint le point P aux points de ces deux divi-
sions, on obtient deux faisceaux homographiques de
méme sommet. Les droites doubles de ces faisceaux
sont les droites telles que MN qu’on peut faire passer
par le point P. En général, il v a deux droites réclles
passaut par le point P et correspondant a la formule(3).
La formule (3’) en donmnerait deux autres. Construisons
les droites passant par le point P et correspondant a
la formule (3) ou a la formule

(1Y 2kn(cos® +1)—a2(E+n)(a+b)+(a+b)2 =o.

Pour cela, déterminons sur Oz et Oy trois couples
de points homologues : au point O, considéré comme
appartenant a Oy, correspond sur Ox un point o ( fig. 1)

s . , ca+b \
situé & une distance de O égale a ——; de méme, au

point O de Ox correspond, sur Oy, un point 3 situé a

. , .oa+b . < e
une distance de O égale aussi a ; au point al'in-
fini sur Ox correspond, sur Oy, un point situé i unc
a-+b
1+ cosbh

\

distance de O ¢gale A En joignant P i ces trois

touples de points homologues, on obtient trois couples
¢ rayons homologues des deux faisceaux homogra-
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phiques. Si I'on fait passer une circonférence par le
point P, elle coupera les rayons homologues en (a, a'),
(b, &), (c,c"). Les droites a'b, ab' d'une part, et

(ac’) er (d'c) se couperont en deux points. La droite
qui joindra ces deux points pourra rencontrer la cir-
conférence en deux points e, f; les droites Pe, Pf se-
ront les rayons doubles cherchés. On trouve PM et
PN, L’un d’cux PN est une droite de la premiére série,
puisque AM ct BN sont de méme signe, I'autre PN’ est
de la seconde série puisque BN’ et AM' sont de signes
contraires. On verrait de la méme manicére la con-
struction et la situation des rayons doubles correspon-
dants a la relation (3').

Soit MN une droite appartenant a 'une des séries,
et C un cercle circonscrit au triangle OMN ; cherchons
le lieu du centre C de ce cercle. Prenons la figurc po-
laire réciproque du cercle C par rapport & un cercle di-
recteur ayant (0] pour centre et 1 pour rayon. C, passanl
par le centre O du cercle directeur, aura pour figure
polaire réciproque une parabole ayant pour foyer O et
pour directrice la polaire ¢¢’ du centre C par rapport
au cercle directeur; au point M du cercle C corres
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pond une tangente a la parabole, la polaire de M par
rapport au cercle directeur; elle passe par un point
de OM, tel que, si I'on désigne O par x,, on a

E:l?‘:l.

Le symétrique de O, pav rapport a cette tangente,
est le point o, ou OA rencontre la directrice dela para-
bole. Soit O9 = ', on aura

r'=x;
donc § et 2’ sont liés par la relation
Fa' = a.

De méme, en appelant y, la distance de Porigine O a
) P 8

la polaire v de N et par »’ la distance O¢’ de O au point

ou la directrice rencontre 'Oy, on aura

=1 et y'=oy;
donce
ny" =
Or £ el 7 vérifient la condition

2in(cosO=1)—2(iE1)(at=d)+ (a=b) =o0;

donc on aura, cutre 2’ et y/, la relation

a*+b\2 , , L, .
) — ) 2y — (¥ 2 ) (a£b)+ 2(cosl=1) =0,
4

ce qui prouve que la directrice de la parabole trace sur
deux droites fixes, Ox, Oy, deux divisions homogra-
phiques; par suite, la directrice enveloppe une conique.
Cette conique est un cercle. En effet, considérons la
directrice ¢4’ qui trace sur 2'Ox, y'Oy des divisions
homographiques définies par

o a—+b\2 .
) ( T——) 'y — (2 +y)(a+b)+2(cosb--1) = o.

i
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Les valeurs de a/, »' correspondantes aux points de
contact de la conique avec Ox ¢t Oy sont

2(cosO—+1)

01:1: ’
a—+b

2(coslh +1)

0f=p=22"20"""10

a—+ b

Ces points sont a ¢gale distance de O. Si la conique
est un cercle, le point de contact y de ¢3¢’ avee ce cercle
doit ¢tre tel que

o, ool — o ol feinr i colle
Par suite, 99'= a5 + 39'; et réciproquement, si cettc
condition c¢st remplie, les droites ¢¢ restent a une
distance constante du point w, intersection des perpen-

diculaires oo et Bw 4 Ox et Oy. Or

— , l', 2(c050+1)]
Lo =X — A= — —F |

a+ 0
Boim ' 8 — y,_iz(cosf)-&—]) .
e ! a-+0

Si la conique cst un cercle, on devra avoir

o + e

[ v 4(cosh 1)

’ 9 9 ’ ’
4y — = 2'2+ —a2x' y'cosl)
Y Ta+b r Y

ou

L N2
((' - b) 2y — (2 +y'(a—+b)+2(cosh+1)=o,

qui n’est autre chose que la relation (4') a laquclle sa-
tisfont " et p'; donc 93’ enveloppe un cercle.

On verrait de la méme maniére que ¢4’ enveloppe un
cercle lorsqu'on considére la deuxiéme relation qu’on
déduit de (4). '

*Si donce on prend la figure polaire réciproque de ¢
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cercle par rapport au cercle directeur de centre O, a
I'enveloppe da la directrice correspondra le licu du
centre du cercle circonscrit au triangle OMN. Ce lieu
est donc une conique ayant pour foyer le point O et
pour directrice la polaire de w, c’est-a-dire nne perpen-
diculaire sur la bissectrice O w de I’angle des axes.

Cela posé, pour avoir I'enveloppe du cercle circon-
scrit au triangle OMN, il suffit de chercher sur la
figure polaire réciproque, I'enveloppe des paraboles
ayant méme foyer et telles que la directrice soit con-
stamment tangente & un cercle.

Considérons alors deux paraboles voisines ayant pour
foyer O (fig. 2) ct pour directrices deux tangentes au
cercle o. Soit M un point d’intersectionj ce point est tel

que MO = MH = MH', MH ¢t MH’ éant les distances

de M aux deux directrices. Si I'on suppose que la sc-
conde parabole se rapproche de plus en plus de la pre-
micre, le point de contact ¢ de la directrice g1 avee le
cercle o sera la limite du point d’intersection C des
deux  directrices, car les divectrices enveloppent le
cercle . Lorsque les deux dircetrices se rapprochent,
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I'angle diminue de plus en plus; alors MH' tend vers la
méme limite que MH; or MH tend a devenir la perpendi-
culaire menée par le point ¢ 4 CH; cette droite passera
par @, ce qu’on pouvait du reste prévoir (1), etle point M
tendra vers une position limite M, telle que M'o = M'O.
Or M’ est la distance du point M’ & la circonférence w.
Ou peat done dire que le licu du point M’ est le lieu
géométrique des points tels que leur distance a un
point fixe et a une circonférence fixe est la méme. On
sait que ce licu est une conique ayant pour foyer le
point fixe O. L’enveloppe des paraboles est done une
conique ayant pour foyer le point O.

Si maintenant on prend la figure polaire réciproque
de cette conique, on trouve un cercle; donc les cercles
circonscrits au triangle OMN cnveloppent un cercle.

C.Q. F D.

AGREGATION DES SCIENCES MATHEMATIQUES
(CONCOURS DE 1890).
SOLUTION GEOMETRIQUE DE LA QUESTION DE MATHEMATIQUES
SPECIALES;;

Par M. Maurice LIROUX,
Eléve au lycée de Lille.

On donne un triangle ABC et un point P dans son
plan.

Trouver le lieu des centres des coniques S inscrites
dans le triangle ABC et vues du point P sous un angle
droit.

") bM est toujours situé sur la bissectrice de ’'angle HCH', laquelle
passe par le centre w.
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Démontrer que les coniques sont vues sous un angle
droit d’un autre point P'; montrer que, si P se deplace,
la droite PP passe par un point fixe 1 et que le pro-
duit IP .IP' est constant.

La démonstration géométrique de cette question re-
pose tout entiére sur la proposition suivante : Les cer-
cles de Monge relatifs aux coniques inscrites dans un
quadrilatére ont méme axe radical, et sur ce théoréme
de Steiner : Les directrices des paraboles inscrites dans
un triangle passent par le point de concours des hau-
teurs du triangle.

Transformons par polaires réciproques en prenant le
point P pour pole.

Les coniques, vues du point P sous un angle droit, se
transforment en des hyperboles équilatéres circonscrites
aun triangle; d’apres un théoréme connu, ces hyperboles
passent par un quatriéme point fixe; donc les coniques,
dont elles sont les transformées, sont tangentes a une
jjuatriéme droite fixe : elles sont donc inscrites dans un
quadrilatére.

Sinous considérons les cercles de Monge relatifs a ces
coniques, ils ont, d’aprés le premier théoréme rappelé,
méme axe radical; et, comme les diagonales du quadri-
latére sont des coniques indéfiniment aplaties, leurs
cercles de Monge sont les cercles décrits sur elles comme
diamétres; ces cercles se coupant en un point P se cou-
peront en un autre point P’ fixe : c'est le sccond point
cherché.

Si nous remarquons que le centre du cercle de Monge
coincide avec le centre de la conique, nous voyons que,
pour obtenir le licu des centres des coniques, il suffit
Qélever, par le milieu de PP, la droite perpendiculaire

a PP,
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Aux quatre droites du quadrilatére, joignons la droite
de U'infini : il n’y a qu’une conique qui est inscrite dans
ces cinq droites ; donc une scule parabole pour chaque
position du point P.

Or le point P est un pointde la directrice de cette pa-
rabole, le point P’ en est un autre; done PP qui est la
directrice passera, en vertu du théoréme de Sieiner,
par le point de concours des hauteurs des quatre trian-
gles que 'on peut former avee le quadrilatére, ct, cn
particulicr, du triangle ABC.

Supposons tracée la quatri¢me droite DEI" du quadui-
latére; considérons les cercles décrits sur les diagonales
BE ¢t CF comme diamétres : ils passent par P, I’ cv par
le pied d’une hauteur.

Or, le cercle déerit sur BE comme diamétre, donne

PI.PI'=BI.OI = const.

Remaroue. — La démonstration précédente donne le
moyen de construire la quatriéme droite du quadrila-
\’ . .
tére, IFaisons passer un cercle par le point P, par un
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sommet B du triangle et par le pied 4 de la hanteur cor-
respondante; ce cercle coupera le coté AC en un second
point E qui appartient a la droite cherchée; on agira
de méme avec une autre hauteur du triangle et 'on
joindra les deux points obtenus.

NOTE SUR LA QUESTION PRECEDENTE;
Par M. LEMAIRE.

Soit le triangle ABC, P un point de son plan, S unc
conique inscrite dans le triangle et vue du point P sous

un angle droit @ Joignons PC ; soit C, le point ou la
perpendiculaire en P a cette droite coupe AB, et C, B,
la seconde tangente issuc de G, a la conique.

Les trois couples de droites (PD, PE), (PC, PC,),
(PB, PB,) forment une involution; les rayons de deux
couples, étant rectangulaires, il en est de méme des

N
rayons PB ¢t PB, du troisiéme couple. L’angle PBP,
est done droit, ct la droite B, C, fixe; cette droite passc

d’ailleurs par le point A, de BC, tel que A/P}. soit droit.

Les coniques S sont donc inscrites dans un quadrila-
tere fixe.

Le licu de leurs centres est, d'aprés le théoréme de
Newton, la droite qui joint les milieux des diagonales
AA(, BB,, CC, de ce quadrilatére.

P est I'un des deux points communs aux cercles dé-
crits sur ces diagonales comme diamétres.

L’autre point P/, commun a ces cercles, jouit de la
méme propriété que P.

En effet, les tangentes mendes de P 4 la conique S
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forment, avec les deux couples de droites (P'B, P'B,)
et (P'C, P'C,), une involution; les rayons de ces deux
couples étant rectangulaires, il en est de méme des
rayons du troisiéme, c’est-a-dire des tangentes a S issues
de P, .

I est aisé de voir que, si P se déplace dans lc plan
du triangle, PP’ passe par un point fixe.

En cffet, soit B’ le point commun au cercle BPB, et a
AC, et C'le point commun au cercle CPC, et a AB.

BB’ ¢t CC’ sont hauteurs du triangle ABCj soit I leur
point commun.

BC' et B'C érant antiparalléles par rapport a I'angle I,

on a
IB.IB'=IC.IC".

Par conséquent I est sur I’axe radical des deax cercles.

Aussi PP’ passe par le point de rencontre des hau-
teurs du triangle ABC.

On a d’ailleurs

IP.IP' = IB.IB' = const.

Si P décrit une courbe, P’ déerira une transformée de
cette courbe par rayons vecteurs réciproques .

Transformons la figure par polaires réciproques en
prenant pour cercle directeur un cercle quelconque O.

Les coniques S se transforment cn coniques S,y passant
par trois points fixes et déterminant sur unc droite fixe
P, un segment vu d’un point fixe O sous un angle droit.

Nous voyons donc que :

1° Les coniques S, passent par un quatriéme point fixe.

2 1l existe une seconde droite P telle que les seg-
ments déterminés sur elle par les coniques S, soient vus
de O sous un angle droit.

3¢ Si la droite P, se déplace, le point de rencontre
de Py et de P déerit une droite fixe.
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Remarque. — Si la droite P, est la droite de Uinfini
du plan, les coniques S, ne sont autre chose que les
hyperboles équilatéres passant par trois points fixes.

On retrouve la propriété de ces hyperboles de passer
par un quatriéme point fixe.

REMARQUES SUR LE MEME PROBLEME ;
Par M. MARCHAND,

Professeur au lycée de Versailles.

.

La méthode des caractéristiques de Chasles permet
de retrouver tous les résultats géométriquement et de
serendre compte du degré de difficulté de quelques-uns
des problemes les plus simples que P'on peut se pro-
poser sur les coniques S. Je m’appuierai sur ces résul-
tats connus : « Lorsque, dans un systéme de coniques
satisfaisant a quatre conditions, il v a @ coniques qui
passent par un point donné, ct v qui touchent une
droite donnée, on dit que p. etv sont les caractéristiques
du systéme. Le licu du pole d'une droite dounée par
rapport a un systéme dont les caractéristiqucs sont 1
¢t v est unc courbe de lordre v. Si Yon examine, en
eflet, en combien de points ce lieu peut couper la droite
donnée, on voit qu’il ne peut la rencontrer qu’autant
que cctte droite contient son pole, c’est-a-dire qu’au-
tant que cette droite est tangente a I'une des coniques
du systéme; et comme, par hypothése, ce contact ne
peut se produire que dans v cas, le lieu est du degré v. »
(G. Sarmon, Sections coniques; 2° édition, p. 670 et

671.)
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On est ramené a déterminer la caractéristique v des
coniques S. SiI'angle o est quelconque, il suflit de cher-
cher combien il y a de coniques tangentes a une droite
quelconque PQ passant par le point P. On voit qu’il y
en a deux, langentes respectivement a BC, CA, AB, PQ
et a P'une des deux droites passant par P et faisant un
angle o avec PQ. La caractéristique est 2; le licu du
centre cst une conique S. On trouve aussitot six points
de cette conique, savoir les six points de rencontre avee
les trois ¢otés du triangle DEF obtenu en joignant les
milieux des cOtés du triangle ABC. En ellet, une co-
nique S ne peut se réduire a deux points que sil’un de
ses points est un des sommets du triangle ABC, par
exemple Ajen joignant alors PA et menant par Ples deux
droites qui font un angle w avec PA de part et d’autre,
on obtiendra deux points A, et A, situés sur BC, et
chacun d’cux associé avec A donnera unc conique satis-
faisant aux conditions de I'énoncé. Les intersections de
AA, et de AA, avec EF sont deux points du licu.

Si Pangle est droit, Jes deux droites faisant de part et
d’autre un angle droit avec PQ sc confondent. La carac-
éristique est'1; le licu du centre est une droite A on
construit, comme il a été dit précédemment, ses intersce-
tions avee les trois cotés du triangle DEF.

Enfin, si 'angle © devient nul, on est ramené au lieu
des centres des coniques inscrites 4 ABC et passant
par P. Il scmble qu’il »’y ait qu’une conique inscrite
au triangle ABC ¢t tangente a une droite PQ en P;
mais ici encore la caractéristique reste égale a deux,
comme on le voit en prenant au licu de PQ une droite
queleconque H ne passant pas par P; il y a en effet denx
coniques tangentes & quatre droites BC, CA, AB, H et
passant par un point donné P. Considérant I’angle nul
comme la limite d’un angle o quelconque, on voit que
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les deux points de rencontre du lieu du centre avec EF
viennent se eonfondre au point de rencontre de PA et
de EF. Donc le licu T’ du centre relatif & un angle nul
est une conique inscrite au triangle DEF, qui se trouve
déterminée par trois points et les trois tangentes en ces
points. .

Il est maintenant facile d’établir que toutes les co-
niques T lieux des centres sont bitangentes entre
clles. En effet, appelons I et J les points circulaires; la
droite PI faisant avec elle-méme un angle indéterminé,
le centre de la conique inscrite A ABC et tangente en P
a PI appartiendra au licu géométrique, quel que soit w;
de méme pour PJ. Toutes les coniques X ont done deux
points communs ¢t ces points sont nécessairement ima-
gimaires; en effet, sile centre O de la conique ABCPI
était réel, la conique aurait plus de quatre tangentes
véelles, savoir : BC, CA, AB et les droites symétriques
par rapport & Oj clle serait réelle et le point de contact
avec une tangente passant par I'serait imaginaire, ce qui
n'a pas lieu. Les coniques X ne peuvent avoir aucun
autre point commun, car a un centre donné O corres-
pond une seule conique inscrite & ABC, et par suite un
angle o bien déterminé. Alors deux coniques T élant
deux coniques réelles qui n’ont en commun que deux
points imaginaires conjugués sont nécessairement bitan-
gentes, que P'angle soit quelconque, droit ou nul.

On peut dire que le lieu du centre est unc conique
bitangente a la conique fixe T aux points ou cette co-
nique est rencontrée par la droite fixe A. La droite A et
la conique T' ont été déterminées, mais il est facile de
déerminer plus complétement la conique T'. Si Pon
mene une droite K paralléle & AB et équidistante de AB
ct du point P, cette droite sera tangente a la conique T
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ct son point de contact avec I' se déterminera facile-
ment. En eflet, pour que le centre d’une conique S soit
sur la droite K, il faut que 'une des deux tangentes
menées de P a S soit paralléle & AB; la seconde tan-
gente sera I'une des deux droites qui passent par P et
font avec AB des angles + w et — w. A ces deux coni-
ques correspondent deux centres situés sur K, qui se
confondront en un seul lorsque 'angle o deviendra
nul, c’est-a-dire lorsque le lieu du centre sera la co-
nique I'. Donc T est tangente a K et le point de contact
sera le centre d’une conique inscrite 4 ABC et tangente
en P aune paralléle 8 AB; le cas particulier du théoréme
de Brianchon, relatif au quadrilatére circonscrit, don-
nera le point Q de contact avec AB; la droite QP ren-
contre K au point cherché. On a ainsi pour T' six tan-
gentes paralléles deux a deux avec leurs points de
contact. On en tire aussitdt le centre, et, en appliquant la
méthode de construction d’une conique par le théoréme
de Pascal, deux diamétres conjugués et, par suite, les
axes.

Si le point P vient sur un des ¢otés du triangle ABC,
sur BC pour préciser, on est ramené a trouver le licu
du centre des coniques de deux faisccaux tangenticels
déterminés par BC, CA, AB et par les deux droites me-
nées par P et faisant respectivement avec BC des angles
-+ ® ¢t — w. On a deux droites qui se confondent pour
w = 0, de sorte que, la conique T se réduisant a une
droite double, on peut toujours la considérer comme
inscrite au triangle DEF.

11

11 parait bien facile de trouver la caractéristique p :
« 2y — . coniques du systéme se réduisent a un couple
Y
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de droites et 54 —v a un couple de points (SaLmon,
p. 673). » Comme on a trouvé facilement qu’il y avait
six coniques S se réduisant a deux points, 2 —v == 6;
d’ou p= 4. Pour v = : = 2.

Pour me limiter, je me bornerai a chercher le degré
du lieu des foyers des coniques S lequel dépend seule-
ment de la caractéristique v. « L’ordre du lieu des foyers
des coniques du systéme (u, v) est 3v, et le lieu passe
par des points I et J qui sont d’ordre v (woir Sarmon,
pour la démonstration, p. 65 1). »

Lorsque I’angle © est quelconque le lieu des foyers
des coniques S est d’ordre 3v = 6. Une courbe d’ordre 6
est, en général, déterminée par vingt-sept points; il est

facile d’obtenir, dansle cas actuel, un nombre supérieur
de points. On sait d’abord que I et J sont deux points
doubles. On voit aussi, en considérant comme pluas haut
les deux coniques AA, et AA, réduites a deux points,
que les points A, et A, appartiennent au licu géomé-
trique et que le point A est un point double. Les tan-
gentes au point double A s’obtiennent facilement comme
limite de ce théoréme : « Les tangentes menédes d'un
point a une conique ont mémes bisscetrices que les
droites qui joignent ce point aux deux foyers. » Consi-
dérant la conique AA, comme la limite d'une conique
qui s’aplatit de maniére a se réduire a unc droite, on
voit que la tangente AA’ au point A au lieu du foyer
doit faire avec AB le méme angle que fait AA, avec AC,
dans le sens convenable.

On a déja cinq points doubles dont trois accompagnés
de leurs tangentes, ce qui fait 15 -+~ 6 = 21 conditions;
enoutre, les six points Ay, Ay, By, By, Gy, Cy, ce qui fait
\illgl-sept conditions.

Eufin, si I’on considére la conique inscrite & ABC et

Ann. de Mathémat., 3¢ sévic, t. X. (Juin 18g1.) 19
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tangente en P a Pl ses quatre foyers sont des points
du licu. De méme, si Pon prend PJ, on aura quatre
points dulicu, ce qui donnera en tout 27 + 8 = 35 con-
ditions.

Si Pon prend deux angles o et ' différents, on a deux
courbes du sixiéme degré admettant en commun les
cinq points doubles A, B, C, I, J ainsi que les huit points
correspondant anx coniques ABC, PI et ABC, PJ. Ces
courbes ne peuvent pas se rencontrer en un autre
point(Q, car toute conique, inscrite 3 ABC ct admettant Q
comme foyer, est déterminée par cing tangentes et alors
Pangle w en résulte sans ambiguité. Cela semble indi-
quer que les huit points communs donnés plus haut
sont points de contact. En eflet, deux courbes du sixiéme
degré ont trente-six points communs et cing points
doubles, plus huit points simples avec leur tangente
é(lniva]anl ADX 44 2> 8=306.Siw=w, ladémon-
stration semble indiquer que la courbe lieu des fovers ne
peut admettre aucun point double ¢n dehors de A, B,
G, 1L

Ou peutycomme danslapremiére question, déterminer
les points de contact par les courbes particulicres rela-

tves A w==0 ¢l w =

1A

Pour w == o0 le licu ¢st encore du sixieme degré; mais
A, et A, se confondant, le lien admet BC comme tan-
gente ct, de plus, les deux tangentes au point double A
se confondent. La courbe est tangente aux trois cotés
du triangle ABC ct adincet les irois sommets du triangle
comme points de rebroussement.,

Pour w == ‘; le licu s’abaisse au degré 3, puisque v =1;

on a une cubique passant par ABC, y admettant des
3 , . , N
Langentes détermindes ot rencontrant ¢n outre les trois
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cotés du triangle ABC entrois points faciles & construire.
Comme cette cubique passe par les points cycliques, elle
est anallagmatique. Le raisonnement fait plus haut pour
déterminer les points communs & deux lieux de foyers
semble d’ailleurs établiv qu’elle n’admet pas de point
double, n’est jamais unicursale.

Enfin, sile point P vient sur un des cotés du triangle
ABC, le lieu se décompose en deux points du troisiéme
degré dont chacune est le lieu géométrique des foyers
des coniques d’un faisceau tangentiel.

On obtiendrait une discussion du méme genre en
s'appuyant sur ce résultat connu : « Si 'on méne, d’'un
point fixe, toutes les tangentes possibles aux courbes
d'un systéme (u, v), le licu des points de contact de ces
tangentes est une courbe de 'ordre w + v ayant au
point fixe un point multiple d’ordre u. »

Il est a peine nécessaire de remarquer que, tout ce qui
précéde s’appliquant dés que v == 2, on obtiendrait de
meéme le lieu des centres des coniques inscrites au
wiangle ABC et tangentes a deux rayons homologues de
deux faisceaux homographiques ayant méme centre P.
Si les rayons doubles de I'homographie sont réels, on
aura des coniques bitangentes en deux points réels; au
cas de I’angle droit correspond le cas de I'involution.
Quand les rayons doubles de I'homographie sont réels,
ils peuvent devenir paralléeles & un ou deux cotés du
triangle ABC, 'un d’eux pouvant méme passer par un
des sommets du triangle.

Pour terminer, jemebornerai a la remarque suivante :
au licu de rendre réels les points doubles de I’homogra-
phie, on peut rendre imaginaires deux cotés du triangle
ABCet I'on est amené a étudier ce probléme : lieu des
tentres et des foyers des coniques S admettant un point
A comme foyer ct unc droite BC comme tangente. Par
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application du principe de correspondance de Chasles,
on trouve facilement que le licu du foyer devient alors
une conique.

REALISATION ET USAGE DES FORMES IMAGINAIRES
EN GEOMETRIE.

CONFERENGES DONNEES PAR M. Maxmmvuien MARIE
au Collége Stanislas, & Sainte-Barbe, 4 I'Ecole Sainte-Geneviéve
et d I'licole Monge (%).

26. Détermination de la courbe la plus géndrale
du troisieme degré quarrable algébriquement. — Les
trois asymptotes de cette conrbe doivent la couper cha-
cune en trois points situds a Uinfini, par conséquent
elle doit avoir wrois diameétres rectilignes, respective-
ment conjugnés des cordes paralléles a ses trois asyni-
ptotes; ces diamétres seront, d’ailleurs, les médianes du
triangle des asymptotes; Ja courbe.doit, en outre, avoir
un point double, lequel ne pourra se trouver qu’au
point de rencontre des trois diametres.

Son équation, rapportée a 'une des médianes, prise
pour axc des x, au point double, pris pour origine, ct
la paralléle 4 ’asymptote paralléle aux cordes conju-
guées de I'axe des z, prise pour axe des v, est

axr z +3m
V= =t/
: Im xr—m
a désignant la moitié du coté du triangle des asymptotes
qui est parallele & Iaxe des 7, et m le tiers de la mé-

dianc correspondant a ce coté pris pour base.

3

() Voir t. \, p. 172,
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La quadratrice est

LAy Im) \/(‘Ebﬂ;mfn)(a' -+ 3m).

6m
La courbe représentée par I'équation

ar r——3m

3m x —m
a la figure ci-jointe.
Je lui ai donné le nom de trefle, a cause de sa forme :
toutes ses conjuguées, qui sont du sixicme degré, saul

le folium de Descartes, sont également quarrables algé-
briquement. On savait depuis longtemps que le folium
¢lait quarrable algébriquement, mais on n’avait pas
Vexplication du fait. On vérifiera aisément que les trois
asymptotes de cetle courbe la coupent aussi chacune en
trois points situés a l'infini; seulement deux d’entre
clles sont imaginaires.

Cet exemple est rés propre a faire toucher du doigt
bien des choses que j'ai énoncées comme évidentes,
parce qu’elles le sont en cflet, mais ui paraissent avoir
1€ peu comprises.
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La démonstration, cntre autres, de ce théoréme que
la formation d’un nouveau point double dans une courbe
algébrique entraine une réduction de deux unités dans
le nombre des périodes de la quadratrice, cette démon-
stration d'un fait, pourtant si imprévu, n’a excité au-
cun intérét, parce que 'analyse pure ne peut pas four-
nir, par elle-méme, une notion exacte de la continuité
et que les analystes cultivent généralement trés peu la
Géométrie.

I est facile de montrer combien étaient mal fondées
les préventions avee lesquelles ma démonstration a éué
recuc.

Menons au tréfle TaT"UOU VeV deux tangentes

Fig. 23.

paralléles DE,JIVE’, dont la direction soit celie d’wne
droite comprise dans lintérieur de l'angle A, par
exemple, du triangle BAC des asymptotes ; une paralléle
a'ces deux tangentes et comprise entre clles ne coupera
la,courbe qu’en un seul point réel; les deux tangentes
DE, D’E’ comprendront donc entre elles une conjuguée
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du wétle; cetle conjuguée sera fermdée de toutes parts,
ce qui éiait prévu, les trois asymptotes de la courbe
réelle étant réelles. Soit C la caractéristique de cette
conjuguée ou le coeflicient angulaire commun de DE,
VI la conjuguée C passera au point double O les é1é-
ments du licu en ce point O seront fournis par I’équation

les coellicients angulaires des tangentes 4 la conjuguée
C,au point O, scrontdonc, d’aprés une formule connue,

2a?
Looa 3m?2
’ 3 “
my/3 = .
my/'3

En conséquence, les branches de la conjugude consi-
dérée se couperout au point O sous un angle ct elles
formeront une boucle en forme de huit; cette conjuguée
aura une forme telle que celle qu'indique la figure; si
Algebre entendait la continuité autrement que moi,
si clle Ta comprenait, par exemple, comme Pont com-
prise MM. Cauchy ct Puiscux, dans leur théorie de la
séric de Taylor; ou si I’ M“ebu' considérait e chemin
ONHMO comme fermé, sous le prétexte que le point
mobile [x, 5], parti de O, scrait revenu en O, c'est-
a-dirc que la fonction y et sa variable x seraient cn
méme temps revenues a leurs valeurs initiales, mais
sans que les dérivées initiales et finales de tous les
ordres, de la fonction y, fussent les mémes au départ et
a Parrivée, I'intégrale

2‘+ 3m

f&/n\/ xr—m

admettrait pour période le produit pary/'— 1 de Paire
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de la boucle HMONH; elle admettrait de méme pour
période le produit par V—1 de Taire de la boyg,
OMII'NO; mais, cetle intégrale érant a]gébrique n'a
pas de périodes done 'Algébre entend la continuité
comme je I'ai entendue partout dans la théorie de a .
ric de Taylor, comme dans la théorie des intégrales.

Maintenant, pourquoi la quadratrice du tréfle est-clle
algébrique, quoique ses coujuguécs soient toules fep-
wmées, sauf celles dout les cordes réelles sont paralléles
aux trois directions asymptotiques ¢t qui sont des fo-
liums? Clest parce que les deux boucles de une quel-
conque d’entre elles, méme des trois qui sont des fo-
liums, entourent des aires égales, comme on le vérifierait
aisément, puisqu’on a la formule de quadrature et que
cest le i)rmluit par \/: de la difi¢rence de leurs aires
qui forme la période; parce que la continuité exige que
les deux boucles soient parcourues dans le sens indiqué
parles icches, on dans le sens contraire.

Quant a la raison pour laquelle les deux aires
ONHMO ¢t ON'H'M'O sont égales, dans le cas actuel,
clle est facile icdonner : si 'on déformait infiniment peu
la courbe, de maniére, d’une part, a supprimer le point
double, qui serait alors remplacé par un petit anneau
récl, et, de Pautre, a faire en sorte que les trois asym-
plotes cessassent d'étre d'inflexion, en premier lieu, la
conjuguée ONHMON'H'MO sc scgmenterait en deux
anneaux sépards, compris, 'un entre la branche UU et
Ianncauréel, (uiaurait remplacé le [)ointdoub]e, ’autre
compris entre ce méme anneau réel et la branche v
en second licu, les aires cnveloppées par les deux 3}1‘
neaux de la conjugude cesscraient d’étre égales; mais:
en troisieme lieu, la quadratrice de la courbe ne com-
portant que deux périodes elliptiques, la diflérence des
deux aires en question, lorsqu’elle réexisterait, ne pou™
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vait ¢tee que Vaire correspondant i I'une des trois pé-
viodes cycliques.

La réapparition du point double, non accompagnée
de Vannulation des trois périodes cycliques, aurait alors
pour cfiets, d’abord, de réduire & néant la période ellip-
tique réclles en second licu, de réduire a une seule ap-
parence les deux figures de la période uliracyelique
imaginaire; cn troisieme lieu, de supprimer, par sous-
wraction, la partie commune, elliptique, des deux repré-
<entations de la période ultracyclique imaginaire; enfin
de ne laisser subsister, a la place des deux figures de la
periode ultracyclique imaginaire, qu’une forme acces-
soire de 'une des périodes eycliques.

Sl R LA RECTIFICATION DES COURBES PLANES.

Les intégrales rectificatrices de enveloppe réelle ct
de Penveloppe imaginaire réalisée d’un méme licu ont
les mémes périodes, au facteur V—1 prés.

La période réelle de la rectificatrice d’une hyperbole
est la différence entre la longueur totale de cette hyper-
bole et la longucur totale de ses asymptotes (les extré-
mités ayant mémes abscisses); la période imaginaire de
la méme rectificatrice est le produit par J—1 de la
dificrence entre la longucur totale de 1'hyperbole sup—
plémentaire et la longucur totale des asymptotes com-
munes.

Ces deux derniers théorémes s’étendent aux courbes
de tous les ordres, en y considérant les différents cycles
fermeés, composés de branches convenablement groupées
des deux enveloppes et de leurs asymptotes communes.

Les démonstrations de ces théorémes se trouvent dans
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Je Tome 1l de ma Zhéorie des fonctions de variapj,,
. . < s GLe fos anx (O
imaginaires; clles n’ont pas é1é douncées aux Confe-
rences.

27. Précis d’une théorie rationnelle des fonctin,

circulaires directes et inverses. — Sil'on pose

y scra par définition le sinus de S et S are dont le sinus
est yy &=y 1—3*scra le cosinus de S et S Pare dowt
le cosinus est x=\1—y%; 7 sera la tangente de S,
xT 1 ’ 1 ’

"~ en sera la colangente, - la sécante cL; la cosécante,
vV u

On aura évidemment

L . . sinS
sin2S + cos?S =1, tangS = oS
. Cos <

ety élantles coordonnées d’un point quelconque du

cerele 224 3% =1 ou de I'une de ses conjugudes, il sera
Fig. 2.

" M

0 red

N

toujours facile, par la théorie des aires, de savoir ¢

(que sera S, quand méme x et y seraient imaginaires.
Supposons d’abord y récl et moindre que 1, ¥ .S"N

aussi récl el moindre que 15 le point [, y] appartic”
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dra au cercle @ soit M ce point,

[.,y ‘,_’:A :f) “__) P )'{}
ey ¢| 0 \/l~

- 1"’611

S
-+ 2
P [ i

“0
— vy ¥
T j - 1‘J"T["J’v’lw.}'i

“0

= [~ Vi=r ke [ arvicy

0
= 2 aire OAMP — 2aire OPM
=g aire sccteur AOM + 2/,km= S.

Si 9 est imaginaire sans partie réelle, x sera réel ct
plus grand que 1, le point [, 3] appartiendra a la con-

juguce a abscisses réelles du cercle @ soit M ce point,
Y —
) [ dy \J1 — y? sera imaginaire sans partie réelle, et

<y
représentera le produit par — 1 de Paire OAMP; d’un

Fig. 25.

autre ¢oté, — y \/1 — )2 représentera le double du pro-

duit par /=7 de Paire du triangle OMP; par consé-
oy

quent [ 7====ou S représentera Je double du produit

[—y?

Y , v
pary/—ry de I'aire du sccteur AOM, ct 'on pourra y
ajouter un nombre entier de fois 2T, parce ue, avant
de faire parcourir I'arc AM au point [x, ¥ ], on pourra

b
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Jui faire parcourir, autant de fois que l'on voudra, la ¢iy.-
conférence ABCDA, dans un scus oa dans autre.

IFig. »0.
114/
!
apts
[ i l\_,_
\ 0‘ T/A 0N
|/

Si gy et ontrespectivement pour valeurs o + 4y —
J | 1 2y
by 53 \/~ 1, le point [ &, y | appartiendra 4 la conju-
o

guée C = i,;-dll cercle @ soit M ce point, « et o seront
les coordonnées du point N milicu de la corde réclle
MNM’ de la conjuguée, c'est-a-dire OQ et QN, 3 scra
égal & — NR et 3" & + RM, de sorte que x et ) auront
respectivement pour valeurs

x = 0Q —NRy—1.

¥y =QN+RMy=1;

wais la figure donne les analogies

QN _ ON RM  MN
BT — OB ’ OT ~ OB

¢'est-a-dire

QN = sin(2A0B) cos( 2 BOM y—1)
el
RMy—1 = cos(2A0B) sin (2 BOM V—1);
d’ou .
¥y = =sin(2A0B)cos(2BOM \/:)
= cos(2 ADR ) sin (2 BOM = 1):
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p——)

X e . dy
d'un autre coté, si 'on cherchaitla valeur dcf 4
L=y

on trouverait
5 = 2 (AOB + BOM y—1) + a4 =:
on en conclut
y=-sinS=sin(2A0B + 2BOM y/—)
= sin(2A0B) cos(2BOM y—1)
-+ cos(2A0B)sin (2 BOM y—1):
on trouverait de méme

z=rc0sS = cos(2A0B 4+ 2BOM V=)
= cos(2A0B)cos(2BOM V=1)
— sin(2AOB)sin(2 BOM /=1).
La formule

donne
das 1 ot
Z[; ‘/l —y? T cosS
d'o1t
f(;—; = D(sinS) = cosS;

d'un autre coté,

dSdS dy I 1 _ L
&= T dr = cosS dr TR
dv
dou
dx

5= D(cosS) =—sinS.

Il en vésulte par la formule de Maclaurin

. s»

sinS§ = S— -,
1.2.3
S2

cosS =1 — — +...,
1.2

Yuel que soit S,
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98. Précis d une théorie rationnelle des fonctions

exponentielle et logarithmique. — Si 'on pose
N
. “dx
S — [ dz
. l :r

. . L 1 )
S sera Paire de Phyperbole équilatere 1= =, comptée
x

du sommet A jusqu’a un point quelconque d’une con-

jugude quelconque et s'appellera le logarithme de x.
Si ¢ () désigne une fonction de x assujettie seule-

ment a prendre la valeur 1 pour x =1, on aura identi-

quement
/‘"' dr [" o'(x)dr /"r'f'(m)dr +ro'(r)dr _ /“T(l[.r < (.
Joow ey T T () . rea)

, -
Jest-a-dire

Lir)-+L{s(x)] = L{xo(r)].

z(a) pouvant prendre unc valeur quelconque lorsque 2
[
n'est pas égal i 1. On en conclut

L(ab)y=1L(a)--1L(b).

L <Z) — L(a)—L(b).

L(am)= mLa.

Le demi-axe OA de 'hyperbole est (/2; par conséquent,
Paire de la conjuguée circulaire est 27 et la période de

e dr — ..
I'intégrale f—r— est 27— 1. ¢’est-a-dire que

P /.]_1 _ /"» o -
/‘ = — =aireaAMm + ok=y/—1
=L(x)=ak=y/—1.

Si A désigne le point de I'hyperbole diamétralement
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opposé a M,
N M

N " dr “dx
—— == / — = -
Jooe o oz

/,sl'(_lf =y,

o'M r

mais

par conséquent,

/~ ﬂ:L(m)-}—(z/{-&—l)n\/:;.

ax

.
1

Fig. 27.

Si M, désigne le point de I'hyperbole supplémentaire
symétrique de M par rapport a 'axe des y,

» )
/"“‘ dr /’ " dr . " dr .
. T o x’

A A M
mails
M,
dx T —
— == — 1
Jy e o,

en eflet, lorsque le point mobile

(r=2+8y=1. y=o2+ V=1

. 3'
parcourt la conjuguée G du licu xy =1, % conserve la
u g



valeur C; mais

d e — =

de sorte que

conserve une valeur constante G, ou que zdz -+ 5%

reste constamment nul. 11 en résulte que

de  (Tdud3yY—1 /u—s V— i (dasds /=1
‘o 2-8y—=1 PENSCE

o

= [(adrr 8d3 —CV T [(§dxr 2 d3)

reste imaginaire sans partie réelle. Or la partie imagi-
M,
. dr = R , .
naire (hrf —oesto= oy, car, 'ordonnée y du point
TR 2

M, de Penveloppe imaginaire des conjugudes du licu

" de

S

\

¢tant imaginaire sans partic réelle, Pexpression

e}

Paire du triangle & introduire a la limite M,, pour rap-
porter le lieu au méme axe des a et & une paralléle any
cordes réelles de la conjuguée MM, serait réelle.

I en résulte

T, -
/ ’—L =Lir) - (b= =1,
1 v )

ety de la meéme manicre,

AV 1 —,
L (@) (o D=y =0

A
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Comme S croit en progression arilhmé[iquc, lorsque x
croit en progression géométrique et que, d’ailleurs,
s 1 .
’_;‘_ = - part de la valeur 1, lorsque x =1 et S=o, il

o.r xr

en résulte que les deux px‘()gressions sont, pour r,
(=) (i)t (),

et pour S,
0.2.22, ....n0%, ...

2 pouvant étre réel ou imaginaire.
Si Pon veut déterminer la base du systéme, il faut
, . 1
supposer 2 réel et prendre nao =1, dou n =_ct la

hase est

R -

(a2 =(1+a)*=cec.

Les logarithmes dont il s’agit dans ce qui précede
sontdonc les logarithmes népériens; et, en conséquence,
on p(‘ut poser

r = eS,

preva qu'il soit entendu que les exposants S se com-
porteront, dans toutes les opérations, comme s’ils élaient
réels.

l,’équatinn

e
‘I'lnuz‘
dS ]
=,
dr T
don
dr
—_—=r = (’S;
ds

Lutes les dérivées de x par rapport a S se réduisent
| - R . ,
tOnciceS, ey ont la valeur 1, pour $ = o5 il en résulte,

Auide Mathémat., 3 sévie, t. \. (Juin 1891.) 20
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par la formule de Maclaurin,

: S S2
S=14 =4 T L
1 .2
Remarque. — 1l n’cst pas élonnant que les fonctions

circulaires, directes et inverses, se ramenent aux fone-
tions exponentielles et logarithmiques, puisque les unes
ont leur origine dans la quadratrice du cercle ct de ses
conjuguces, qui sont des hyperboles équilateres, et les
autres dans la quadratrice de Phyperbole équilatére et

de ses conjugndes, dont 'unce est un cercle.

SUR LES FONCTIONS ELLIPTIQUES.

Le second Volume de ma 7héorie des fonctions de
variables imaginaires contient la théorie élémentaire
des fonctions elliptiques, établie d’apres les mémes prin-
cipes que les deux précédentes.

GEOMETRIE DANS L‘ESPACE.

Le temps n’a permis de traiter que bien imparfaite-
ment les questions, analogues aux précédentes, que
comporte la Géométrie a trois dimensions.

Nous ne ferons guére non plus, ici, qu’indiquer les
solutions.

On trouvera les explications complémentaires qui
seraient jugées utiles dans les deux premiers Volumes
de la Zhéorie des fonctions de variables imaginares:
mais le lecteur pourrait toujours y suppléer aisément.

1. Jappelle conjuguées d’une surface représentee par
une équation
(2,1, 5)=0
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les licax des points

n=ard pimd e, s=
mrresp(mdant a toutes les solutions
J':‘-%—F‘?\/:_[—, y:a’—i—{i'\/:——l, z:a”—q—@”\/:

de ’équation proposée, ou les parties imaginaires 3, %

¥
8//

et | seraient comme des constantes

C. G et O

¢ est-a-dire, telles que

2. Lasituation dans Uespace du point [xy, 3y, 24 |,
qui représente une solution imaginaire, reste la méme
quelle que soit la transformation de coordonnées qu’on
fasse subir au licu considéré et, par suite, a la solution
représentée.

En cllet, si les formules de transformation, résolues
par rapport aux nouvelles coordonnées, sont

!

r=a-+mx —ny +ps,
y=d=+mr+n'y-+p's,
s=a+m'z+n"y+p's,

los v fos o - ani cor
les valeurs des nouvelles coordonnées a2, 3’y s qui cor-
respondent a

.(':q_l,_rev:—l’ },:a'_!_?,'\/:—[, ;:1"—{—?"\/—-:7

sont
J ! /1
CEa 4+ ma +nd s+ pd +(mf -nd EpE)v—,
V=d +maa-n'd+pa+—(m'B+n'f+p) V—r1.

& — "y LV "t ", " Tt gt n s
Crma+np'2 L p'a"=(m' s - 3 +=ppo )\/ T,
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de sorte que les coordonnées x4, 4, 24 du point repré-
sentalif de la premiére solution étant

ri=a+8, yn=od+8, 5= +§

et les coordonnées xy, ¥, 2, du point représentatif de
la seconde solution étant

ry=a+m (a+B)+n (a4 )+ p ("+B"),
ri=a +m'(a+B)+n(d+ )+ p'(a"+ ),

'

si=a" +m'(a+B)+n"(a'+ 8)+ p'(«"+ B)

ou
ri=a +mxy + ny; + paq,
Yi=ad +-mxy+n'y, +p'z,
sy =a"+m"r+n"y,+ p'z,

il est clair que les deux points (xy, yy, z¢) et (), 2, 5,)
coincident, puisque leurs coordonnées sont relides entre
clles par les formales de la transformation eflectuée.

Le mode de construction adopté, pour obtenir les
coordonnées du point représentatif d’une solution, est
d’ailleurs le seul qui assure la fixité dans I'espace de ce
point, puisque, par exemple, pour assurer la fixité du
point dans l'espace, il faudrait, au moins, assurer celle
de sa projection sur le plan des x), si Pon ne faisait
changer que les directions des axes des et des y, dans
Pancien plan des xy et que, pour cela, il faudrait,
d’aprés ce qu'on a vu en Géométrie plane, représenter
la solution

r=atfy—1,  y=o Y1
par le point
rr=a+8, yi=o+f.
3. Unc droite réelle

r—d y—d z—d"

C - C - C”
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w'est capable que de solutions du systéme [C, C', C"]; de
sorte que la conjuguée [C, €', C"] d’un lien f(x, 3, ) =0
est le licu des intersections idéales, réalisées, de ce licu
etde la suite des droites représentées par les équations

1

S == ot d,d’ et d" scraient variables
o :

4 volonté.
Ces droites sont les cordes reelles dela conjugude,
elles joignent deux a deux ses points imaginaires conju-

guds.

4. En rendant 'un des axes de coordonnées paralléle
aux cordes réelles d’'une conjuguée, on rendrait en
méme temps réelles les deux autres coordonnées de tous
ses points.

5. 11 en résulte que, par un choix convenable d’axes,
on peut toujours ramener ordonnée z, par exemple,
d"une conjuguée a étre unc fonction de deux autres va-
riables & et y, réelles.

6. Les conjuguées d’une surface réelle lui sont géné-
ralement inscrites ou circonscrites et la courbe de con-
tact, pour chacune d’elles, est la courbe de contact avec
la méme surface réelle du cylindre qui luai serait cir-
conscrit parallélement aux cordes réelles de la conju-
guée en question. Une surface réelle est donc I’enve-
Iﬂppc de ses conjuguées.

Les conjuguées d'un cone réel sont les cones, de
méme sommet, ayant pour directrices, dans un plan
quclconque, les conjuguées de la section du cone par ce
plan.

Les conjugudes d’'un cylindre réel sont les cylindres
aant pour directrices

, dans un plan quelconque, les
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conjugudes de la section du cylindre par ce plan et leurs
Jug
géndratrices parallcles a celles du eylindre proposé.

7. Les conjuguées des surfaces du second degré sont
d’autres surfaces du second degré, aisées a définir dans

tous les cas.

8. Les conjugnées d’unlicu f(X,Y,Z) == o ont gén¢é-
ralement une scconde enveloppe imaginaire, lieu des
points du liecu ou les rapports deux a deux des trois dé-
vivées partielles fo, f,, f sont réels.

En cllet, les dléments du lieu f(X,Y,Z)= o0 aux en-
virons d'un de ses points (x, 9, z) sont définis par
I'équation . o

dz = (:7{;—) de — | :j:) ay
ou ,
Sy dy.

¢’est-a-dire

dzs =(m +ny=1)de+(p+qy—1)dy,

sim—A-ny =t et p-+qgy'—1 sont respectivement les

’

valeurs de — ;i' et 4’, au point (@, v, 7).
Si o fait
dr=dx +d3 V=1,

dy = da' + d3 /=7,

dz=da'+ Jd3’ Ve,
). . L
| équation précédente donne
da'=mdr—nds+ pdd — q d¥

. .
d3"=md$ + ndx+p A% + q do';
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d’ou
di' = dE =m0y da (e — ) dY
Hp+qg)dd+(p —q)dy,
¢est-a-dire

(m—4+nyda+(m—n)dp

Az = dx+ df iy
(p—(/)(lj ~(p—g)d¥
d2' +— dy’ dr
ou encore
d5 df’
m—f—n—!—(m—n)jl ]"*“]‘*‘(/’-7),_‘:
dzy = — —li ‘ (l]‘] -t (].3’ - )y
da T dd

Pour que le point [x, y, z] appartint 4 I'enveloppe des
conjuguées, il faudrait que tous ces éléments fussent
compris dans un méme plan, qui serait le plan tangent
a I'enveloppe au point [x, y, z]; pour cela, il faudrait
que dz, ne dépendit que de d.xy ctde dy,, et, par con-

3

séquent, fat indépendant de == ct de 5 - Cela exigerait

les deux conditions

—n -+ —
m —+ ﬁ _ m II. e I) (] /) q
1 1 l I

c'est-a-dire n =0 et ¢ = o.

Ainsi, tout point de l'une ou I'autre enveloppe cst
néeessairement tel qu’en ce point

Sz
solent récls.
gi-
naire qu'en quelques points et non plus suivant une

Mais chaque conjuguée ne touche I'enveloppe ima
courbe. En effet, les solutions des trois équations

Slr, ¥y, 5)=o, = réel, L = réel,

fo ol S
4
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. .. N T PR y )T
ot lon ferait x=o+BCy—1, y=o+3C/—,
2 =a' 4+ BC" \/_. 1, seraient déterminées, puisque o,
o’ et § seraient liés entre eux par quatre conditions.

Exemples. — L'enveloppe imaginaire des conjuguées
ellipsoidales d’un hyperboloide a une nappe

x? 2 ]
a0t 2

x? r? 3
— + —
a? b2 ¢

lequel est fourni par les solutions de la forme

e=8y—i, y=pv/-1, s=f"y=1

. . x?
de Péquation = + v+ — = =
a? b
L’enveloppe imaginaire des conjuguées du licu
(r—a—10b ‘/:—,)2_,_(}/ —a' = /=1)?
(s —a =0V  =(r+ry=1)*
est la sphére
(x—a—b2+(y—a =02+ (z—a"— b2 =(r-+r).
9. Les conjuguées du lica
Ma+=NYV=Dz+(P+Qy=1)y
+(R+SY=)z+D+Ey=1=0
sont tous les plans qui passent par la droite représentét’
par les équations
Mr+Py+Rz+D=o et Nz'+Qy+Sz+E=O~
10. Un plan réel ne peut couper que les conjuguées

dont les cordes réelles lui sont paralléles.
(// survre.)
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CONCOURS POUR LES BOURSES DE LICENCE (PARIS, 1889).
SortvTioN AR M. LE Caprtaine BARISIEN.

1> Construire la courbe définie par I'équation

, (2=
o Y P

2% St lon coupe cette courbe par une paralléle a
l'axe des x et si l'on désigne par a Uabscisse de U'un
des points d’intersection, les abscisses des cing autres
points d’intersection seront

i 1 a
s T-—a 1— —,

_ .
[22 I—a o — 1

-

Distinguer sur la figure les points qui correspondent
aux formules précédentes, en supposant que a soit la
plus grande des abscisses des points d’intersection.

3% La résolution de l'équation (1), ot U'on regarde
y comme un nombre donné et x comme ['inconnue,
peut, de diverses maniéres, étre ramenée a la résolu-
tion d’une équation du troisieme degré et d’une équa-
tion du second degreé.

4" Lieu de la projection du point d’intersection des
tangentes ¢ la courbe (1), en des points dont les ab-
scisses sont inverses Uune de U autre, sur la droite qui
joint ces deux points.

I. La courbe représentée par U'équation (1) est symé-
lrique par rapport a la droite x =3. Elle a pour
asymptotes les droites x = o et x =1 et deux branches
paraboliques : elle est située tout entiére au-dessus de

“Ann. de Mathemat., 3¢ série, t. X. (Juillet 1891.) 21
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la droite ) = 2% et a trois points de contact avee ceyye
droite ( fig. 1).

Fig. 1.

L S

II. On remarque que la valeur y de (1) ne change

I I
pas lorsqu’on change x en — ou en 1— x, ou en1— -
x A
. . I xr .. . .
et aussi en Jeurs inverses ) ; ce qui indique bien
2w —1
que, si I'une des abscisses d’intersection par une paral-
léle a V'axe des x est a, les autres sont

I 1 1 a
=y I—a, 1---
a

I
[—a a — 1

Si a est la plus grande abscisse de ces points d’inter-
section, ¢’est forcément la valeur positive la plus gl‘aﬂdt’--

1 I .
S at1te Tk __—}est la
Donc - est la p]uspctlt(, valeur postuve, <I a)

.oy o . a . ey
deuxiéme valeur positive, -———l—]a troisiéme. La plus
Py
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grande valeur négative est (1 — a) et la plus petite est
1

I—a

I1I. Cesabscisses d'intersection, étant deux & deux in-
“verses 'unc de T'autre, montrent que I'équation (1), du
sixieme degré en x, doit étre réciproque.

En eflet. si 'on écrit Péquation (1) sous la forme

(2) yri(xrt i1 —a2x) = [(x2+41) —z)3,

et si Pon pose

il

L

R1-

d’ont

(3) X241 = zir.

en portant cette valeur de (x2~1) dans (2), un en
déduit

‘i,) (2—1):’—.)/(:‘—;’::(),

On est done ramené a la résolution de I'équation du
troisieme degré (4) et a celle du deuxieme degré (3).

Un autre moyen d'arriver a ce résultat consiste &
poser

(%) r(r—1)y==t;
(1) devient alors
(6) (L =13 —yt2=o.

¢t Pon a & résoudre (6), puis (5).
On peut aussi poser

]
£7) r(rx—1)= —-
128
I faut alors résoudre Péquation du troisieme degré

(u—+=1¥—uy =o.
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IV. D’aprés ce que nous avons vu précédemment, la
droite joignant deux points tels que les abscisses soient
réciproques ne peut étre qu’une paralléle a 'axe des x.

Il suffit donc de chercher les tangentes relatives aux

v

. . 1
ints ayant pour abscisses @ et —-
points ay p scisse >

Le coefficient angulaire de la tangente ala courbe (1)
est
(23"——-l)(z‘2—,T+l)2(.Z’—-2)(Z'+I).
x3(xr—1)3

L’équation dc la tangente an point dont les coordon-

nées sont

(a2—a +1)3
r=aq, y=

a(a — 1)
est donce
R
(8) - a{a —1)?
_{a*—a+1)(2a—1)(a—2)(a-+1)
( . as(a —1)3 (X—a.

2} . . I
Celle de la tangente au point ayant pour abscisse — est
a

[, (a?—a+1)3
(9) ( __(az_a+,)z<2a_;)(a—z)(a+n<‘_ 1 >

a(a—ri1)3 a

En retranchant (8) et (g9), on obtient

2a
T at+1

(10) A X

Pour avoir le lien demandé, il suffit d’éliminer a
entre (10) et
_(at—a+1)3

(1) Y= — — 7.
(10 at(a—1)?
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De (10), on tire

a1 = —-
X

En portant dans (11), il vient pour I'équation du
licu

Spel o]

C’est unc courbe du quatriéme degré ayant pour
asymptotes les trois droites

X =o, X=1, Y=

Elle est dessinée sur la fig. 2.
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TANGENTES COMMUNES A DEUX CONIQUES ;
Par M. J.-S. COLLIN,

Ancien ¢léve de Plcole Polytechnique,
Professeur i P'kcole Albert-le-Grand (Arcueil).

La rccherche des tangentes communes a deux coni-
ques se fait habituellement par Uemploi des coordon-
nées tangenticlles (Siuwon, Géomdétrie anal()’lique,
traduction Resal, p. 485, ¢t Picouer, Géométrie ana-
Iytique, p. 458 cL509): nous allons Pexposer d’une
manicre plus ¢lémentaive en faisant intervenir unique-
ment Péquation aux  coeflicients angulaires des tan-
gentes.

Soient done les denx coniques

S, )y = Aaxr =—oBxy 4+ Cy2 —oDxr +2ly + F =o.

Jir )= Ayt o By + Cry2+oDpr + 28y - Fi=o,

et désignons par z et 2, les parties homogenes du second

degré de fet fi, et par fl., fi ., ..., les demi-dérivées.

Prosuiove I — Zrouver 'équation des tangentes
communes aux deux coniques = o et f; =o.

Cela revient évidemment a trouver le licu des points
par chacun desquels on peut mener aux deux coniques
une tangente commune, c’est-a-dire deux tangentes pa-
ralléles. Or, si (2, 3) est un point de ce licu, les fais-
ceaux de tangentes issues de ce point aux deux coniques
seront |'('spct‘li\‘cm<‘nt

S Y f(r.yvy—(rf, =5+ Sy = o
S Y [ ) — (S v flg s fl)R = o

y
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olt Y =1; ct par suite les équations aux coeflicients an-
gulaires m de ces tangentes scront elles-mémes
S(@ B)2 (1, m)—(fy +mfg)? =o,
Sl B) o (1, m)—(fiy -+ mfig)* = o,
c’est-a-dire
m2[ G f(a, B)—/g* | )
+om[Bf(a, B)—fofa]+ AS(x 8)— [ =0,
’
m?[le,(u, g)fx{;l]
+2m[By f(2, 3)—-]’,’%_]"1’[@]—~ Ay fi(a, H— f1i=o0,
ou, par abréviation,
Aom? -2Ubm + 2 = o,
Qoym2+ 295 m +~ Sy =o.
Mais, sile point (2, 3) est un point du lieu, ces deux
It P 9

équations doivent avoir une racine commune, ce qul
umpose

(A — 2y )?2— 4(::\9\‘!)1 — UIaJL-) (‘1’!»31— e\"m )== 0,
ou bien, ce qui revient identiquement au méme,
(2%3, = @:L»,—— 2]"’7“101 )2—— 4(“!)2— nﬁg@)(l"ﬂ% —_ yloj 31 )= o.

Telle est done 'équation du licu des points (a, 3),
¢’est-a-dire I'équation des tangentes communes, a condi-
tion d'y remplacer 2, 3 par les coordonnées courantes
x, y.

Remarque I. — Si 'on désigne comme d’ordinaire
par AfL Lo FVAY, oL F es coefficients de A, L.,
F, A, ... F, dans les développements respectifs des
discriminants A ct A, de f'et f;, on a

A =Faz2—aDz+ A,

VW =—Fuzy+Ex~+Dy—B,
 =Fy2—aEy+ C;

Loy =Fla2—a2Dix+ A,

Wy =—F, 2y +~E\z+D| ¥y —B},

Sy = Fip2—a Ky 4+ G
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d’ott
S1+ Gy — 2y = 22 (F'Cy+ C'F, — 2 B'E} ) 4. .

et ainsi cette expression, en apparence du quatriéme
degré, n’est en réalité que du second. Cette méme
expression est d’ailleurs le premier membre de I'équa-
tion que l'on trouverait immédiatement en cherchant
le lieu des points par ou I'on peut mener a ’ensemble
des deux coniques f et f; des tangentes formant un
faisceau harmonique : avec Salmon nous la représente-
rons par I'.

Remarque 11. — On a, d’autre part,

b2 — AL :—.(Bf—fi/’}’)z_( C_f—-'/i",?) (Af—f12)
=(Bx—AC) /2
(A2 Ot —2B o f))

=(B2—AC)f2 - f
=< [(AG—B2)(f — F)- AE?+ CD?— 2 BDE]
= —fA,
et de méme par analogie on aurait
W — A Sy =— /1A '
Conclusion. — L’équalion aux tangentes communes

peut donc s’écrire également sous la forme connue
F2= §AA, f/1.
qui n’est que du quatriéme degré, et 'on voit ainsi
que :
1° Deux coniques ne peavent avoir plus de quatre
tangentes; '

2° Les huit points de contact de deux coniques et de
leurs tangentes communes sont tous sur la conique

F:O.

Remarque. — Le principe de cette solution pourrait
atre employé pour la recherche de l'équation aux
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asymplotes ct aux sécantes communes a deux coniques,
et peut aussi bien servir pour deux courbes quelcon-
ques.

Prosrime lI. — Déterminer les points d’intersection
des tangentes communes.

Ces points ne sont autres que ceux d’od 'on peut
mener aux coniques deux tangentes communes; donc
pour ces points ’on a généralement

AW
oy by

O ©

kS

et par suite ces points sont les points communs aux
trois courbes ‘

Jle)“](\‘—lﬂ 3191 =0, ‘“l:)e[— 3*1‘!:1 = 0, o 4)@1 - ed’lﬁ] = 0.

Ainsi qu'on le voit presque immédiatement, ces
courbes sont des cubiques, et 'on vérifierait aisément
qu’elles n’ont que six points communs a distance finie,
ce que I'on pouvait prévoir, car les quatre tangentes
communes ne peuvent se rencontrer en plus de six
points.

CONCOURS D'ADMISSION A L'ECOLE POLYTECHNIQUE EN 1891.

Composition en Mathématiques.

On donne une parabole P; on porte, a partir de chacun de
ses points, et dans les deux sens, sur une paralléle a une di-
rection fixe A, des longueurs égales a la distance de ce point
au foyer de la parabole : ‘

1° Trouver le lieu des extrémités de ces longueurs; mon-
trer qu’il se compose de deux paraboles Py et Py, et donner la
raison de ce dédoublement.
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2° Démontrer que les axes des paraboles Py et Py sont per-
pendiculaires 'un & 'autre, qu’ils pivotent autour d’'un méme
point indépendant de la direction A, et que, quelle que soit
cette dircction, la somme des carrés des paramétres des deux
paraboles est constante.

3° Trouver ct construire le lieu décrit par les sommets des
paraboles P et Py, lorsqu’on fait varier la direction A.

On prendra comme axes de coordonnées 'axe et la tangente
au sommet de la parabole donnée, on désignera par p son pa-
ramétre, et par 0 I'angle de A avec Vaxe des .

Epure.

D’un cylindre de révolution supposé plein, limité par deux
plans de profil, on enléve la portion située a l'intérieur d’un
hyperboloide de révolution & une nappe dont I'axe est vertical.
Représenter par ses projections le solide obtenu.

La distance entre les plans de profil est de 23™.

Le centre de Phyperboloide se projette horizontalement
a 13 du plan de profil de droite, a4 10°™ au-dessus du bord in-
féricur de la feuille, et a 21°™ au-dessous de sa projection ver-
ticale : les génératrices rectilignes font un angle de 45° avec le
plan horizontal : le rayon du cercle de gorge est de 3™,

Le cylindre a 6° de rayon; son axe est de front et sa pente
est de 3™ de base pour 1°" de hauteur; on s’éléve sur cet axe
cn allant de droite & gauche et il rencontre 'axe de 'hyper-
boloide & 1" au-dessous du plan du cercle de gorge.

On indiquera seulement les constructions nécessaires pour
déterminer : 1° un point quelconque de 'intersection et la tan-
gente en ce point; 2° les points remarquables de lintersection
et les tangentes en ces points.

Les constructions, les tangentes ct les parties enlevées seront
en trait rouge continu : la représentation du solide sera seule
en noir, trait plein pour les parties vues, points ronds pour les
parties cachées.

Composition de Trigonométrie.
On donne les trois cotés d'un triangle
a = §2128™, 76, b = 28391™, 52, e = 34236™,81.

Caleuler les trois angles et la sucface.
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Composition de Physique et de Chimie.

Physique. — 1. Lunctte astronomique.
II. Mesure de la tension de la vapeur d’ecau aux tempéra-
tures élevées par la méthode de Regnault.

Chimie. — Action du chlore : sur Yammoniaque, sur Pacide
sulfureux, surle bicarbure d’hydrogéne.

Composition francaise.

« Il 'y a, dit Sénéque, des gens qui regardent la douleur
comme le plus grand des maux, d’autres qui ne I'appellent
méme pas un mal. Celui-ci considére les richesses comme le
premier des biens, celui-la soutient u’clles ont été inventées
pour le malheur des humains. »

Que faut-il penser de cette diversité de jugements?

Composition de langues vivantes.

L'officier qui commande une colonne détachée nc doit jamais
désespérer; fut-il cerné, il ne doit jamais capituler : en pleine
campagne, il n’y a pour de braves gens qu’une manicre de se
rendre, c'est, comme Francois I°F et le roi Jean, au milicu de la
mélée et sous les coups. Capituler, c’est chercher a sauver tout
hors ’honneur ; mais, Jorsqu’on fait comme Francois I°",on peut
du moins dire comme lui : Tout est perdu, fors I’honneur!
On peut citer de grands exemples, tels que celui du maréchal
Mortier, a Krems, et un grand nombre d’autres qui remplissent
nos Annales, pour prouver que des colonnes armées ont trouvé
moyen de se faire passage en cherchant toutes leurs res-
sources dans leur courage. Quiconque préfére Ja mort a I'igno-
minic se sauve ct vit avec honneur; au contraire, celui qui
préfére la vie meurt en se couvrant de honte.

NapoLEON, 1809.
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Layts.

Exécution a I'encre de Chine, a teintes plates, ou A teintes

Ombre
portée

T(/dom)

(idem)

fonduces (a4 volonté), le lavis du quart de rond droit, dont le
trait est donné ci-dessus (2 heures L),

CONCOURS D’ADMISSION A L'ECOLE SPECIALE MILITAIRE
EN 1891,

Composition francaise (3").

Le Syndic de Chambéry remet au général Montesquiou les
clefs de la ville (24 septembre 1792).

Le 22 septembre 1792, les Francais pénétrérent sans combat
dans la Savoie : « Ce ne fut rien autre chose qu’un mutuel élan
de fraternité », écrit Michelet; « deux fréres longtemps séparés
se retrouvent, s’embrassent; voild cette simple et grandf‘
histoire. » Les Savoisiens saluaient en la France une sceur ainée:
« Nous ne sommes pas un peuple conquis, mais un peuple déli-
vré v, disaient-ils.

Vous ferez parler le Syndic de Ghambéry.
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Mathématiques (de 8" {5 a 11").

I. Dans un triangle BAC rectangle en A on connait la hau-
teur A abaissée sur I'hypoténuse et la médiane m issue du som-
met B. Déterminer I'hypoténusc par le calcul. Discussion;
construction du triangle.

II. On donne deux droites paralléles, une perpendiculaire
commune AB = 2a, et le milieu O de AB. On fait tourner un
angle droit A’OB’ autour de son sommet O. Démontrer :

1° Que le produit AA" > BB’ est constant ;

B’

A

-

2¢ Que A'B’ est constamment égale & AA'+- BB';

3° Que la droite A’B’ reste tangente & un cercle fixe.

4° Par le milieu 1 de la hauteur OH on méne une paralléle
chacun des cotés du triangle A’OB’, et I'on considére les
points ou elle rencontre les deux autres cotés. Démontrer que
les six points ainsi obtenus sont situés sur une méme circon-
{érence.

R

3® Minimum du rayon de cette circonférence.

Caleul logarithmique (de 7"30™ a 8"30™).
On donne dans un triangle
A =112°28'47", 3, b = 26731, ¢ = g6879.
Calculer B, C ct a.

Epure (2 heurcs et demie).

Un tétraédre SABC, dont 'angle triédre S esttrirectangle, asa
base ABC sur le plan horizontal. AB est sur la ligne de terre
(A vers la gauche) et a pour longueur 340" La projection
horizontale du sommet S est un point s dont les distances aux
points A et B sont As =105™™ et Bs = 49™".
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Construire ce tétracdre, puis son intersection avec la sphére
avant S pour centre et passant par le centre de la sphére
ir;scrite au tétraédre.

Dans la mise a I'encre, on représentera la partie du volume
du tétraédre extérieure a la sphére S.

Lavis.

Laver soit & teintes plates superposées, soit & teintes fondues
la projection verticale d'un trone de cone droit & bases circu-
laires paralléles, posé par sa petite base sur le plan horizontal.

et surmonté d'un parallélépipéde rectangle dont la base infé-
rieure est circonscrite 4 la base supérieure du tronc, et dont
une face latérale est de front.

Les rayons lumineux sont paralléles & une droite dont les
deux projections font des angles de 45° avec la partic gauche
de la ligne de terre.

Le parallélépipéde porte sur le tronc une ombre limitée par
la droite @b et par un segment d’ellipse bed que I'on arréte au
point de perte o sur la ligne de séparation d’ombre et de
lumiére mn du tronc. ‘
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Pour le lavis & teintes plates superposées, on se servira des
lignes de teintes indiquées sur le croguis n° 1.
Les parties claires et les parties foncées sont indiquées sur
le croguis n° 2.

CONCOURS D'ADMISSION A L'ECOLE NORMALE SUPERIEURE
EN 1891.

MHathématiques.

Soit (E) une ellipse qui. rapportée i ses axes, a pour équa-
tion
xr? y?

— = %s —1=0
a2 b2 ’

ct soient &y, yo les coordonnées d’un point M du plan de cette
cllipse ; on considére le cercle (C) passant par le point M et les
points de contact P, Q des tangentes a lellipse issues du
point M.

1 Le cercle (C) rencontre Dellipse en deux autres points
P’, Q';s prouver que les tangentes a lellipse en ces deux points
se coupent en un point M’ situé sur le cercle; montrer que, par
M, M’ et les deux foyers réels, on peut faire passer un cercle;
de méme par M, M’ et les deux foyers imaginaires.

2° Soicnt I, I', 1" les points ou se coupent respectivement les
droites PQ, P'Q/, les droites PQ’, P’Q, enfin les droites PP’,
QQ’; on suppose que le point M reste fixe et que l'ellipse (E)
se déforme en gardant les mémes foyers : on demande les lieux
décrits par les points I, I, I”; on propose enfin de montrer que
tout cercle passant par les points I', I” est orthogonal au cercle
décrit sur MM’ comme diamétre.

Physique.

1. Dans une boite rectangulaire de 4" de longueur, une face
est formée par une glace dépolie carrée de 9™ de coOté; au
centre de la face opposée est percé un petit trou circulaire. On
met, & égale distance du trou et de la glace, un dessin trans-
parent dont ombre se forme sur la glace quand on expose le
trou en face d’'un mur blanc vivement éclairé.
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On demande quels changements seront produits dans I'éclaj-
rement ¢t dans les dimensions de 'ombre par Pintroduction
d'une lentille achromatique convergente sur Paxe de la boite,
dans 'une des positions suivantes :

1° Entre le dessin et le trou;

2° Entre le trou et le mur.

Le diamétre de la lentille est ¢gal a 1, de décimeétre, et sy
distance focale a 19m,

[I. Une ¢prouvette cylindrique pleine d’eau peut tourner
d’un mouvement uniforme autour de son axe
de figure supposé vertical; une potence liée

12 A I'éprouvette supporte sans frottement une

poulie de dimensions négligeables, placée

exactement sur 'axe de rotation. Un poids P

(25%) est attaché @ un bout d'un fil non pe-

sanl qui passe sur la poulic et vient s’attacher

par I'autre bout a un aréométre dont la tige

a unc scction de 19 Section droite de Té-

prouvette : 10",

Au repos, lorsque I'équilibre est établi, la
partie du fil comprise entre la poulie et le
poids P a une longueur / = 30°".

Quel est le déplacement vertical de I'aréo-

! métre quand tout Pappareil tournc avec une
; . . . . .
vitesse angulaire w, ce qui projette le poids
- atér 9
= P latéralement?

On admet que 'aréométre reste exacte-
ment centré et que la surface libre de 1'cau reste horizontale.

& =980 (C.G.S.).

GORRESPONDANCE.

Ezxtrait d’une Lettre de M. Gomes Teizeira a M. Rouché.

Dans une Note Sur la_formule de Stirling, qui a été
insérée dans les Comptes rendus, 1. CX, p. 513; 1890,
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vous démontrez d’une maniére bien simple la formule
Op
C.D(fl) 12(n+pin
o(n—+p)

(2)

2

ou 0 représcnte un nombre compris entre o et 1, et on
I'on a

'(n-+1)
_—-

n+—
e—np 2

(1) oin)=

Ensuite, au moyen de cctte formule, vous trouvez la
formule de Stirling, qui donne le produit T (n + 1),
quand n est un nombre trés grand. Vous supposez,
dans votre analyse, que n est un nombre positif entier.

En étudiant votre démonstration, je viens de remar-
quer qu'on peut la modifier de maniére a considérer le
cas ou n représente un nombre quelconque, rationnel
ou irrationnel. Je remarque premiérement que votre
démonstration de la formule (2) a lieu quand n est frac-
tionnaire, ainsi que la démonstration, basée sur la for-
mule de Wallis, que vous donnez de I'égalité

lim o(p) = V.
p:oo

Ensuite je modifie I'analyse que vous employez pour
déduire de (2) la formule de Stirling de la maniére sui-
vante.

Je trouve premiérement au moyen de la formule (1)

1
p+3
. . T(n+p-+1ePp *
Iim =~ 27 = lim =
+p+-
¥4

= R ) n
MNp+1)e-+r(n-+p)
clayant égard aux ¢galités

I'(n=+p4ty=n(n-+1...(n+p)l(n)
'(p—+1)=1.2.3...p,
Ann. de Mathémat., 3¢ série. t. X. (Juillet 18q1.) 22
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J écris cette formule d’abord de la maniére suivante

1
lim 5’;(_"_"‘_1’_) — lim n(n+[)'"(n+]7)r(ll)e—ppp+§
p== (?(Il) —n:ao

1 b
ple-n+p)(n 4+ p) "3

et ensuite, ayant égard a la définition de Gauss de la
fonction I' (%),

1
r(n) = lim — 222" ,
p=w (R +1)...(R+p)

je Péeris de la maniére suivante

1
n+p+ -
. n -+ . 2
Iim 2( r) Iim P
p== PP p=

1
Ten(np) TP

Mais nous avons

1
. n
lim <— +1> = en.
p== \P

Donc on aura

lim 22 +P)
p==  ¢(P)

et, par conséquent,
limg(z + p) = lim ¢(p) = y/an.
p:m p:w

Si l'on remarque maintenant que la formule (2) donne

]

=elr (001,

o(n)
p== ¢(7+p)

et par conséquent
]
¢(n) = ezx lim o(n~+p),
pP=ec .
on trouve

0
w(n) = Clz"\/zz,
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et I'égalité (1) donne ensuite la formule de Stirling

0
L(n+1)=armnnre-netin,

Pour plus de clarté, je crois devoir reproduire ici la
démonstration que J'di donnée dans les Comptes rendus
et a laque”e se rapporte la lettre de M. Texeira.

I.a relation bien connue

log(n +1)—logn = 2 I+ b
8 Ay —— ten(n+1)]’

ou n désigne un nombre entier positif quelconque, et 6 un
nombre compris entre o et 1, peut s'éerire

0 1
e — (e )log(n ) —logn].

Elle devient

0
PYTCE) =logo(n)—loge(n+1),
(quand on pose
1.2.3...n
(1) ?(n)z —_—
e‘”n" 2

On conclut de la

logo(n)>logo(n +1)
et

I

I
logg(n)— 555 <lege(n+1=r =y

en d'autres termes, des deux fonctions

1
o(n), g(r)e n,

la premiére est déeroissante et la seconde croissante, lorsque
'entier n croit. Si donc on désigne par p un nombre entier
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positif quelconque, on a les inégalités
¢(n)>9(n—+p)
1 1

o(n)e Bl g(n+ple Bo+r,

que I'on peut remplacer par 'égalité

bp
(?(n) _ E‘ﬁ(,,_;,ﬁ)
®) ensp) ° ’

dans laquelle § désigne un nombre compris entre o et 1.

Il est bien aisé de déduire de cette relation la formule
célébre de Stirling pour I'évaluation approchée du produit
1.2.3...n lorque n est un grand nombre.

En cffet, la relation (2), appliquée au cas ou n est égal a p,
montre immédiatement que le rapport

o(p)
@ (2p)

a pour limite 'unité, lorsque p croit indéfiniment. On a donc,
pour p = o,

I — lim 22
imo(p) lmt?(zp)

ou, d’aprés (1),

um9<,,)=nm\/4.‘§.§.;.g...w_—2._y>_

35 o2p—1 2p—|’

et enfin, en vertu du théoréme de Wallis,

limo(p) = Vor.
Dés lors, si dans la formule (2) on laisse n fixe en faisant
croitre p indéfiniment, on obtient

gln) — el2n,

Var

c'est-a-dire. d’aprés la définition de o(n),
f
1.2.3...n = \/».nn nte—ner2n,



(317)

C’est la formule de Stirling, qui donne deux limites

1

J2nnn"e*", ‘/znnn"e—".em,
entre lesquelles est compris le produit 1.2.3...7. (E. R)
BIBLIOGRAPHIE.

Resar (H.), Membre de I'Institut. — Exposition de
la théorie des surfaces; 1 vol. in-8°, de x111-171 pages,
avec figures dans le texte. Paris, Gauthier-Villars et fils,
1891. Prix : 4%,50.

La théorie analytique des surfaces ne figure guére dans la
littérature mathématique didactique qu’a titre d’application
des principes de I’Analyse, ce qui n’est pas assez, vu son impor-
tance. Nous ne parlons pas, bien entendu, de 'ouvrage ma-
gistral (1) oi M. Darboux, grace aux ressources de I'’Analyse
la plus élevée, fouille, dans ses moindres détails, ce vaste champ
de connaissances jusqu’aux plus extrémes limites qu’ait pu,
(uant & présent, atteindre I'esprit humain. Un tel livre va bien
au dela des besoins courants de I'étudiant, candidat -a tel ou
tel examen, ou simplement amateur. M. Resal, que son expé-
rience de I'enseignement de la Mécanique a pénétré de I'im-
portance des principes fondamentaux de la théorie des surfaces
d ce point de vue spécial, s’est trouvé amené a en faire pour
ses éléves un exposé d’ensemble; c’est celui-ci qu’il nous livre
aujourd’hui sous la forme d'un petit volume que vient d'im-
primer avec son soin ordinaire la maison Gauthier-Villars. On
Yy retrouve les qualités d’élégance et de clarté qui distinguen
toutes les productions du savant académicien. Aucune partie
essentielle de la théorie n’est d’ailleurs omise, 'auteur passant
successivement en revue les propriétés générales relatives a la
courbure et a la cambrure des lignes tracées sur une surface,
celles des lignes de courbure, des asymptotiques, des géodési-

(") Legons sur la theorie genérale des surfaces, 3 vol. in-8°. Paris,
Gauthier-Villars.
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ques, etc., voire méme les notions fondamentales relatives a
I'application des surfaces les unes sur les autres et aux sur-
faces minima. Cet excellent petit livre constituera certainement
la meilleure préparation a la lecture des importants travaux
dont la théorie des surfaces a été l'objet en cette derniére
moitié du siécle, et particuliérement a celle du grand Traité
de M. Darboux qui les résume si admirablement. Notons, a
titre de détail, 'heureuse substitution faite par M. Resal, dans
I’étude des courbes gauches, du terme de cambrure i celui de
torsion, dont I'usage doit ¢tre limité a celui que 'on en fait
dans son acception mécanique. M. p’OcAGNE.

SUR UN CERCLE REMARQUABLE
QUI PASSE PAR DEUX POINTS FIXES D'UNE CONIQUE;
Par M. GENESE,
Professcur & Aberystwyth (province de Galles).

Soient AB une corde fixe d’une conique, Cson péle,
P un point wariable de la courbe; par C on méne une
droite antiparalléle a AB par rapport a Uangle APB
rencontrant PA, PBen Q, Q'. Alors les points A, B,

Q', Q sont sur un méme cercle. Ce cercle est invariable.
Nommons a, 8, v les perpendiculaires abaissées du
» 129 Y perg
. .Lac ; i
point P sur Bb, b A, AB. La conique a pour équation

aﬁ_k2

-\{2

(une constante).

Or

a2 _ sinPBb _ sin(180°— CBQ") _ sinCBQ',
v sinPBA 7 sin(180°— AQC) T sinCQA’

de méme
B sinCAQ
v sinCGQB’
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Donc

Fr— sinCBg' « sinCAQ _ G < Q.
sinCQ'B " sinCQA ~ CB CA

On voit maintenant que la puissance de C par rapport

au cercle ABQ'Q a une valeur constante. Dela, en pro-
Fig. 1,

Fig. 2.

longeant la droite BC, on trouve encore un point fixe
du cercle. Donc_le cercle est complétement déterminé.
C. Q. F. D.

Inversement, la conique est déterminée par le cercle
ABQ'Q et le point C. On méne lasécante QCQ'; le lieu
du point (P) d’intersection des droites QA, Q'B est la
conique. Les droites QB, A se rencontrent en P/, un
point de la méme courbe.

Les droites Q€Q)’, PP’ sont homologues par rapport au
cercle, et, puisque Q) passe par un point fixe, il en est
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de méme avee PP, Nommons T ce point fixe de la
droite PP'; le point T est le pole de la droite AB par
rapport au cercle.

On peut vérifier les théorémes précédents par la mé-
thode de la projection. Que la conique et le cercle se
rencoutrent encore aux points I, J, et projetons de facon
a rejeter ij, la projection de 1J, a Uinfini. On obtient
deux cercles. Eu se scrvant de petites lettres pour dési-
gner les projections des lettres majuscules, les angles
apb, agb sont constants, et, par suite, I'angle gbg/
(= gaq') est constant. 1l faut alors que ¢ soit le centre
du cercle gab; autrement, g¢' toucherait un cercle
concentrique, au licu de passer par un point fixe. Puis,
Pangle pap' étant droit, pp' passe par le centre (¢) du
cercle pap'b. De plus, ¢ étant le pole de ab par rapport
au cercle ¢, les deux cercles se coupent orthogonalement
ct £ est pole de ab par rapport au cercle c.

Enfin, ¢, tsontles poles de la droite a Uinfini 7: done
G, T, dans la figure originale, sont les poles de 1J aussi
bien que de AB (fig. ).

On voit immédiatement que le point T' jouit de la pro-
priété suivante : TPP' éeant une sécante variable de la
conique, la somme (avec unc certaine convention) des
angles APB, AP'B est invariable. (En effet, dans la
fig. 1, ¢'est la dillérence qui est constante .) M. Gaston
Tarry a remarqué qu'il y a deux points qui jouissent de
cette propriété. Une analyse assez compliquée m’a
montré qu’il n'y a que deux points réels qui en jouis-
sent, et que T est un des poinis remarqués par M. Tarry.
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REMARQUES SUR LE PROBLEME DE MECANIQUE
PROPOSE A L’AGREGATION EN 1889:

Par M. MARCHAND.

Les équations de Lagrange permettent évidemment
de résoudre analytiquement toutes les questions quel’on
traite habituellement par les formules du mouvement
relatif. Voici en particulier comment elles peuvent rem-
placer les formules de Rivals et de Coriolis pour la mise
en équations du probleme de I'agrégation.

Désignant par &, 7,  les coordonnées par rapport
aux axes fixes, par x, y, z les coordonnées par rapport
aux axes mobiles adoptés par M. de Saint-Germain, les
formules de Lagrange s’écriront

-G

E:’_; '(xryy 351)7
m ,
(@, y,35,0),  T=—(3+5241),

::m(za}/) < l)’

7, =

-«

d (0T oT _

7 <d_z’) o = X + Ncosa,
d (0T JaT

—_—— ) — = -+ N b
dt <dy'> dy Y 0089,
d [oT JaT

T <E> ~ =Y+ Ncosec.

On est ramené a exprimer T ou, ce qui revient au
méme, le carré de la vitesse du point mobile, en fonction
de x, y, z, 2/, 3’y 2. Le carré de la vitesse étant la
somme des carrés de ses projections sur les trois axes
mobiles, on aura

T = %L[(x’—i— qs—ry)2—+(y'+ re — p3)t+(3'— py —qz)?|
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Comme, dans le probléme actuel,
wy/>
&

m=r, p= g =0, r=

il vient
_ dr  wy\?
il
. <<LV Loz _ oV >4<_ ova \'
T\ T3 s a5 ]
ct les équations de Lagrange donnent
d /dr wy w dy wf .
21'!'(%‘73) m( VT )‘“N""S“'
d (a'y w\/z >
¢5 V3
w [de oy w\/_ w\/) >
o fdz oy =Y
--l—\/3 <dt ¢3> \/i ( \/3 +Ncosb,
s wya wy/2 wx (o\/>
- =7Z-+Ncos
(«/t V3 ) V3 ( VTV ) o

Il n’y a qu’a réduire pour retrouver les formules (2)

de M. de Saint-Germain.

REMARQUES SUR LE PROBLEME DE MATHEMATIQUES
SPECIALES DE L’AGREGATION DE 1889;

Par M. MARCHAND.

Si 'on transforme I’énoncé par le principe de dualité,
a trois surfaces inscrites dans un cone C correspondront
trois surfaces passant par la méme courbe plane. Si
cette courbe plane devient le cercle imaginaire de I'in-
fini, 'énoncé est remplacé par le suivant :

On donne deux sphéres A, A’; on considére une
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sphére variable S touchant les deux sphéres données en
des points pour lesquels « et o sont les plans tangents.
1°© La droite a2’ d'intersection des plans tangents est
située dans un plan fixe, que P'on sait étre le plan radi-
cal de A et \/y

2° La droite qui joint les points de contact des plans
tangents o ct o’ passe par 'un des centres de similitude;

3° Démontrer que I'enveloppe du plan polaire d’un
point fixe P par rapport a la sphére S se compose de
deux quadriques bitangentes;

4° Trouverlelicu dela droite d’intersection des plans
tangents communs a ces deux quadriques bitangentes
lorsque le point P décrit une droite isotrope.

La quatrieme Partie ne pouvant avoir lieu pour des
¢léments réels parait peu intéressante dans le cas de la
sphere. Restent les trois premiéres parties dont les deux
premicres expriment des théorémes bien connus.

La solution du probléme du concours général nous
apprend que enveloppe du plan polaire d'un point fixe
par rapport a toutes les sphéres tangentes a deux sphéres
lixes se compose de deux quadriques bitangentes.

Laissant de coté la démonstration analytique de cette
proposition, je me bornerai a signaler quelques-unes de
ses conséquences géométriques. Il est évident d’abord
que les sphéres tangentes a deux sphéres fixes A ct A'se
divisent en deux groupes: le premier groupe s’obtient ¢n
considérant les rayons des sphéres comme de méme
signe; le second en considérant les rayons des sphéres
comme de signes contraires, la théorie des cycles s'éten-
dant évidemment aux sphéres aussi bien qu’aux cercles.
Je ne considérerai que I'un de ces groupes dans tout ce
qui suit.

Si P est le point fixe, pour que son plan polaire le
contienne, il faut que la sphére S, par rapport a laquelle
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on prend le plan polaire, passe par P.Comme S est tan-
gente déja a A et A’ et que P peut étre assimilé a une
sphére de rayon nul, la sphére S engendrera une cyclide
de Dupin ayant le point P comme point double. Le cone
licu des tangentes en P a la eycelide étant de révolution,
on voit que le cone enveloppe des plans du lieu passant
par P est du second degré et de révolution; la premiére
partic de la proposition s’accorde bien avee ce qui a éié
dit que P'enveloppe était une quadrique; la seconde
montre que P est une des focales de la quadrique.

Je cherche le cylindre circonscrit a 'enveloppe paral-
lélement & une direction D, ¢’est-a-dire les plans polaires
qui soient paralléles a D ils correspondent évidemment
aux sphéres ayant leurs centres dans un plan Q mené
par P perpendiculairement a D.

Les sphéres tangentes a A et A’ et ayant leurs centres
dans le plan Q ont leurs centres situés sur une conique
admettant A et A’ comme foyers dans I'espace. Ces
sphéres enveloppent une cyclide de Dupin, et, comme le
cylindre paralléle a D doit étre du second degré, on est
conduit a ce théoréme :

« On considére toutes les sphéres S appartenant al'un
des modes de génération d’une cyclide de Dupin el un
point P dans le plan des centres des sphéres S. L'enve-
loppe des plans polaires du point P par rapport aux
spheres S est un cylindre du second degré. »

Le tore n’élant qu’un cas particulier de la cyclide, le
méme théoréme lui est applicable.

Si 'on applique la transformation par rayons vecteurs
réciproques de maniére a obtenir toujours une ¢ relide
de Dupin, on généralisera facilement cette derniére pro-
position. En effet, & une sphére et aux plans tangents
menés par un point P, on fera correspondre une sphere
et les sphéres tangentes passant par le pole d’inversion
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et par le point transformé de P. Comme un cercle se
transforme ¢n un cercle, les points de contact d’une
sphére avec toutes les sphéres passant par deux points
fixes seront dans un méme plan, lequel se substituera,
dans 1’énoncé, au plan polaire.

On obtiendra donc sans aucune difficulté un nouvel
énoncé dans lequel interviendront des sphéres passant
par deux points fixes situés tous deux dans le plan des
centres des sphéres S qui constituent un des modes de
génération de la cyclide de Dupin.

SUR LES FONCTIONS SYMETRIQUES;
Par M. WORONTZOFF.

Soit

U=F(z, 2y ..., 2y)=P(ag,a, ..., an)

une fonction symétrique rationnelle et entiére des
racines de I’équation

F(r) =@’ + a 1=+ @@ =24 ..+ Ap—1 T + Ap= 0.

On sait que

k=n r=n
O du 2“1 +a du
—_— = — n—r _-1 "
dx/; ( ! ‘d(lr
k=1 r=t1

généraliser ce théoréme.

Nous nous proposons ici de
Comme
dz; x "

da, —  f'ery,
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ou

Sz = ay(xr— e )(Tp—X2) o o (T— Tt ) (L) —Tf1y). (xp—w,)

n—1 n—2
= nayzr '+ (n—1)a T "+ Ay T+ Ay

|
il

—1) n--1 P n-32
<x—)(a,m,, +2ayx) )+ (R —1) A Xp+ na,,
A.

on a
du du du du
Ap 5— +Ap 5 4o+ Ay 5— oo+ Ay o, -
day da, da, da,
(l) k=n
T no, oA -1, . n-r du
= —_——— (/\9(1‘/‘.—%—;\13/‘« T e 1\,‘.1[5 +...+A,,) — ()
S'(xr) dry
\ k=1

Posons, pour abréger,

TP+ g = 8,

—(n—r—m-+1)0 g+ 2 Apim—cSe—1

c=1
k=n

c=r
—_— m / (m
= — 2 Ap—c nH—c—-ﬂ = E Z). H(,,’,

c=1 k=1

(') Soit, par excmple, U == ” alors de la formule (1) on déduit

k=

+7-1 \
}1 @i —follx’/*. ’/"-—— @ idfl <— [ G ds"“)
=, WACHE q da,\" " q+r da,

a? al’ a
3 (—1)id! .i.__‘____.

2B nl

(Noucelles Annales, p. 382; 1888), ou la snmmcEx'{n ,..z:/Ln 3¢

9
rapporte a toutes les solutions entiéres positives de I'équation

G, = g
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d’ou
) —
H{™ = o, H'=—(n—r+na,y, H{Y = ra,,
: a,ay
H2=(r+1a, 4 — L2,
0

Maintenant, en prenant successivement dans 1'éga-

lité (1),

AO:: Qg 1&1’—‘:@, ey l\,-: a,, ceey A,l:a,”
Ay=o, Ay =— na,, ceey
Ap=—(n—r—+1)ar, ceey caey Ay=—ap—yq,
Ay=o, A =a, A, =ra,, ceey A,=na,,

ou
Ay =— na,, Ai=—(n—1)ay, ceey
A=—(n—r)a,, el Ap=o,
a2
1
Ag=o0, Ay=2a;— —» R,
Qg
aray
Ap=(r—narm— ’ (R
Qo
ou
Ay= a,, Aj=2a,, v, A, =(r—+1)a,+1, ceey
Ag=o, A= H{™, ceey A, =H™, ceey
ou
Ag=— aoL -, A= H(;””— a1Sm—1, ey
A, =" —a, Sy, LN

et en rcmarquant que

Hy 2t o Hy a2 4.+ H g+ HM

- -3 m—1
= a2 aa, T L nag T

on trouve respectivement les formules suivantes

du du du

du
@y —— Ay —— .o+ Ap g 57— Uy 5 =0,
Y ({(lo -+ ay n=1 (i(l,,-] d“n
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ct
k=n
du du (n—na du N
—_— =—\|nay v— +—(n — t 57— +...
dz; * da, ' da,
k=1t
a du a du
+2Qp—9 37— T Ap—q1 57— |>»
da,—, du,
k=n
2 du du du i
Tp—— = A — 209 57— ...
k dxy, Y day “ das
k=
( ) du + du
—~(n—1)a,— na, —
" iy " da,
du (n—1)a du
=—|nay —+(n—1)a; — +...
® da, day
v du - du
2 Ap—y ——— A Ay e
" dap—s L
s du a}\ du asay\ du
rp—— = (2ay— — ) —— +(3a;— s
.y, \ a, ) da, a, ) da,
k=1
N /na . (2,:1111' >(/u L A du
S a, da,—y a, | da,
a ~2a du +
=1 5— +20Q> .
d day
+(n—1)a + na du
- n—-1 77 ‘n
dan—s dan—q
k:n /l':,l
2 du v du day N du da, T du dq_,,)
E K day, ME b \da, dz.  da, dzj. " da, dz
k=1 k=1
r=—n d r=n-—1 d
it O 1
= Il(]ll'r . I[f(n)__ a‘S _ - .
Z " da, 24( ! rSm—1) da,
r=1 r=0

Exemples. — 1° SilTon pose U=S;,i>0,0na

(JS[ ds,f
Ay —— +92ay 5 ...
da, da,
ds; ds; .
A (R—1)Ap-q = —— 4 Ny —— = LSjs1;

da, -,
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. a, .
2° Soit u = ~%, on obtient, pour m >

a, )

r—n -

(m)
_.l_ Hi{m El_a_{/ -+ H" =(—17) L x
a, " da, I R e A

r=1

I-I(qm) ={—1)q, E P zy. ...

REALISATION ET USAGE DES FORMES IMAGINAIRES
EN GEOMETRIE.

CONFERENCES DONNEES PAR M. MaximiLiexn MARIE

au Collége Stanislas, a Sainte-Barbe, & I’Ecole Sainte-Geneviéve
et a PEcole Monge ().

11. La scction compléte d'un lieu f(x, y, z)= o par
un plan réel se compose de la section, par ce plan, de
la surface réelle et des sections eflectives, par ce méme
plan, de toutes les conjuguées du lieu dont les cordes
réelles lui sont paralléles.

Les sections par le plan considéré des conjuguées du
lieu qu’il peut couper sont, dans ce plan, les conjuguées
de la section de la surface réelle, si clle est elfectivement
coupée; et la section de la surface réelle est 'enveloppe
réelle des sections des conjuguées que le plan coupe.

Ces derniéres sections ont le plus souvent une autre
enveloppe, imaginaire; mais cette seconde enveloppe
n’est généralement pas la section par le plan considéré
de I'enveloppe imaginaire des conjuguées du lieu pro-
posé,

(") Voir t. X, p. 270.
Ann. de Mathémat., 3¢ séric, t. X. (Juillet 189t.) 23
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Ainsi, par exemple, I'enveloppe imaginaire des con-

juguées du licu

est Pellipsoide

représenté par les solutions de la forme
e BYTh,  y=@VII, a=EVIE

de I'équation; mais, si Pon coupe le¢ licu par un plan
z =1, les conjuguées de la section ont pour cnveloppe
imaginaire lellipse

r? 2 2
qui n’appartient pas a la surface enveloppe imaginaire
des conjuguées du lieu.

Cela tient a ce que celles des cordes réelles de la sur-
face enveloppe imaginaire des conjuguées du lieu, qui
seraient paralléles au plan sécant, ne seront générale-
ment pas dans cc plan, ou ne s’y trouveront qu’en
nombre limité.

Ainsi, dans Pexemple, les cordes réelles de la surface
enveloppe imaginaire, qui seraient paralléles au plan
z=nh, secraient comprises dans le plan z =o, deux
points imaginaires conjugués de la surface enveloppe
imaginaire étant les extrémités d'un méme diamétre de
la surface.

En un point x =8y —1, y=0—1, z="h de
Penveloppe imaginaire des conjuguées de la section

a2y h2

T
a? b2 o2
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r! ” .
%— est bien réel, mais ni %" ni §1 ne le sont : en cffet,
BY—1
Ll e
Sy g8’ i
b2
est bien réel, mais
BY—r 5V =1
L S
T A
c? c2?

ne le sont pas.

12. Lorsqu’un plan sécant réel donne, dans la surface
réelle, une section comprenant, entre autres branches,
un anneau fermé, si le plan se déplace parallélement a
lui-méme, cet anneau se réduit & un point au moment
oule plan devient tangent & la nappe fermée de la sur-
face réelle, et est ensuite remplacé par un anneau d’en-
veloppe imaginaire des conjuguées de la section.

13. Le plan tangent 4 une conjuguée (C,C/,C") d’un
lieu f(X,Y,Z)= o0 en un point (x,y, z) de cette con-
juguée est la conjuguée (C, €/, C”) de P'onglet de plans

X fo+ Yfy+Lfi+Tfi=o.

14. Sile premier membre de I’équation d’un lieu est
décomposé cn groupes de termes homogénes et repré-
senté par

o(X,Y,Z) + 4(X, Y, Z)+ 1 (X, Y, Z) + ...,

Uéquation générale des plans asymptotes 4 la surface
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réclle et & ses conjugudes est
o, X =+ ué Y+ oYL+ (2, B,v)=o,

a, B,y formant une solution réelle ou imaginaire deo
I’équation

o, B, y)=o.

Les conjuguées des cones asymptotes des surfaces du
second degré sont les cones asymptotes des conjuguées
de ces surfaces.

15. Le contour apparent d’une surface f( X,Y,Z) =o,
par rapport au plan des 2y et paralltlement a Paxe des
z,a pour équalions

Sz, y,5)=0 el j}_(l’,_}’,s):(),
qui, par I’élimination de z, fourniraient I'équation
F(X,;)Y)=o0

du contour apparent proprement dit.

Le lieu (X, Y) =0, construit dans le plan des
[X,Y], sc composera en général d’une courbe réelle et
de toutes ses conjuguées. La courbe réelle formera le
contour apparent proprement dit de la surface réelle
représentée par Péquation f(X,Y,Z) = o; mais les
conjuguées de cette courbe F(X, Y) = o ne seront pas
les contours apparents des conjuguées de la surface
f(X,Y,Z)= o, parce que dans les solutions correspon-
dantes des équations

f(r,y,3)=0 ot fi(z, ¥, 3)=o,
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L
le rapport ’IF des parties imaginaires de x et de y sera

. nn us
bien constant, mais non pas les rapports Lot g (").

L

16. Toutes celles des conjuguées d’'une méme surface
qui la touchent en un méme point (ce sont celles dont
les cordes réelles sont paralléles au plan tangent en ce
point) y ont pour indicatrices les conjuguées de I'indi-
catrice de la surface réelle au méme point.

Les autres questions relatives a la courbure des sur-
faces imaginaires se résolvent par les mémes méthodes
que 'on emploie pour les surfaces réelles.

17. De la cubature des surfaces, et des périodes des
intégrales doubles. — On trouvera, dans le second
Volume de la TThéorie des fonctions de variables ima-
ginaires, tous les théorémes préliminaires qui permet-
tent d’établir Péquivalence des chemins qui peuvent se
substituer les uns aux autres sans que la valeur de I'in-
tégrale double soit altérée.

Ces propositions ne présentent d’autre intérét que
cclui de rendre possible la démonstration a priori d’un

(*) Si Pon coupait un licu (X, Y,Z) = o par une s¢ric de plans
réels, paralléles entre eux et a 'axe des s, les points critiques de
chaquc scction seraient les points d'intersection, par les plans consi-
dérés, du contour apparent de la surface f(X,Y,Z) = o, par rapport
an plan des [ X, Y]; et pour instituer, relativement aux intégrales
doubles, une méthode analogue a celle que Cauchy a fondée pour les
intégrales simples, il faudrait faire jouer au contour apparent de la
surface 4 cuber le méme role factice que Cauchy avait attribué aux
contours apparents, par rapport a ’axe des , des courbes & quarrer.

Pai réalis¢ cette idée en 1872, dans un Mémoirc qui a paru,
vers 1874, dans le XLIVe Cahicr du Journal de U’Ecole Polytechnique
et que Pon trouvera dans le troisicme Volume de ma Théorie des fonc-
tions de variables imaginaires.
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fait que I'on peut regarder comme évident : ¢’est (qu’une
intégrale double est déterminée, a des constantes prés,
par ses limites, tandis qu’elle serait complétement indé-
terminée si elle variait d'une maniére continue avee le
chemin superficiel suivi pour rejoindre les limites.

Nous omeltons ici ces théorémes et nous réduisons
toute la théorie a sa plus simple expression.

La quadratrice de la section d’un licu f(X,Y,Z) =0
par un plan réel admet:1°, comme périodes réelles, w,
vy o', ... les aires des anneaux fermés de la section de
la surface réelle, lorsqu’elle existe et qu’elle est effecti-
vement coupée par le plan réel considéré; 2°, comme
périodes imaginaires, w,y/—1, \/——_l, W y/—1 les
produits par \/—_1 des aires des anneaux fermés des
sections faites dans les conjuguées dulieu dont les cordes
réelles sont paralléles au plan sécant, mais les aires de
tous ceux de ces anneaux fermés qui sont compris entre
les deux mémes branches de la section réelle sont égales;
3°, comme périodes généralement mixtes, w, -+ w3\/:—_1_,
W)+ wjy/—1, . .. les valeurs de intégrale quadratrice,
acquises dans le parcours des anneaux fermés de l'en-
veloppe imaginaire des conjuguées de la section; 4° en-
fin, comme périodes cycliques, =dV=5, =dV—1,
=d"V_=1,... les produits par \/— 1 des aires des par-
ties ellipliques évanouissantes des conjuguées dont les
cordes réelles sont paralléles aux asymptotes de la section.

18.  Sil'on a coupé le lieu par une série de plans
paralleles entre cux ct distants les uns des autres de la
quantité dh et que Q soit 'une des périodes de la qua-
dratrice de la section, Q d% sera un ¢élément d’une des
périodes de la cubatrice de la surface et, pour obtenir
cette période, il faudra prendre intégrale fQ dh, entre
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deux valeurs de %2 pour lesquelles Q@ s’annule, ¢’est-
a-dire entre deux plans tangents au lieu f(X,Y,Z)=o.

19. Si la période considérée est I'aire d’un anneau
fermé de la section réelle, elle engendrera un volume
enveloppé par une nappe de la surface réclle, fermée
dans tous les sens paralléles au plan sécant; et, si cette
nappe se ferme encore dans un nouveau sens, non paral-
l¢le au plan sécant, la période engendrée scra le volume
enfermé par une nappe sphéroidale de la surface réelle.

20. Si la période considérée est le produit par \/—1
de P'aire d’'un anneau fermé de conjuguée de la section
et si cel anneau engendre une nappe fermée de conju-
guée de la surface proposée, la période engendrée sera
le produit par \/———1 du volume enfermé dans la nappe
fermée de la conjuguée en question.

21. Toutes les conjuguées fermées d’une méme swr-
face, inscrites dans la méme nappe de la surface réelle,
enveloppent des volumes égaux. — En effet, compa-
rons d’abord entre elles celles de ces conjuguées dont les
cordes réelles sont paralléles 2 un méme plan paralléle
al'axe des z : d’une part, les sections faites dans toutes
ces conjuguées par un méme plan quelconque, paralléle
au plan considéré, auront toutes mé¢me aire et, d’autre
part, ces scctions s’évanouiront toutes dans les mémes
plans; car les courbes de contact de toutes ces conjuguées
avec la surface réelle ne serontautre chose que les cour-
bes de contact, avec cette méme surface réelle, de tous
les cylindres qui lui seraient inscrits parallélement aux
cordes réelles de toutes les conjuguées considérées, c’est-
a-dire a toutes les droites parall¢les & un méme plan.
Or, toutes ces courbes se couperont aux mémes points de
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la surface réelle, lesquels scront les points de contact
avec cette surface réelle de ses plans tangents paralléles au
plan considéré; de sorte que, déja, toutes les conjuguées
en question envelopperont des volumes égaux et, en pa{--
ticulicr, égaux au volume enveloppé par la conjuguée
dont les cordes réelles seraient paralléles a axe des z.

Mais un plan paralléle a I'axe des z pourra étre dirigé
paralléiement aux cordes réclles d’une conjuguée quel-
conque, non comprise parmi les précédentes, et le
volume enveloppé par cette nouvelle conjuguée fermée
sera encore égal au volume enfermé par la conjuguée
dont les cordes réelles seraient paralléles a I'axe des z.

La démonstration du théoréme énoncé s’étend donc a
toutes les conjuguées.

1 en résulte que le produit par \/:—l du volume en-
veloppé par I'une quelconque des conjuguées fermées
d’une surface réelle f(x,y,z)=o0, inscrites dans la
méme nappe réelle de cette surface, est I'une des pé-
riodes de U'intégrale cubatrice de cette surface.

Ces propositions s¢ trouvaient déja dans mon Mémoire
de 1853 et Cauchy les énonce dans son Rapport de 1854
sur ce Mémoire.

22. Si la période considérée correspond au parcours
d'un anneau fermé de I'enveloppe imaginaire des conju-
guées de la section faite dans la surface par le plan réel
qui se déplace paralléelement a lui-méme, cette période
s’annulera lorsque le plan sécant deviendra tangent soit
a la surface réelle et a 'enveloppe imaginaire des conju-
guées de cette surface, si elles coexistent, soit a celle
qui subsisteraseule. D’ailleurs 'intégrale [ Q dh, évaluée
entre deux valeurs de 7 pour lesquelles le plan mobile
deviendrait tangent, soit a la surface réelle, soit a I'enve-
loppe imaginaire de ses conjuguées, fournira une pé-
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riode, géncralement imaginaire, de I'intégrale cubatrice
du lieu consndere.
Ainsi, par exemple, sil’on rapporte un hyperboloide
4 deux nappes a trois de ses diamétres conjugués, dont
I'un, 'axc des z, soit le diamétre transverse, I’équation
de la surface sera

n-
e

2

£

)/
BE

GH\

Sil'on coupe la surface par un plan z =7, compris
entre les plans tangents

la section totale aura pour équation

a? 2 h?
L=,

]

—_— —
a2 b2 c'2

et cette éguation représentera une infinité d’hyperboles
ayant pour enveloppe imaginaire une courbe qui, réa-
lisée, sera I'ellipse
a2 r: o h?
ar T T c'®
la période, réelle dans ce cas, de la quadratrice de la
section sera
g Q = =a'b'sin(X0Y),
ct la période de la cubatrice du licu, engendrée par cette
période superficielle, sera

+c'
f =a'b'sin(zoy) dhsin(Z, XOY),
¢’est-a-dire le volume de 'ellipsoide

ﬁ y- 52

e

=1 .
ou

rabe,

u.[;.‘
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a,b,c désignant les axes de I’hyperboloide proposé;
car tous les cllipsoides, tels que :—,; ~+ g,—f -+ j% =1, se-
ront équivalents, en volume, comme on le sait.

De sorte que, dans ce cas particulier, le fait, analogue
a celui de I'équivalence en volume des conjuguées fer-
mées d’'une méme surface, inscrites dans une méme
nappe de cette surface, se présente de lui-méme relati-
vement aux licux des enve]oppcs imaginaires des sections
faites dans la surface par des plans paralléles de diree-
tion arbitraire; dans le cas particulier qui vient d’étre
examiné, les nappes fermées, lieux de ces enveloppes,
entourent des volumes égaux.

Cette proposition pourrait étre généralisée. Elle n’est
pas indiquée dans ma 7héorie des fonctions de variables
imaginaires, ou la question des intégrales doubles a été
prise a un tout autre point de vue.

23. Enfin, sila période considérée cst une des périodes
cycliques de la quadratrice de la section faite dans la
surface par le plan mobile, c¢’est-a-dire le produit par
\/:—_1 de I'aire d’une ellipse indéfliniment allongée dans
un sens et indéfiniment aplatic dans 'autre, elle s’an-
nulera dans deux plans, et I'intégrale correspondante

Smd>dh

évaluée entre ces deux plans prendra une valeur numé-
rique qui sera le produit par \/: du volume fini d'un
ellipsoide ayant un axe infini, un axe fini ¢t un axe
infiniment petit.

J'ai donné le nom de périodes sphériques a ce genre
de périodes de I'intégrale cubatrice d’une surface.

Soit

o(z, ) 3)+4(2,¥,3) +Y(2,¥,3)+...=0
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I'équation de la surface la plus générale de degré m, dé-
composée c¢n groupes de termes homogénes, de sorte que
5, 4, 4y - .. soient des polyndmes hoKlogénes de degrés

My M—1, M—2,....

Soient d’ailleurs
Y _
S =

l.)

RIS

-1

les équations d’unce direction asymptotique, de sorte que

C.j(aa p) 1) =o,

et
Tr—% _Jy—J)o__ %
2 B 1

soient les équations d’une paralléle a cette direction : si
’on veut avoirles intersections de cette paralléle avecla
surface, on pourra remplacer dans ’équation proposée

x,y et z par
o+ 20, yo-+Bp et p,

ce quidonnera
oMo (a, B,1) 4 e [(@o 9y + yoop+ ¥(2, B,1)]
pln_lj [#3 0l 220 Y0 9ug + ¥ 5 9
+ 220+ 2¥0¥g+ 2% (2 B, )] +...=0;

mais le terme en p™ disparaitra de lui-méme, 9(a, B, 1)

étant nul par hypothese.
Si I’on veut exprimer que la droite

z—2 _ Y=Y _ 3

a T

est clle-méme une asymptote, il faudra poser
@9y yoop+ (2 By1) =0,

ce qui donnera unc relation entre les coordonnées x,,
v de la trace sur le plan des xy d’une asymptote paral-
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. . x
lele a la direction 5= % = —7 d’ou 'on voit que les

asymptotes paralléeles 4 une méme direction asympto-
tique sont généralement dans un méme plan.

Si I’on voulait déterminer les asymptotes, paralléles a
la méme direction, qui rencontrent la surface en trois
points situés 4 'infini, il faudrait poser 1a nouvelle con-
dition

TG+ 2T V0GB -+ Y9+ 20 Y+ 2¥ 0¥+ 2% (2, B, 1) =0

d’oti I'on voil, comme cela avait été annoncé, que, parmi
toutes les asymptotes paralléles & une méme direction,
il y en aura généralement deux, et deux seulement, qui
rencontreront la surface en trois points situés a 'infini,
ou, ce quirevient au méme, que, si un plan quelconque
se déplace parallélement a lui-méme, chacune des pé-
riodes cycliques dela quadratrice de la section de la
surface par ce plan mobile s’annulera deux fois et deux
fois seulement, (A suivre.)

ERRATA.

Page 217, lignes 10 et »2, remplaces les limites inférieures des
intégrales par o, 1,2, 3, ..., n.
Page 230, ligne 20, au licu de n, lises x
» lignes 22 et 27, au liew de p, lises p.
» ligne 8, au liew de p*, lises p? et au lieu de —hagqp;
lises — jaqu.
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MULTIPLICATION DES DETERMINANTS (');
Par M. E. CARVALLO,

Examinateur d’admission & I'Ecole Polytechnique.

1. Prosiime. Représenter le produit de deux déter-
minants d’ordres m et n par un déterminant d’ordre

m -+ n. — Considérons les déterminants des deux sys-
témes
s yi=alx; + alx,+ alx;,
(1) Ye=ajxi+ ajxry+alxs,
yi=alr -+ atxs+ajrs,
(2) Y= al@,+ ajrs,
' ys=aktxr,+alxs.

On a, d’apreés la définition que j’ai donnée des déter-
minants ('),

][1'11"2-7‘:]

(1" [yiyaysl= {)T/
[yuy

1 ]
) [yuysl= (7 ][ x;)s

'

(2

et en opérant la multiplication extérieure sur les deux
membres de ces égalités,

[r1yeys] [yays]

[x,w2x3] [a’var' |

(s o2y 2, 25].

3)  »yeysywysl=

Cette formule exprime que le produit des deux déter-

minants Mﬂ, [}—‘y—"], définis par les systemes (1)
(@1 29 23] [z, 5]

(") Cet article fait suite & celui que j’ai publié¢ récemment (Nouy.
Ann., 3¢ série, t. X; mai 1891).
Ann. de Mathémat., 3¢ série, t. X. (Aoutl 1891.) 24



( 342 )
ct (2), est égal au déterminant unique du cinquiéme

[y1y2¥syes]
[xy 252, 25)
comme formant un systéme unique de cing fonctionsy

ordre qu’on obtient en regardant (1) et ()

a cing variables x.

Remarque. — Si dans les seconds membres du Sys-
téme (2), par exemple, on introduit des termes en x,,
Xy, X3, ceux-ci donneront dans la formule (2') de nou-
veaux termes en [, Xs], ..., etc.; maig, dans la mul tipli-
cation de (1') et (2'), ces termes disparaitront. La for-
mule (3) subsiste. On peut done, dans le déterminant

[rayaysyeysl de cette fo
[y zoz32, 205 |

arbitraires dans les colonnes 1, 2, 3 des lignes 4, 5 (V).

rimule, introduire des éléments

2. ProsrLime. Représenter le produit de deux déter-
minants de méme ordre par un déterminant de méme
ordre. — Soient A et B les valeurs des déterminants des
deux systéemes

yi=alz,+ alx,+ a}x;,

(1) Vo= alxi+ adx,+ alxs,
Ya= alxri+ ajxy+ ajxs,

5 sp=blyr+ by by,
2= bly1 03 ys - by,

t S3== b}_}/( — bg‘}/g*r‘ bg}/3.

13

(2)

(*) L'expression du théoréme avec ces éléments arbitraires M et
dans la notation usuelle est celle-ci :

1 2 a

al a: a o o

a, a; a o o a, at al

: @y Q@ Coay o s

1 [ 3 — 1 [ 3 a; a;

a,; a; a; 0 O =] a, a; ai P
. . ; s a; 5

AN N a4 a, a; «

>

'y
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On a, d’aprés ma définition des déterminants,
[r1yerysl= A [z12924], [5183535] = B.[ 1 7273],
et par suite
(3) [215233] = B.A.[#y 20 73].

Cette formule montre que le produit B.A est égal ala
valeur C du déterminant obtenu en exprimant les z en
fonction des x. Il suflit de remplacer, dans les for-
mules (2), les y par leurs valeurs (1). L’élément qui est &
la ligne p et a la colonne ¢ de ce nouveau déterminant
C est visiblement le coeflicient de x, dans 'expression
de z,. Clest

— 2 g ]
(4) c;/)wb},a’{—*.— b}al—- bl‘,a{&’.

Remarques. — 1° La méthode s’élend au produit de
plusicurs déterminants.

2° Elle ne suppose pas qu’on ait le méme nombre de
variables dans les formules (1) et (2). Si, par exemple, les
formules (1) donnent seulement y,, y. en fonction de
Xy, X2, X3; si, de plus, les formules (2) donnent zy, 2, 73
en fonction de 1y, 2, la méthode montre que le déter-
minant C est nul.

3° Le théoréme s’exprime intuitivement par la for-
[213923] _ [51%233] [)15273]

[Tywoxs] — [y1y2ys) [#12225]
réme des fonctions de fonctions pour les dérivées et les

déterminants fonctionnels.

mule . On reconnait le théo-

3. DiTERMINANTS RECIPROQUES. — Je suppose que dans
le sysieme (2) (n° 2), b7 soit égal au déterminant mineur
de I’élément a”. Le déterminant B est alors appelé le réci-
progue du déterminant A (!). La formule (4) offre alors

(*) SaLmon, Lecons d’Algébre superieure.
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s p__ A P ) 3 _p ,
deux cas. Si g =p, ch="5}al+ {)1,,a2 + b} al repré-
sente le développement du déterminant A suivant les
éléments de la colonne p. Si g est différent de p, c? est

’ A , . N ) p
le développement du méme déterminant ou I'on a rem-
placé la colonne p par la colonne ¢g. Ce nouveau déter-
ninant est nul comme ayant deux colonnes identiques.
Ainsi, le déterminant C se réduit aux éléments de la
premiére diagonale et I'on a

(5) z1= Az, Zy= Az, Z3= Ax;.

On en conclut C= A®. Plus généralement, s’il s’agit
de déterminants d’ordre n, on a C = A”, et, en rempla-
cant C par sa valeur BA,

(6) B = An-1,

D’autre part, si 'on porte les valeurs (5) dans les
formules (2), on obtient

AZ’1 = b}y1+ b%‘yg%— b?)’3,
(2") ¢ Amg=bly1+ b3 ys+ biys,
Azy=biy1-+b3iys+ 03ys.

Ainsi, des formules (1) on déduit les formules (2').
Je peux opérer de méme sur les formules (2/). Si je
représente par des letires d les éléments du détermi-
nant D, réciproque de B, j'aurai, en appliquant la méme
régle,

5 Byi=dlAzi+ d? Azy+ d} Az,
(1') B_}’2: d%A~Z‘1+d§A‘Z‘2+ d%A{Z‘g,
( By;=diAx,+ d} Az, + d} Azs.

En comparant ces égalités (1) aux égalités (1), on cn
conclut
A
B

frnd (ll)’
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et, en remplacant B par sa valear A#-t,
(7) . dl = Ar—2qf.

Les formules (6) et (7) s’énoncent respectivement
ainsi :

o Le réci > d’un détermi )

1° Le réciproque d’un déterminant A d’ordre n a
pour valeur An=t;

2° Le réciproque du réciproque d’un déterminant A
d’ordre 1 a pour éléments ceux de A multipliés par A7—2,

SUR UNE GENERALISATION DU THEOREME DES PROJECTIONS:
Par M. E. CARVALLO,

Examinatcur d’admission a 'Ecole Polytechnique.

1. 1l s’agit d’une conséquence immédiate du théoréme
des projections. Elle est bien connue, trés employée en
Mécanique pour évaluer le travail d’une force, et pour-
tant elle est généralement omise dans les cours de Mathé-
matiques spéciales. Serait-clle done de peu d’usage en
Trigonoméirie et en Géométrie analytique? Je veux
montrer ici qu’au contraire, dans les deux cas, elle peut
rendre de grands services et simplifier beaucoup les
démonstrations. 11 me suffira de prendre un exemple
simple dans chacune de ces matiéres. Voici d’abord
Pénoncé :

2. Tutorime. — Si deux segments A et B sont les
résultantes de plusieurs autres, Ay, Az, Ay, ...y By, By,
B, ..., le produit des valeurs algebriques de ces seg-
ments par le cosinus de Uangle des axes sur lesquels
ils sont comptés est égal a la somme des produits quon
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obtient en combinant toutes les composantes du pre-
mier segment avec toules les composantes du second.

Ce théoréme est une conséquence si évidente et si bien
connue du théoréme des projections que jc me dispense
dele démontrer. On le représente commodément par la
formule

(A1+ A2+)I(B1+Bg—’r ...) = EAZ[BJ, (l., j =1,2,..),

en désignant par A+ A,, ... la résultante A, et par
A|B le produit des deux segments par le cosinus de
leur angle. Cette formule est trés mnémonique, étant
identique a celle de la multiplication algébrique d’une
somme par une somme.

3. Previbre aprricaTion. — Distance d’un point a
l’origine. — Soient X, Y, Z les vecteurs qui forment les
trois composantes de OM sur les trois axes Ox, Oy, Oz;
soient x, y, z leurs valeurs algébriques, X, u, vles angles
des axes y Oz, 20x, z0y. On a

OM" = OM|OM = (X -+ Y + Z) [ (X + X + Z)
=X|X+Y|Y+Z]|Z+2Y|Z+2Z]X +2X

=2 4 Y2+ 32

Y

-+ 2)3 COSA — 232 COS U —+ 2L COSV.

4. Devxiive aerrication. — Formule fondamentale
dela T'rigonomeétrie sphérique

cosa = cosb cosc +sinb sinc cosA.

Soient le triangle sphérique ABC, O le centre de la
spheére. Je dois évaluer cosa = OB | OC. Pour ccla, j¢
décompose le segment OB en deux autres, OH et HB,
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savoir :
OH = cosc suivant OA,
HB = sinc suivantla perpendiculaire & OA, dans le plan AOB.

Je décompose de méme OC suivant OK ¢t KC. Jaurai

cosa = OB | 0OC
= (OH + HB)|(OK + KC)
= OH | OK + OH | KC + HB | OK + HB | KC
= cosb cosc + sinb sinc cosA.

AGREGATION DES SCIENCES MATHEMATIQUES
(CONCOURS DE 1891).

Mathématiques élémentaires.

On donne une sphére S et deux droites D, D', tangentes a
cette sphére.

1° Par un point quelconque de la droite D on méne les
droites G et G’ qui touchent la sphére S et rencontrent la
droite D’; démontrer que les points de contact des droites G
et G' avec la sphére S décrivent deux cercles G et C'.

2° Démontrer que les droites G, qui touchent la sphére S
en des points situés sur le cercle G, sont tangentes & unc infi-
nité de sphéres =.



(348 )
3° Trouver combicn il y a de sphéres £ tangentes a un plan
donné Q. Discuter le probléme et trouver le lieu des traces
des droites G sur le plan Q.

Mathématiques spéciales.

Etant donnés un triangle ABC et deux points P et Q situés
dans son plan, on considére les coniques S qui touchent le
coté CA en A et passent par les points P et Q; on considére
dec méme les coniques S’ qui touchent le c¢6té CB en B et pas-
sent par les points P et Q.

1> Soient M et N les points d’intersection d’une conique S
avee les droites CP et CQ; M’ et N' les points d’intersection
d'une conique 8’ avee les mémes droites. Démontrer que la
droite MN passe par un point fixe A; et la droite M'N’ par un
point fixe By, quand les coniques S et S’ varient.

2° Ln substituant le triangle C Ay B, au triangle CAB dans la
définition des deux séries de coniques, on obtiendra deux
nouveaux points A,, By ct ainsi de suite; trouver 'équation
de la droite A, B, ct chercher sa position limite quand n de-
vient infini.

3° On suppose que les coniques S et S’ varient de maniére
que les deuxiémes tangentes menées du point C & ces courbes
soient conjugudées harmoniques par rapport aux droites CP et
CQ; trouver, dans cette hypothése, le lieu du point d'intersec-
tion des polaires d’un point donné II par rapport a ces coni-
ques.

4° Lorsque les coniques S et S’ varient en restant tan-
gentes, trouver le licu de leur point de contact.

Composition sur I’Analyse et ses applications
géométriques.

Etant donnée I'équation
F(z, NERIW q):" 0,
dans laquelle 5 désigne une fonction des deux variables indé-

pendantes z et y et ou I'on a posé

P = = q=——9
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définir ce que Pon entend : i° par intégrale compléte, inté-
grale générale, intégrale singuliére; 2° par caractéristiques.
Montrer comment on peut déduire V'intégrale singuliére soit
d'une intégrale compléte, soit de I'équation différenticlle.

Application.
1° Etant donnée I'équation

mipq +2xys —xy(pr-+qy)=o,

dans laquelle m désigne une ligne donnée, trouver une inté-
grale compléte;

20 Déduire de cette intégrale compléte la surface intégrale S
qui passe par la droite D dont les équations sont

Yy =o0, xr =23,

Déterminer directement, en intégrant leurs ¢quations différen-
tielles, les caractéristiques dont le lieu est la surface S;

30 Ltudier cette surface dans le voisinage de Dorigine; dé-
terminer sa forme générale a l'aide des sections faites par des
plans passant par I'axe des y.

4° Trouver les lignes suivant lesquelles la surface S touche
la surface représentée par Pintégrale singuliére.

Composition de Mécanique rationnelle.

Un triédre trirectangl@@OXYZ tourne avec unc vitessc con-
stante w autour de son ame OZ, qui est dirigée en sens con-
traire de la pesanteur; il entraine avec lui un paraboloide P
qui, rapporté aux axes OX, OY, OZ, aurait pour équation

r2—yr=2pa.

Un point M de masse 1, de poids g, assujctti & se mouvoir
sur la surface de P, est attiré vers le sommet O du parabo-

loide par une force égale a 31)5 MO; en outre, MA, MB étant

les perpendiculaires abaissées de M sur les génératrices recti-
lignes de P qui passent au sommet O, le point M est encore
sollicité par deux forces dirigées suivant les segments AM,

- .3
BM, et égales, la premiére & g’/—? AM, la seconde a ;"r’: BM.
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La position du mobile M sera définie par les valeurs des pa-
ramétres A, @, qui figurent dans les équations

T L UV B L
Y —p A+p = pp  p—p  HT28

des paraboloides homofocaux a P et passant par le point M.

Cela posé¢, on demande :

10 De former I'équation aux dérivées partielles dont, suivant
le théoréme de Jacobi, il suffirait de connaitre une intégrale
compléte pour en déduire, par de simples différentiations, les
¢équations du mouvement du point M;

2° De trouver cette intégrale compléte et les équations du
mouvement quand on suppose w = 0;

3o D'intégrer I'équation de la trajectoire et d’indiquer la
forme de cette ligne quand, w étant toujours nul, on a, & I'in-
stant initial,

xr = =P 3
P=Y =) e

dr _ 3+3y/3 Vrr:
- Tq T o

dt 8

f’i}’__ 9—'_‘/;\/];5'

dt 8

CONCOURS D'ADMISSION A L'ECOLE CENTRALE EN 1891.

Géométrie analytique.

On donne deux axes rectangulaires Oz, Oy, et, sur I'axe
des z, un point A dont I'abscisse est @. On considére le fais-
ceau des ellipses pour lesquelles le point O est un sommct
d’axe non focal et la paralléle a I'axe des y menée parle point A
une directrice.

1 Démontrer que la condition nécessaire et suffisante pour
que deux ellipses du faisceau considéré passent par un point
donné P est que ce point soit a l'intérieur du cercle qui a le
point O pour centre et OA pour rayon. .
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2° Démontrer que ce cercle a un double contact, réel ou
imaginaire, avec chacune des ellipses du faisceau.

3° Limiter les régions du plan dans lesquelles doit étre situé
un point P :

1° Pour qu’une seule des deux ellipses du faisceau qui pas-
sent par cc point ait avec le cercle un double contact réel;

2° Pour que chacune des deux ellipses du faisceau qui pas-
sent par ce point ait avec le cercle un double contact réel;

3° Pour qu’aucune des deux ellipses du faisceau qui passent
par ce point n’ait avec le cercle un double contact réel;

4° Lieu des pieds des normales menées par le point O a
toutes les ellipses du faisceau.

Physique.

I. Une pompe aspirante ct foulante, de capacité G, est re-
liée, par le tube d’aspiration, a un réservoir de volume A con-
tenant un gaz sous pression Hy, et, par le tube de refoulement,
a un réservoir de capacité B contenant le méme gaz sous
pression Pgy. Le piston est au début au bas de sa course et la
machine ne posséde pas d’espace nuisible.

Calculer les pressions successives : Hy, Hy, ..., Hp, Py,
P, ..., P,, dans les deuxrécipients lorsqu’on fait fonctionner
la pompe.

II. Deux prismes A et B, d’indices n; et n; dont les arétes
sont paralléles et opposées, se touchent par une face.

Ecrire, sans démonstration, les équations qui réglent la
marche & travers cet appareil d’un rayon lumineux simple,
situé dans un plan perpendiculaire aux arétes.

A quoi se réduisent ces équations si le rayon incident et le
rayon émergent sont, respectivement, perpendiculaires aux
faces d’entrée et de sortie?

Chimte.

I. Comment établit-on par synthésc la composition des gaz
suivants :

Acide chlorhydrique ; acide sulfureux; acide carbonique.

Dire si la composition de ces gaz répond aux lois de Gay-
Lussac.
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II. On prend dans Peudiométre 100* d’un mclange d’oxvde
de carbone et d’hydrogene. On y ajoute 50° d’oxygéne pur et
P’on fait détoner. Il se dépose de eau sur lex parois de Peu-
diométre ct il reste 50 de gaz acide carbonique pur.

Quelles sont les proportions de gaz oxyde de carbone et de
gaz hydrogéne dans le mélange primitif?

Calcul trigonométrigue.

1° Calculer les angles d’un triangle isoscéle dont Ja base et
la hauteur sont dans le rapport de 1 a 0,65243724;

2° Calculer la base et la surface de ce triangle sachant que
le rayon du cercle circonscrit est de 35275™,17.

Epure.

Placer la ligne de terre paralléelement aux grands cotés du
cadre a o™,10 du grand cdté inférieur. Porter sur cette ligne, a
partir du petit ¢d6té gauche du cadre, o™, 1g. Le point obtenu
est la projection horizontale de I'axe vertical d’une surface
gauche de révolution. Le cercle de gorge, qui a o™,03 de rayon,
est projeté verticalement & o™, 08 au-dessus de la ligne de
terre. La droite de front, qui engendre la surface gauche, est
projetée en avant de la ligne de terre et a sa trace horizontale
a 0™,03 du petit coté gauche du cadre, de sorte que sa pente
est 1.

Par la trace horizontale de cette génératrice, on fait passer
un cercle de o™ 04 de rayon, dont le centre est a o™,05 en
avant de la ligne de terre et est plus rapproché dc l'axe de la
surface gauche que nc l'est la tracc horizontale de la généra-
trice. .

Ce cercle est la base d’'un cylindre dont les génératrices sont
paralléles a la génératrice de front donnée de la surface gauche
de révolution.

Représenter, par ses projections et ses contours apparents,
la portion du cylindre, suppos¢ plein et opaque; comprise
entre le plan horizontal de projection et le plan horizontal
situé a o™,16 au-dessus de celyi-ci, et extéricure a la surface
gauche,
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L'extérieur de la surface gauche est la portion de I'espace ot
n’est pas situé I'axe de révolution.

On n’indiquera a encre rouge que les constructions néces-
saires pour déterminer un point guelconque de la courbe
d’'intersection des deux surfaces et la tangente en ce point, les
points extrémes, les points situés sur les contours apparents,
les asymptotes.

On exposera succinctement, sur unc feuille a part, le pro-
cédé suivi pour chacune des déterminations précédentes.

Titre extérieur. — Cylindre limité par unc surface gauche.

Ce titre, en lettres dessinées, est de rigueur. Le cadre a
o™, 45 sur o™, 27.

CONCOURS GENERAL DE 1891.

MATHEMATIQUES SPECIALES.

Mathématiques.

On donne unc quadrique Q et une sphére S de rayon nul
ayant pour centre le point P; soit £ une quelconque des qua-
driques passant par l'intersection de la quadrique Q et de la
sphére S.

1° Démontrer que le cone, ayant pour sommet le point P et
pour base la section de la surface X par un plan touchant la
quadrique Q en un point quelconque M, a pour un de ses axes
de symétrie la droite PM. :

2° Trouver le nombre des quadriques £ qui se réduisent &
de véritables cones et les conditions nécessaires et suffisantes
pour que l'un de ces cones devienne un véritable cylindre ou
un systéme de deux plans réels.

3° La quadrique Q et le point P étant donnés, examiner si la
propriété énoncée au numéro premier peut subsister, quand
on remplace la sphére-point S par une quadrique convenable-
ment choisie.
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Physique.
I. Chaleur spécifique des gaz.

II. A l'intérieur d'un vase cylindrique en forme de cloche,
fixé & sa partie supéricure, flotte un cylindre semblable dont
le bord est relevé en forme de goutticre; P'espace compris

entre les deux cylindres est rempli partie par de Pair, partie
par du mercure; et le systéme sc¢ trouve ainsi en équilibre
pour une pression atmosphérique donnée.

Quel sera l'effet produit par une variation de la pression
extérieure, ¢t comment pourrait-on faire de I'appareil un ba-
rométre inscripteur?

I1I. Démontrer que, sid'on observe I'image d’un objet don-
née par un systéme optique quelconque symétrique autour
d’un axe, le grossissement reste le méme, quand, le systéme
demeurant fixe, on échange les positions de I'ceil et de I'objet.

Chimie.

I Analogies et différences physiques et chimiques du brome
ct de Piode. Leurs principaux composés.

II. On chaufle 198,400 de phosphore avec un excés d’hy-
drate de baryte dissous dans I'cau. On admet qu’il ne se
produit ni hydrogéne libre, ni acide phosphorique et que le
gaz dégagé se compose de % de phosphure d’hydrogéne gazeux
et de {5 de vapeurs d’hydrogéne phosphoré liquide. Aprés
dissolution du phosphore, l¢ liquide est traité par un courant
d’acide carbonique en excés ct filtré. A cette dissolution, ov
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ajoute de l'acide sulfurique dilué tant qu’il se forme un pré-
cipité; on filtre de nouveau, on lave et I'on séche le précipité.

Dans la derniére liqueur filtrée, on fait passer un courant de
chlore en excés, puis on évapore et 'on caleine en s'arrétant
avant la volatilisation du produit solide.

On demande :

1° Le poids du précipité donné par I'acide sulfurique;

2° La nature et le poids du produit contenu dans le liquide
séparé de ce précipité;

3¢ Le poids de chlore utilisé par cette dissolution;

4° La nature ct le poids du produit obtenu aprés évapora-
tion et calcination.

On donne 'équivalent du baryum : Ba = 68, 5.

PHILOSOPHIE.

On donne dans un plan deux cercles dont les centres sont
les points O et O et qui se coupent aux points A et B; par le
point A, on méne, dans le plan des cercles donnés, une droite
quelconque qui coupe le premier cercle aux points A et C et
le second aux points A et C'. On forme le triangle BCC'. Soit I
le centre du cercle inscrit dans le triangle BCC' et soient E
et E' les centres des cercles exinscrits & ce méme triangle,
le premier dans P'angle C, le second dans I'angle C'.

1° Trouver le lieu décrit par chacun des points I, E, E’
quand la droite ACC’ tourne autour du point A.

2° Mener la droite ACGC' de facon que I’aire du triangle BCC'
soit la plus grande possible.

3° Mener la droite ACC’ de fagon que I'aire du triangle IEE
soit la plus grande possible.

4° Dans quel cas la position de la droite ACC', pour laquelle
laire du triangle BCGC' est la plus grande possible, est-elle
aussi celle pour laquelle T'aire du triangle IEE' est la plus
grande possible?

SECONDE.

I. Quelles sont les valeurs des inconnues z, 3, 5 qui véri-
fient 'équation
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sachant qu'elles doivent satisfaire au systéme

3z+8z=7y,
zr+5y =33,
3z + 255 =129)7?

I1. Soit P le parallélépipéde ABCDA'B'C'D’, les points A
et A’ étant opposés, ainsi que B et B, etc. Par chacun des som-
mets on fait passer le plan paralléle au plan déterminé par les
secondes extrémités des trois arétes aboutissant & ce sommet,
Ainsi par A on fait passer le plan paralléle au plan BDC/, et
ainsi des autres :

1° Donner une construction des sommets du solide R limité
par ces plans, en supposant connus les sommets du parallélé-
pipéde P.

2° Inversement déduire les sommets du parallélépipéde P
des sommets supposés connus du solide R.

3° Quelles particularités présente Ie polyeédre R quand P est
un rhomboédre, ou un parallélépipéde rectangle ou un cercle?

4° Galculer le rapport du volume du polyédre R au parallé-
Iépipede P.

Nota. — Le rhomboédre est un parallélépipéde dont les
faces sont des losanges égaux.

TROISIEME.

I. Calculer le nomhre des multiples du nombre entier B
contenus dans la suite

AB—+1), AB+2), ..., AxnB;

A et n sont des nombres entiers donnés.
Appliquer au cas ou

A = 750, B = 1200, n = 8o.

II. 1° Etant donné un triangle ABC, construire un point M
tel que ses distances aux cdtés soient proportionnelles aux
nombres donnés «, 8, v. Nombre des solutions. Examen du cas
ol a, 8,y sont égaux entre eux et du cas ou ces nombres sont

Inversement proportionnels auxlongueurs des cotés correspon-
dants,
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27 Sil'on suppose connus les points comme M correspondant,
a un méme triangle, construire les sommets de ce triangle.

3° Ltant donné arbitrairement un point M dans le p]an du
triangle ABC, construire tous les points dont les distances aux
cotés de ABC sont proportionnelles aux distances du point M
a ces cotés. Discuter le nombre des solutions.

4° Etant données les longueurs a, b, ¢ des cotés du triangle
ABC et les nombres a, 8, v, établir la formule générale don-
nant la distance au coté BC d’un des points qui, comme M,
satisfont & 1°.

COXCOURS POUR LES BOURSES DE LICENCE EN 1890.

I. En désignant par m un nombre entier positif, on considére
deux polyndémes o(x), §(x) entiers en x, de degré inférieur
i m, et tels que 'on ait identiquement

_ () i) —
(1—a)yno(r)+ambiz)=1.
1" Démontirer que 'on a identiquement

Ylr)=2p(1—ux),
o(r)=401—ur),

(1t--r)o'(xr)—me(xr)=ax™- 1.

Dans cette derniére égalité, « désigne une constante et o'(x)
la dérivée de o () : en déduire, alaide du théoréme de Rolle,
que le polyndome o(z) ne peut pas avoir deux racines néga-
tives.,

22 Déterminer en fonction de m la constante a et les coeffi-
cients du polynéme o(z); démontrer que ce polynéme a au
plus une racine réelle.

1I. Etant donnés deux axes rectangulaires Oz, Oy, on consi-
dére un losange PQP'Q’ ayant les deux sommets P, P’ sur
Paxe des « et les deux sommets Q, Q' sur I'axe des y. On sup-
posera OP = p, 0Q = ¢.

Ann. de Mathémat., 3° série, t. X. (Aout 18g1.) 25
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° Par un point M, de coordonnées x, ¥, passent deux co-
niques inscrites dans le losange; former I'équation du second
degré en m, qui admet pour racines les cocfficients angulaires
destangentes en M a ces deux coniques.

»* Trouver le lieu des points M ot se coupent sous un angle
donné deux coniques inscrites dans le losange.

3° Déduire de I'équation aux coefficients angulaires que ce
dernier licu doit se composer d’hyperboles.

CONCOURS D'ADMISSIGN A L'ECOLE DES WINES
DE SAUNT-ETIENXE EN 1890,

CONCOURS PRINCIPAL.

Géomélrie analylique (§").

On considére les coniques en nombre infini qui passent par
deux points A et B et quisont telles que, pour chacune d'elles,
la droite AB soit I'un des deux diamétres conjuguds ¢gaux.
On demandc de déterminer :

1 Le lieu des foyvers:

2> Le lien des sommets de ces coniques.

Calewl (1),

Résoudre e triangle :

a = 2016™,255. c==1602™,30q. C=22°37"11". 5.
Résuhiats
A = 453,23, B = 1192217, 25,
b= 3859™ 15 S = 2182751™, 46
ou
\' = l’;/"’—(").S" - B = 92993 P
AT 104709 77 >o==o2m2) 19,71

O = 1586", 79, 5= 89905 ™. 33
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Dessin graphique (3").
Etant donné un cone oblique a base circulaire, on méne

par un point de son axe SO unc droite D et, par cette droite,
deux plans quelconques.

Gonstruire Vintersection de ces plans avee la surface dudit
cone.

Physique et Chimie (3").

I. D¢finition ct mesure de la température. Thermométre a
mercure, thermométre a air, pyrométres.

IT. Propriétés, fabrication et principaux usages industriels
de I'acide sulfurique.
CONCOURS SUPPLEMENTAIRE ().

Géométrie analytique.

Discuter I'équation

Rapporter cette courbe & ses axes, sachant que les axes primi-
lifs des coordonnées sont rectangulaires.

(') Ce Concours, réservé aux candidats admissibles et non admis
a I'Ecole Polytechnique, ainsi quaux éléves de PEcole des Mines de
Saint-Lticnne renvoyés aprés unc premiére année d'éludes, n’aura
plus licu a Iavenir.
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Construire la courbe représentée en coordonnées polaires

har I'équation )
: 1 w=7p(p+1)(p+2)

Dessin.

Intersection d'une sphére avec un cone de révolution droit,

L’épure servant de composition de dessin devra étre passée
a Iencre de Chine.

Calcul.

Résoudre lc triangle
A =45, b =1926™, 397, ¢ = 8o1™,154.
Résultats :

B =112°23"4", 20, C = 292036'55", 80,

a — 147317, S = 545653m1,32.

Physique et Chimie.

I. Préparation et propriétés du phosphore. Ses principaux
composés avec les autres métalloides.

II. Détermination des indices de réfraction.

II. Réglage et misc en service d’une balance de précision.
Exécution d’une deuble pesée.
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AGREGATION DES SCIENCES MATHEMATIQUES
(CONCOURS DE 1890).

Calcul (5%).

z et ¥ ¢tant les coordonnées d’un point d'un plan, tracer la
courbe définie par Péquation

T
tang(— - 21’)
S . B

Y=
tangz

Déterminer :

1° Les coordonnées des points de contact des tangentes pa-
ralléles a I'axe des z;

2° Les coordonnées des autres points ol ces tangentes ren-
contrent la courbe.

(On donnera les résultats avec toute la précision que com-

porte I'emploi des Tables de logarithmes a sept décimales.)

Géométrie descriptive (5").

Représenter lc solide commun & un ellipsoide de révolution
ct a un cone de révolution.

x>

Données :
Ellipsoide. — Son centre a pour coordonnées

T = - 4""7 ¥y = 9"'", 7= 8™,
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L’axe de révolution est vertical et il a pour longucur
20 =12}
le diamétre de I'équateur a pour longueur
2a = 16",

Céne. — Son axe est dans le plan de front qui passe par
I'axe de Pellipsoide.

Les géndratrices situées dans ce plan sont :

1° La tangente au point le plus haut de Uellipse méridienne
de Pellipsoide;

2° La droite qui joint le sommet l¢ plus bas de cette méri-
dienne au sommet le plus a droite.

L’angle au sommet du cone est Pangle aigu form¢é par ces
deux génératrices.

Nota. — On placera la ligne de terre parallélement aux
plus petits cotés de la feaille et & égale distance de chacun
d’cux.

Les candidats joindront a I'épure, sur une feuille séparée,
unc légende expliquant les constructions employées.

NOTE SUR L'APPLICATION DE TRANSFORMATIONS DE CONTACT
A LINTEGRATION DES EQUATIONS AUX DERIVEES PAR-
TIELLES DU SECOND ORDRE:

Par M. J. BRILL.

Saint-John’s College Cambridge.

1. Dans ce qui va suivre je me bornerai a la considé-
ration des transformations de contact de 1’espace ponc-
tucl & trois dimensions, ct je ferai des applications aux
équations aux dérivées particlles du second ordre qui
conticnnent une variable dépendante et deux variables
indépendantes.

Considérons, d’abord, le cas ou il y a unc seule

relation entre les coordonnées de points appartenﬂnt
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aux deux espaces corrélatifs, et supposons que cette rela-
tion soit de la forme

Q(.Z‘,‘}’, BT T Y1, zl) = 0.

Si T'on suppose que zy, vy, z, dépendent d’un seul
parameétre, le point (24,945 24 ) décrit une courbe, ct la
surface correspondante de autre espace enveloppe une
surface. L’équation de cette derniére surface sera une
intégrale particuliére d’une ¢quation aux dérivées par-
ticlles du second ordre. Cette équation sera de la méme
forme pour toutes les surfaces du premier espace qui
correspondent a des courbes du deuxiéme espace. De
Pautre part, si Pon fait le point (x, y, z) décrire des
courbes, on obtiendra des surfaces dans Pautre espace
dont les équations satisfont & une aulre équation aux
dérivées partielles du second ordre. En plusicurs cas ces
deux éguations seront de la méme forme. Nous parlerons
pour convenance des surfaces dont les équations satis-
font a ces deux équations différenticlles comme surfaces
des types (A) et (B) respectivement.

Imaginons, par exemple, que 'on considére la trans-
formation de¢ contact la plus simple et la meilleure
connue, la méthode de transformation par polaires réci-
proques. On obtient I'équation générale des surfaces
développables

rt — s*=o.
Si Pon considére la transformation donnée par I'équa-
tion

(x——.rl)‘l—‘,—(y—yl)?-:—(;—;1)2—_:(1‘-’,

qui transforme une surface en une surfac®aralléle, on
obticnt I’équation générale des surfaces canaux

a(pl—s2) - ayi + pre g2
X[t q2)r—oapgs-i (1t pl]- (10 p2ae g2 )E = 0
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Considérons maintenant le cas ol il existe deux rela-
tions entre les coordonnées de points appartenant auy
deux espaces corrélatifs

121(3‘;,1'7 3, X, V1, 81) =0,

Q (@, ¥, 5, &1, Y15 51) = 0.

Dans ce cas, si I'on fait le point (x4, 3y, z,) décrive
unc courbe, la courbe correspondante de I'autre espace
décrit une surface dont I'équation satisfait a4 une ¢qua-
tion dillérenticlle du second ordre. Par exemple, sil’on
considere la transformation donnée par les équations

S5+ arry =0, Y —yi=uo,

on obtient I'équation générale des surfaces gauches a

plan directeur
q’r —opqs 4+ p*t = o.

Dans ce cas aussi nous parlerons des surfaces appar-
tenant au premier ou au deuxiéme espace, qui corres-
pondent a des courbes de 'autre espace, comme surfaces
du type (A) ou du type (B) respectivement.

2.:Maintenant je me propose de montrer comment on
peut faire usage d’une transformation de contact pour
obtenir une intégrale de quelqu’une des équations diflé-
rentielles associées du second ordre, (ui satisfait a des
conditions aux limites données. On peut indiquer les
especes de conditions aux limites auxquelles on peut
faire Papplication de cette méthode comme il suit. On
peut demander d'obtenir une surface qui satisfait a
'équation diférenticlle donnée et (a) qui passe par deux
courbes données, (b) qui touche deux surfaces données,
ct (¢) qui passe par une courbe donnée et touche unc
surface donnée. Pour les autres formes de conditions
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aux limiles on aurait besoin en général d’une auatre
espéce de transformation.

Supposous, d’abord, que l'on demande une inté-
grale del'équation différenticlle appartenant au premier
espace, qui satisfait a des conditions aux limites de
I'espéce (a). On doit chercher une surface du type (A)
passant par deux courbes données. Correspondantes a
ces deux courbes, on obtiendrait deux surfaces du type
(B) dans le second espace. Ces surfaces se couperaient
enunce courbe. Correspondante i cette troisiéme courbe,
on aurait une surface dutype (A) dans le premier espace
passant par les deux courbes données.

Considérons maintenant les conditions aux limites
de Pespéce (b). Les corrélatives des deux surfaces don-
nées scraient deux surfaces dans le second espace. La
corrélative dans le premier espace de la courbe en
laquelle ces surfaces se coupent scrait une surface du
tvpe (A) touchant les deux surfaces données.

On peut obtenir une solution du troisiéme cas d’aprés
la méme maniére. A la surface donnée correspond une
surface, ct a la courbe donnée correspond une surface
du type (B). La corrélative de la courbe en laquelle ces
deux surfaces se coupent est la surface demandée.

SUR LE MOUVEMENT D'UN CORPS SOLIDE AUTOUR
D'UN POINT FIXE;
Par M. ROBERJOT,
Etudiant a la Facullé des Sciences de Lyon.

Je me propose d’étudier cc mouvement sans employer
d"axes particuliers; d’obtenir ainsi les résultats connus
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ct de donner des équations du mouvement une interpre-
tation géométrique simple.
p, q, r désignant les composantes de I'axe instantané

de rotation, on a pour la vitesse et 'accélération d’un
point du corps solide

o, Cr A e gt

P el s O e A +p(pr+qr+rs).
dy _ . d*y __dr  dp s

o TS P ik it i Yy +q(pr+qy—+r3).
d

: L B N
¢ TRV AT g T g g T Ty

Nous poserons
A=ZSm(y?+ 32), B = Sm(32+2?), CESm(a?+y?),

D=2Xmys, E=3%msz, F =X may.

Force vive totale du systéme. - Soit T cette force
vive, on a
dr\? dy \? dz\?
2T =Xm (--— - | = ‘(——
2 ! [\(lt,)—T—((ll)—r-\d[ )

ou
(2) 2T =Ap*+Bg*+-Cr2—aDgr—2Lrp — 2Fpg.

Moment résultant des quantités de mouvement. -
Les composantes 2, 3, v de axe de ¢ moment sont

Ly —x o ‘.i“: — 3 fg_’ - e Fag - B , - ‘)l,

\1 = Xm (_} PR 3 ¢ll>” \q q - B ou L == P
3 =3 3 dl — i:j\ - F 3¢ — Do o _ 'Z_[,
3=Sm (\d a T ”‘) == Fp+Bg—Dy ou P = g
wesm( ~{{):_ LAy e, . . - ZI
v = Zm (.I ar ) =—Ep—Dg—+Cy ou =

Remarquons que
2T = pa—-qgpB+ry.

qumlz‘ons géncrales du mouvement. — Appliquons
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le théoréme des moments des quantités de mouvement
par rapport aux trois axes; désignons par a, b, ¢ les
composantes de I’axe des moments des forces appliquées ;
nous aurons
d2s d2
E’"(”?’zﬁ - Tf)*“

ou

A dp

. dg . dr
AT+ (C—B)gr—t E

dt T dt
+Fpr —Epg —Dqg?— Dr2=aq,
de méme

dt
dB

v
s — +qy—ri=a,
¢ —%-A-rat-—p*(::b,

(1) ' ;
dy —
> +pB—qga=rc.

Telles sont les équations du mouvement.

Remarque. — On en tire facilement les relations sui-
vantes

[ dx 3 ds v dx. d3 dy

at TP v TP e T a
B dp , dq . dr
5y o Tt tatia
L Y N
== (_[[ =ai-+0p CY

= ap + bg +cr.
On voit que
(6) 22+ B2yt =T -1,

c’est-a-dire que la différence entre le travail total et le
carré de 'axe OC = [ du moment résultant des quan-
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tités de mouvement, est constante
(6) 2T — 2= h.
Théorémes de Poinsot. — 1° On a

w?

2T = -{5—2-;
o désignant la vitesse instantanée ct p la distance au
point fixe du point K ou 'axe instantané perce I'cllip-

soide d’inertie, il suffit d’écrire que le point K

/
ro .4 Ty .
@unfw’9w>

est sur Pellipsoide d’inertie.
2* Le plan tangent en K & Dellipsoide d’inertie est
perpendiculaire a Paxe OC; équation de ce plan est, en
cellet,
Xfp+Yfo+Zfi+fi=o0,
ou
P q

z=pl,  y=p0s

3]
Il
o

or
fe=Azxz—TFy—Ls=(Ap—TFq- EI')(‘Zlj — &
donc I'équation du plan
aX—;—ﬁY—(-—‘(Z:%;

il est perpendiculaire & OC.
3» La distance de origine a ce plan tangent est

w
3 °F =
a4 B 2 a4

l.a relation
2T =0—h



peut donc s’écrire

ou

Remarque 1. — Si, 3 un moment donné,
p =, q =B, r=-,
les équations du mouvement se réduisent a -

0T =2+ B2 y2= 2= w?;
on a
8:971

Remarque 11. — Si a == b = c = o, les équations se

réduisent a
" (_li: 48 d3 _dy
dt a T va =
ou

OC == est constant, ct

d’ou
8= Vh _ const
= 5= = const.
On en déduira, par la méthode de Poinsot, les équa-

tions de la polhodie et de I'erpolhodie.

Interprétation géométrique des équations (4) du
mouvement. — Remarquons que ¢y —r3, ra—py
et p 3 — ga sont les composantes de la vitesse du point
C(=,8,7v) considéré comme faisant partic du corps solide;;

ca 63 oy dv dB dy

désionons-les par — , =2, —4; —, =£, ZL sont les com-
ignons-les par ST 303 g1 Al
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M 1 C y e,
posantes de la vitesse du point C(z, 3,v) considéré
comme Dextrémité de axe résultant du moment des
quantités de mouvement. Les équations (4) du mouve-
ment peuvent donc s’écrire

2

2 2
ar T Y
(4 "i{§—!—i§:[).
’ dt ot ’
R g

Lodt ot

Elles expriment que la résultante dela vitesse da point
C(a, 8,7v), considéré comme point matériel du corps so-
lide, et de la vitesse du point géométrique C(z, 3, %),
considéré comme extrémité de axe résultant dumoment
des quantités de mouvement, est égale en grandeur cten
direction a 'axe résultant OA des moments des forces
cxtérieures.

On peut considérer la courbe S licu des points C dans
le solide et la courbe M lieu des mémes points dans
I'espace, de sorte que les différents points C|, C}, ...
du corps solide viendront coincider successivement avee
les points €/, €7, ... de espace; en d’autres termes,
le cone de sommet O de base S roulera en glissant sur
le come de sommet O et de base M ct la vitesse de glisse-
ment est (ay b, ¢).

Si(l:‘:[)::(}:tg,oua

oo
Nl e
-

da
=

oy
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SUR LA TRANSFORMATION PAR RAYOXNS VECTEURS RECI-

PROQUES ET SUR UNE GENERATION MECANIQUE DES QUA-

DRIQUES;
Par M. S.-L. RAVIER,

Eléve de PEcole Polytechnique.

La transformation pour rayons vecteurs réciproques
dans le plan est un cas particulicr de la transformation
birationnelle du second ordre que voici :

Nous considérons un plan P, unc quadrique S, et
deux points A, A’ sur cette quadrique.

A chaque point M du plan P nous faisons corres-
pondre le point M’ qui se trouve 4 I'intersection avee ce
méme plan de la droite joignant A" an second point w
distinet de A, ou le rayon AM rencontre la surface.

De cette transformation, nous arrivons a celle par
rayons veeteurs réeiproques lorsque nous substituons a
la surface S une sphére, aux points A, A les extrémités
du diameure de cette sphére perpendiculaire au plan P.

Que la spheére soit conpée par le plan P ou non, nous
aurous toujours, d’ailleurs, la puissance de la transfor-
mation en prenant la puissance par rapport a la spheére
du point on AA’ rencontre le plan Py cette puissance
doit ¢tre prisc avee son signe. Si Uintersection de la
sphere et du plan P est réelle, c’est le cercle qui la con-
stitue qui cst le cercle directeur de la transformation.

On peut déduire de ce qui précéde les principales pro-
priétés des figures anallagmatiques.

Il est avantageux dans cetie étude de supposer le
centre de la sphére contenu dans le plan P, ct alors on
voit apparaitre d’une mani¢re lumineuse les propriéiés
de la courbe appelée seconde déférente par les auteurs
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(ui ont étudié les fignres anallagmauques. Elle se pré-
sente ici comme la projection sur le plan P d’une courbe
symétriquc par rapport a ce plan, et qui est le licu dgs
points tels que celui que nous avons appelé u.

Nous n’avons pas U'intention d’aller plus loin dans
cette voie, et nous allons déduire de principes récipro-
ques de ccux qui précédent la construction d'un sys-
teme articulé qui permet de faire déerire a Pun de ses
points, dans I'espace, une surface du second ordre.

Pour cela, prenons dans un plan P un cerele C de
centre O, menons par O une droite quelconque, et pre-
nons sur elle deux points A, A’

Nous joindrons A aun point M du plan P, A’ au point
M’ déduit du point M par inversion par rapport au
cercle C, et je dis que le point u, intersection de AM et
de A'M', déerira une surface du second ordre quand M
se déplacera d’'une maniére quelconque dans le plan P.

En effet, il 0’y a jamais, comme le lecteur peut s’en
convainere, qu'un point wsur une droite AM, et de plus
le point A est un point simple de la surface décrite par
w, car toutes les tangentes a la surface en ce point sont
contenues dans un méme plan qui est, cela est impor-
tant a remarquer, paralléle au plan P.

Dailleurs, la section dela surface par le plan P est le
cercle Gy il en vésulte que les points A, A’ sont des om-
bilies de cette surface.

Ce mode de génération ne peut done étre appliqué
aux surfaces réglées quin’ont pas d’ombilics réels, mais
il est facile de voir que nous pourrons 'appliquer a un
ellipsoide, un paraboloide clliptique ou un hyperbo-
loide & une nappe quelconques, car nous pourrons dé-
crire de cette fagon une surface qui :

1 Ait deux mémes ombilics avee les mémes plans
tangents en ces ombilies (A, A');
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2° Ait une méme section plane circulaire, paralléle a
ces plans tangents (cercle C).

Si 'on veut construire un systéme articulé basé sur
ces principes, et qui permette de décrire une surface du
second ordre, ce systéme se composera de deux parties :

1° Un syst¢me articulé permettant de tracer deux
{igures planes en inversion I'une par rapport a I'autre,
on se servira la, soit d’un appareil Peaucellier, soit d’un
appareil basé sur ce qui a été dit au commencement de
cette Note; remarquons en passant que ce dernier appa-
reil pourrait ¢tre substitué en toutes circonstances &
I'apparcil Peaucellier; il semble d’ailleurs moins simple;

2° D’un autre systéme articulé appliquant ce qui a
été dit en dernier lieu, et relié convenablement au pre-
mier.

REALISATION ET USAGE DES FORMES IMAGINAIRES
EN GEOMETRIE.

CONFERENCES DONNEES PAr M. Maxmnniey MARIE

au Collége Stanislas, a Sainte-Barbe, a I'Ecole Sainte-Genevicve
et a I’Ecole Monge ().

Nous allons chercher la nature et la valeur de Ja pé-
riode engendrée dans l'intervalle compris entre deux
pareils plans limites.

L’équation la plus générale d’unc surface ayant des
asymptotes paralléles a I'axe des = est

(ax 4+ by + c)sm—1
+(dx2ay + fyi+gax -+ hy + L) s 2+, = 0]

(") Voir 1. X, p. 329.
Ann. de Mathémat., 3¢ séric, L. X. (Aout 18yr.) 20
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si 'on voulait que Paxe des z fit lui-méme une asym-
ptote, il faudrait faire ¢ = o3 et, si Pon voulait encore
que I'axe des z fiit une asymptote d'inflexion d’une sec-
tion planc quelconque de la surface par un plan passant
par Vaxe des z, il faudrait faire £ = o.
L’équation de la surface deviendrait alors

(ax + by)zm—1
+(dx*+exy + fyi+gr+ hy)sn 4. .. =o.

Les traces, sur le plan des xy, des asymptotes paral-
leles a 'axe des z seraient alors les divers points de la
droite ax + by = o.

Si 'on voulait que le licu de ces traces fut Iaxe des x,
c’est-a-dire que les asymptotes paralléles a I'axe des z
{ussent Loutes contenues dans le plan des za, il faudrait
faire a = o.

Alors I’équation de la surface, en divisant par b, de-
viendrait

yamt 4 (ax+Bay + Yyt -+ 0x 2y )24, =0,

Si I'on coupait cette surface par un plan x = I, Ié-
uation de la projection, en vraic grandeur, de la section
l I 4 g ’

sur le plan des yz, paralléelement aux x, serait

yamtla[yy2 4+ (Bla-e)y +al2+ ol zm—24...=0;

la période cyclique, relative a 'axe des z de la quadra-
trice de cette courbe, est
taxy sinyz (212 +061),

~

qui s’annule pour /y=o, et [, = — °.
a

Pour obtenir le volume engendré par cette péx'iode
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eyclique, il fandrait caleuler Vintégrale

—_— /l
= /1. 2 sin YZ f 1L 1) Kdl,
Ji,
K désignant I'inverse durapportd’unclongucur, comptée
sur I'axe des , & sa projection sur une perpendiculaire
au plan des yz.

Cette intégrale a pour valeur

~
—el
~

b=y = 1. 2K sin YZ <
ou

—_ 3
+y/=1.aK sin YZ ;—<é> ;

on voil que c’est le produit par /—r1aKsinyzduvo-
lume d’une spheére.

Mais le volume cubé est en réalité celui d’un ellipsoide
dont 'un des diamétres, paralléle 4 axe des x, serait /,,
ct dont les deux autres, situés dans le plan

auraient, I’'un, unc valeur nulle, et 'autre, unc valeur
infinie, de telle sorte, cependant, que le rectangle de
ces deux diamétres (it —l/—; .
4
On peut, au reste, trés aisément, obtenir 1'équation
méme de cet cllipsoide, en étendant aux surfaces algé-
briques le théoréme qui nous a servi a fonder la théorie
des périodes cycliques des quadratrices des courbes algé-
briques, ¢’est-a-dire cette proposition que, dans le voi-
sinage de I'une de ses asymptotes, non inflexionnelle,
unce courbe de degré quelconque tend toujours a se
confondre avec une hyperbole du second degré.
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Pour les surfaces algébriques, le théoréme s’énoncera

ainsi :

La nappe d’une surface algébrique de degré quel-
conque qui se rapproche indéfiniment du plan lieu d une
série d’asymptotes paralléles et non inflexionnelles de
la surface, cette nappe tend a se confondre avec un
hyperboloide du second degré; et celle des conjuguées
de la surface, dont les cordes réelles sont paralléles
aux mémes asymptotes, comprend, outre d’autres
nappes, une nappe fermée séparée des autres et qui
tend & se confondre avec un ellipsoide indéfiniment
aplati et indéfiniment allongé le long du plan lieu des
asymptotes considérées, c’est-a-dire un ellipsoide dont
le diamétre, conjugué du plan considéré, tend wvers
zéro, et dont les deux autres diamétres, contenus dans
ce méme plan, sont l'un fini et I’ autre infini, ce dernier
ayant d’ailleurs la direction des asymptotes en ques-
tion.

En ecflet, reprenons I'équation de la surface sous la
forme déja employée

Yl (axt+ Bay + yy24ox + ey ) 324, .. =0,

¢’est-a-dire supposons qu’on ait fait le choix d’axes dé-
fini précédemment (la direction de 'axe des y est restée
quelconque, mais ¢’est indifférent, puisqu’on cherche ce
que devient la surface dans la direction de y = o). Si
Pon coupe cette surface par un plan x =/, I’équation
de la projection de la section sur le plan des 3z est

yamelo (o f2 4 5] Bly + Y12 sl)sm=24. = 0]

dans cette équation, le produit de y devenu nul par 2
devenu infini tend vers — (/> &/); par conséquent
les équations de la section considérée tendent a se re-
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duire a
a A
ys+alt4-¢dl=o avee xr=1;

)

I'équation de la surface, dans les environs de son plan
asymptote, y = o, tend donc i se réduire a

Y5+ axi+ o8z =o,

0 \2 2
ys+alxr+—|) = —,
29 4o

ou

oo

(qui représente un hyperboloide a une nappe.

Parmi les ellipsoides conjugués de cet hyperboloide,
il y en a un qui appartient a la surface proposée, comme
étant une de ses conjuguées : c’est celui dont les cordes
réelles ont une direction infiniment voisine de celle des
‘asymptotes de la surface, contenues dans le plan y = o.
Ce serait cet ellipsoide indéfiniment aplati dans le sens
des y et indéfiniment allongé dans le sens de axe des z
dont il faudrait calculer le volume, pour obtenir la pé-
riode sphérique de la cubatrice de la surface; mais
comme tous les ellipsoides conjugués de I'hyperboloide

o \2 02
Z4alx+— ) = —
Y < '),1) 4o

ont méme volume, on choisira celui qu'on voudra
d’entre cux.

2%. On voil, par ce qui vient d’étre dit, que la direc-
tion des plans sécants, paralléles entre cux, au moyen
desquels on découpe la surface a cuber, étant choisie,
et par conséquent les m asymptotes de la surface, paral-
leles a ces plans, étant définies, on trouvera, dans la
‘cubatrice, m périodes sphériques.

Mais, si ladirection des plans sécants venait a changer,
les asymplotes de la surface, qu’il faudrait faire interve-
nir, changeraient aussi, ¢t ce serait évidemment une
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question trés intéressante de savoir si les périodes sphé-
riques de la cubatrice changeraient aussi.

La question n’aurait pas lieu d’¢tre posée au sujet de
I’hyperboloide a une nappe (ni de I'hyperboloide 4 deux
nappes, mais pour une autre raison), puisqu’on sait que
la période unique de la cubatrice d’un hyperboloide a

une nappe est le produit par y/— t du volume enveloppé
par 'un quelconque des ellipsoides, allongés ou non, de
cet hyperboloide.

Mais le fait, évident dauns le cas des surfaces du second
degré, ne l'est plus du tout dans le cas des surfaces de
degrés supérieurs, et la preuve du fait, presque surabon-
dante dans le premier cas, ne se trouverait pas, pour
les autres, dans des considérations aussi simples.

Cependant le théoréme est général.

Mais je n’en donnerai pas la démonstration en ce
moiment.

25. Classification des intégrales doubles cubatrices
des surfaces algébrigues. — La nature de la cubatrice
d’une surface algébrique dépendra toujours essentielle-
ment de celle de la quadratrice d’une section plane quel-
conque de cette surface.

Si I'on veut que la cubatrice n’ait aucune période
ulirasphérique, il faudra que la quadratrice d’une quel-
conque de ses sections planes n’ait pas de périodes ultra-
cycliques et, pour cela, si Ion veut que les sections
planes de la surface dépendent encore du plus grand
nombre possible de paramétres, sous la condition d’étre
quarrables par les fonctions circulaires ou logarithmi-

ques, il faudra que ces sections présentent chacunc
(m—1)(m—-o

) . L . :
- points doubles, 7 désignant le degré

de la surface; ¢’est-a-dire quil faudra que la surface
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elle-méme contienne une courbe double du degré
(m—1)(m—=2)
2

26. Si l'on veut que la cubatrice de la surface soit
algébrique, il faudra en outre que toutes les sections
planes de cette surface soient quarrables algébriquement,
c’est-a-dire que les m asymptotes d’une section plane
quelconque coupent, chacune, cette section en trois
points situés a I'infini, ou en m — 3 points seulement, A
distance finie.

27. Nous allons chercher 'expression analytique des
conditions renfermées dans cette derniére condition.

Reprenons pour cela les équations établies au début
dun°23: )

Pour que la période cyclique relative a l'asymptote

. z z . .
paralléle a S Y —2dela quadratrice d’une section

B
plane mobile paralléle a cette direction, restat toujours
identiquement nulle, ¢’est-a-dire pour que la période
sphérique correspondante restat constamment nulle, il
faudrait qu’en éliminant x,, par exemple entre les
équations
Togy+ yogg+ ¥(4 B 1) =0

et
.2, . .2 . 4 . Uy 9 =
Tt ix‘u}”o‘?éﬁ"‘]&?f&e"‘ 20 Yy + 2)o¥g+ 27.(%,8,1) =0,

on tombat sur une équation identique en yo.
Ces conditions sont

"9 et ot AR
M 0 PP A S S B LA

9) el et oL Y T S
(=) ;‘xf'-?;,‘".‘(zr Bon)— ol eue (= .0 PaYu T GurYy =0
.
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et
(3) gl By — 285 bab(n, B, 1) + 293 7.(% B1) =o.

Si I'on veut que ces trois conditions soient satisfaites,
quels que soient a et {3, c’est-a-dire si 'on veut que
toutes les périodes sphériques de la cubatrice disparais-
sent, ces trois conditions devront étre considérées comme
des équations simultanées, aux différenticlles partielles,
dont les fonctions o, & et 4 seraient les inconnues.

Il s’agit d’intégrer ces trois équations.

Occupons-nous d’abord de la premiére, qui ne contient
que la fonction v. Elle exprime que le cone lieu des pa-
ralleles aux asymptotes de la surface, menées par I'ori-
gine, est formé de m plans.

En effet, I'équation de ce cone est o (x, y, z) = o, de
sorte que o (a,y,1)= o est '’équation de la section de
ce cone par le plan z=1. Or, pour exprimer que le
licu ¢(x, y, z) =0 se compose de droites, il faudrait
&y

¢xprimer que e ’

en un quelconque de ses points, est
nul et cest précisément ce qu’exprime D’équation (1),
car I'équation ¢ (x, »,1) = o donne d’abord

. dy ,

.= + ©,.= 0,
Y odx i ;

et ensuite

-G
e

Ay dy\? dy
' B n “r 5! YL PR
Y dx + Gy <(11.> 29y 7 T 8= 0

dy ¢
ou, en remplacant —7 par — =7,
4 )

2= 0,
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d’out on voit que la condition

jient a L o
revient & der O
Ainsi la fonction o(x, y, z) doit étre le produit de m

facteurs linéaires

(A 2+ By y + Gy 2),
(A 2+ By y+ G 2).

(Amw - Bm}’ -+ sz)~

En second lieu, I'équation (2) exprime que toutes les
asymptotes de la surface sont effectivement contenues
dans m plans.

En ellet, toutes les asymptotes infiniment peu incli-
nées les unes sur les autres doivent déja étre paral-
leles & un méme des plans représentés par I'équation
o(x,y, z) = o, car une asymptote variable de direction,
d’'une maniére coutinue, ne pourrait changer de plan
directeur qu’en prenant momentanément la direction
de I'intersection de son ancien plan directeur avec I'un
des (m — 1) autres. De sorte que, si la droite

‘1'0?,1";_.7"0 *?i3+ Y (2, p; 1)=o,

lieu des traces sur le plan des xy des asymptotes paral-

léles a la direction ; = % =

3
1

ne change pas lorsque 24

et 3 varieront infiniment peu ou varicront dans de cer-
taines limites, toutes les asymptotes correspondantes
seront dans un méme plan.

Or c’est précisément 'invariabilité de la droite

Togy+yosg+ (@ Bry=0

qu'exprime Péquation (2).
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En effet, si Pon fait varicr, dans I'équation de cette
droite, « de da et 3 de dB, elle devient
7o (0y+ Oheda + 9p3d3)
+ oo+ 9B dp + ougda) + Y(a, By1) + Yrda+ Yy =o,
et si 'on veut exprimer que les deux droites coincident,
il faudra exprimer que les accroissements des coeflicients

sont proportionnels aux anciennes valcurs de ces coefli-
cients, ce qui donnera

o " 0 " A [Py S
G+ gugdd og:d3 +oygda by da 4 Yydf )

Yy o8 EN- NV
d3 oY
en divisant par do et remplagant —= par — ==, ces équa-
s da oy
. ¥
tions deviennent
oy @y oy,
P YnB o TR ¢ Ya— YE oo
B 28 78
= )
@ ":’:’5 Y(a 8,1)
¢est-a-dire
R " N A S 1 e Vo
oz — PaBPaP8 T PRPu T PuBPuP3  YaP3 T YYa
1 12 - T /-) == n ( .
9a: 9B 9298 oy (2, §,1)

La premiére de ces conditions
UG A L 7
Y9 T YaBPuP3 T T 93: %0 T YuBPa?

n’est autre que la condition (1) déji traitée; quant i
lautre

’V/ /2 " '.V ’ 'I 1 'I ’.'
Pa:PF T PapPu®B  YaPp T YB%a
) = 7 ’

t?dcﬁ ?ﬁ‘*‘f(“y ﬁa ‘)

elle se réduit précisément a 'équation (2)

b
[ooo3— vugou ] ¥ (% B 1) — o [ 05— byoy] = o

Ainsi les équations (1) ct (2) expriment que toules
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les asymptotes de la section doivent ¢étre comprises dans
m plans.

Quant a I'équation (3), il est inutile d’en chercher la
traduction : puisqu’elle exprime que chacane des asym-
ptotes coupe la surface en un troisiéme point situé a
infini, elle doit exprimer que chacun des m plans
asymptotes coupe la surface suivant une courbe de
degré m —3.

En conséquence, les surfaces de degré m, cubables
algébriquement et contenant encore le plus grand nom-
bre possible de paramétres, sous cette condition, de-
vraient ¢tre recherchées parmi les surfaces ayant une
courbe double de degré (m—1)(m—>) 1)‘)( m—2)

présenter I'équation

» que pourrait re-

(Ayz + By + G5+ D) (Asz+Byy + Cos+Dy) ...

X (Apz+Bpy +Cphz+D,)+ @iz y,z)=0,
®,,_; désignant un polynome complet en x, y, z, de
degré (m— 3) au plus.

28. Application aux surfaces du troisiéme ordre. —
Les surfaces de troisiéme ordre capables de cubature
algébrique doivent étre recherchées dans le type

(12 4+ b1y +c15+dy) (aex + byy + ca5+ dy)

X (azyx + b3y + ¢35+ dy)+H=o.
Si on suppose la surface irréductible, la scule ligne
double qu’elle pourra contenir scra une droite. Suppo-
sons qu’on ait pris cette droile pour axe des z, I’équa-
tion de la surface devra se réduire i une identité si 'on
y fait x = o ¢t y = o, cc qui donne
€1 C2C3 =0,
cr1cads + cycydy+ czeqdy=o.
erdydy - cydsdy+ ezdydy = o,
dydsd;+~H =

|
>
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H une pouvant étre supposé nul, sans quoi la surface se
réduirait a trois plans, d,, ni d., nid, ne sauraient non
plus disparaitre; en conséquence, ¢y, ¢» et c3 devront
¢tre nuls. Clest-a-dire que la surface devra étre un cy-
lindre paralléle a sa ligne double.

Les conditions précédentes expriment simplement que
Iaxe des z est sur la surface : pour que cette ligne soit
double, il faut et il suffit que I'origine soit un point
double de la trace du cylindre sur le plan des xy. Or,
I'équation de cette trace, ou celle de la surface, est de-

venue

(@12 + by + di) (a2 + by + dy)
> (tl3.Z‘+ ba}’—*—d;;)— dﬁdzda: 0,

et, si 'origine est un point double, cette trace sera quar-
rable algébriquement, ¢’est-a-dire sera un tréfle ou un
folium, suivant que les trois asymptotes seront réelles
ou qu'il y en aura deux imaginaires.

Les deux seules surfaces du troisiéme ordre, cubables
algébriquement ¢t dépendant encore du plus grand
nombre possible de parameétres, sous cette condition,
sont donc le cylindre a base de tréfle et le cylindre a base
de folium.

29. Le Tome Il de ma Théorie des fonctions de va-
riables imaginaires contient la théorie, analogue aux
précédentes, des intégrales d’ordres supéricurs.

(A suivre.)
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LE CENTRE D'INERTIE ET LES MOMENTS D'INERTIE
DU CORPS EPICYCLOIDAL;
Pax M. SVECHNICOFF,

Professeur au Gymnase de Troitzk.

Le momentd’inertie de la surface ¢picycloidale homo-

3

géne antour de axe 0z est égal a

27

. n A=2T )
Joz =73 [ / (724 y2)dS.,

. Q:U =0

-G

si 'on désigne par = la densité de la surface;

. no
dS = fa2(n —+ cosz)sin? < do da,
2
2 2 — 2[(n2 - sin?no
a2 yr= a*[(n?+-sin2ny)

+ an(1—cosng)coss 4 (1— cosng)? cos?x .

On sait que

27 T
[ sinMr costr dr = [ sin”x cosx dr = o,
0 0
si 72 est un nombre impair.
Par conséquent, les termes qui contiennent cosa et
cos? o se détruisent ct
27
n

: \ . LY
Joz= jnsat* [ sin? — do¢
Jo 2
2w
> [ [(n‘l+sin’hﬂg)-%—(b‘—4cosnt_;~'--cos2ng)coszu]da,
/o

27

; oL, ne .
Joz = Ancaknf sind —L (an2+ 5 — fcos no — cos?ng) dy,
2
0

T
Joz= 8moat [ sin3 Y(2n2-+ 8 — 4 cosd — jcosty) dy,
0

Ann. de Mathémat., 3¢ série. . X. (Septembre 1891.) 27
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1

Joz=8mwsa* / sing 202+ 8—(2n2+ 12) co=2{ -+ § cost ] dy,
o
2 % 419, 8
]’u:: 8nsat [2(2/124- 8)— 2£—9n3"-——]0—} —+ ;]7
et A2 2
Jor= U0 (rpa o) = M (3300,

si Uon désigne par m la masse de la surface épicy-
cloidale.

Le moment d’inertic du corps épicycloidal homogine
autour de Paxe oz est égal a

_ e
?_.—

n A=1TC
lo;zzs[ f (224 y2)dU.
o

Jo=0 =0
En remplacant 22+ y2 par son expression ct dU par
a’(1—cosny)3(n + cosz)sinta do da,
nous pouvons détruire les termes qui conticnnent cosa
et cos®«; par suite

27

l(,zzznaaﬁf (r—cosne)3dy
0

k
< f [(n2+ sinZng)sin2a
o

+ (3 — fcosno -+ cos?ny)sina cos?x | d,

27
"
lu;:wwasrf (1—cosnop)
0

n2-sinno 3 — 4 cosno 62
w < nine 3 —4cosng + cos nw) do
2 8 '

s a’d
4

am
/ (1—cosb)3(4n2+7 — 4 cosy — 3 costd)dy.

<0

o . . )
En détruisant les termes (qui counticnnent €0SY,
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053 5
cos’ b, cos’y, ona

5 2T
Toa? N -
Tz = — / [47247 +6(2n2+ 5) cos2y — 5 costd] Y
4 U *

2 5
=r 0:” [(4n2+7)'z+(‘)(2n?+5)—14§],
4

m25ab

™

16

Ma2
(8on?2+161)= TZ(Son?—i—lGl),

loz=

si Pon désigne par M la masse du corps épicycloidal.

Chaque partic du corps épicycloidal a deux plans de
symétrie qui passent par I'origine des coordonnées. Le
plan xy est un de ces plans. L’autre plan de symétrie
est perpendiculaire a la droite qui passe par deux points
de rebroussement. Désignons par A le point de re-
brousscment, situé sur 'axe ox, et par B 'autre point
de rebroussement. Menons la droite o)’ perpendiculaire
AAB ct la droite o2’ parallele a AB, de sorte que
Pangle x 02’ soit obtus. Désignons par &', 3/, 2’ les coor-
données d'un point quelconque de la surface épicycloi-
dale par rapport aux axes ox’, 0y’, 0z. Alors

. ' ~ ns . "
x'=—xsin - + ycos-, JY'=xcos— 4 ysin—-.
n - n n n

Les équations de la surface épicycloidale par rapport
aux axes ox’, 0y', 0 sont

L ] . =\ . =\)
x:aa[n-}—(l—cosnv_g)cosa]sm == —sinngeos(g—— S,
/

, { ] =\ LAY
y:az[n-i—(l—COSR(?)CL)SG!JC()S g ) rsinagsn{o— - o

S=a(1—cosng)sina.

Posons
T
T o=
TV
Alors
Z'=—a|nsiny + (1+ cosnd)coszsind + sinn g cosb|,

y': a[n COS'{) +(‘+ Cosnt!J) COs A (‘US'!J — Sinnl!J Sin!!J],

3= a1+ cosnd)sinax.
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Quand ¢ augmente de zéro _|usqu'a; et==s 4 diminue
le = jusqu’a zéro et — =
» T 610 ot — =
de P |uq i n

Le centre d’inertie de la surface épicycloidale est
situé sur ’axe 0y'. Désignons par p sa distance an

point O. Alors

* ===

mp=ga 1}{‘
. ki

==
=%

En remplacant »' par son expression et dS par

n \ e e ’
— 4a? cos? —?i (n + cosa) dy da, cten faisant Uintégra-

tion relative a a, nous pouvons détruire les termes
(ui conticnnent cos 2.

Par conséquent,
" ny
mp — ja’s / cos? —?—’ dl

27
= f [n(ncosy —sindsinnd)+ (1cosnd) cosd cosa] da.
0

BIE ]

!
ny . . . '
mp — 8nads / cost -7 [(272~4-1) cosb—a n sind sin nY-+cos cosnd|ds
> y
Jy

ou

EIE]

mp = 8::a3c/ Sy dy,
*70

si 'on pose

0 (L eosdt 3 o n
S = <400s ” +4cos 2)

2n —1 2 1 Ll
< [(271?+ N(cosy — ———cos(n —1)d _._f_’ii__‘ cos(n + l)fJ
2 * 2
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o _Gnt—an+5 n—o,  bnl+on+5 n- 2,
/(Y)F_ S Ccos 5 v+ 3 ]
_qnt—6ba+5  3n—o dri4-6n+5  3n-+u
-t : cos b+ : cos !
16 2 16 2
2n —1 5n—» 2N+ 1 n—+2
— — cos ! — ¢O8 b,
16 2 16 2
E
1 G n2 - T2 I
(L) yn2—on + 95 ko 6nt+2n-+5 =
JWdy = —————— T cos— + ——— 2" " cos—
A An—2) n 4(n+2) n
4n2—6n+5 = An?-;—(;n-a—SN =
— s €05 — — ——————————— COS —
8(3n—2) n 8(3n+2) n
on —1 T 2n + 1 d
— 57— €08 = & ———————— COS—
8(5n—2) n 8(on+2) n
I T f12n3+92n 12n3+ 3n n
:—_7cos—< - — — - —— ,)
1 n\ n*—4 gn—j4 20024

600 n7 cos =
n

(nE— q)pgn2—4)(25n2—3)
It en résulie que

2250 acos =
n

P =g =1 — 4’

En posant n =1 ¢t n =12, 0n a

Sa ot , — 79T¢
) = — =
! 7 £ 128

Sin =1, les droites 0y’ et ox forment 'angle =.

Désignons par p’ la distance du centre d’inertie de
la surface épicycloidale & la droite AB.

Alors

, =
' = p - nacos —-
! n

Par l¢ milicu de la droite AB, menons la droitc o'z’
paralléle 4 0z. Le moment d'incrtic de la surface épi-
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cycloidale autour de T'axe o'z’ est dgal a

Jors = Joz — m(pt— p'?) = Joz— mna cos ;1 <-).p — na cos i’;),

, 450 n8 cos? =
' @il n2(1cost T) o 2 "
v =ma? | n? «‘-—) —— . —
Jo n 7 (n2—4)(9n*— q)(2>nt—73)

En posant n = o, on a
Jorz = ma'l(\n?-—- %;;—é)

Considérons la surface de révolution cngendrée par
la eycloide tournant autour de sa basc. Le moment
d’inertie de cette surface autour de I'axe équatorial est
égal a I'expression trouvée, parce que la surface consi-
dérée est la limite de la surface épicycloidale, quand n
augmente indéfiniment.

D’autre part, ce moment d’inertic est dgal a

~2

Z.ﬁsa'*j
0

27
\ .o
+2m'a'f (1—coso)3sin + do — mw? 2.
7 "
A 2

m
. .
(9 —sing)?(1— cosy) sin ; do

Le deuxiéme membre est la moitié du moment d’iner-
tic de la méme surface autour de 'axe de révolution.
Ce moment d’inertie est égal a

7T
. . . 20(8wsat  9gbma?
(),’.-sa'/ sind dy = . = —
' A v 35 35

Désignons par P et P’ les distances du centre d'iner-
tie du corps épicycloidal au point O et a la droite AB.
Alors

J1A

A=2T
MP = cf f ¥ dv,
o4

=0
-
LA

AN = —ad(1cosnY)3(n + cosa)sin?a dy da.
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Par suite, ’

-+,

MNP = sa‘j
™

n
+ (14 cosnd)cosy costa sin?a da].

~‘:\

(1+cosn4¢)3 d,}/f [r(ncosy — sindsinny)sin?a

. ., . .
Nous avons supprmle 135 termes qu1 contiennent

cosa ¢t cos3 o

st at

* MP =

si I'on pose

f S

[V = (14 cosny P[(4n2 4+ 1) cosy — fnsing sinnd + cosy cosn]

3 cosany

cos3 nd)

)

5 i5cosnd

-+ - -+ -+ ,
2 4 2 3

=< [(.in2+ 1) cosy —

2 : —_
.f'('*f‘)=80n8+35 Sq}_l_l’inl n+7
2

1502+ 7n+7
2

12024140 +7
4

n?+3n+1

cos(n —+1)b +
cos(2n +1)Y +

- cos(3n+1)Yy —

_dn+x
B St
16

cos(4n + ).

jn—1 4n
'T cos(n—1)b +*

12n2—14n+7
£
nt—3n <

in—

/

il cos(n —I—I)'-P],

cos(n—1)¢

cos(on — 1)y
! cos(3n—rn)Y

! cos(4n—rm)¢

x
8on?+35 . ®™ thn?—7n—+7 . =©
f(y)dub_ ——sin- 4+ ——~— " ‘sin=
n 2(n—1 n
_dnfgn—+47 0w Izni—l/.n—i—jsini:
a(n—+1) n i(2n—1) n
1202+ 14in+7 T n2—3n—+1 . w
sin — 4+ —————— sin—
f(2n+1) n 2(3n —1) n
n2+3n+1 Can®
At + -
’(3ll—r—l) §°
LW zon-—.—g-J_SnLI—7 16n2—7 8n2—1
= sin = -+ 5 —
2 nt—i 2(4n*—1) gni—i1_

B M .‘:
360 n8sin —
n

—' (n2—1)(jn2—1)(9gnt—1)
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Il en résulte que

. .=
36n8asin —
n

= 7:(/ﬂ—l)(4n'l-—1)(9n‘-’—|)'
En posant n =1 ¢t n=2,0na

3a 1024 «
P = —- el P =

4 1757

Le moment d’inertie du corps €picycloidal avtour de
I'axe o'z’ est égala 1,0 =1, — M(P2—P"2) ou

2T

36 19 sin —
n

= 161
= Ma2] n [—»—0052—) + o= — 3 TS
n 80 m(R2—1)({n2—1)(gnrz—1)

En posantn =oc, on a

R _7:_3_31|‘ .
lye =Ma ( . 7?‘0)

Considérons le corps de révolution engendré par la
cycloide tournant autour de sa base. Le mowment d’iner-
tie de ce corps autour de Paxe équatorial passant par le
centre d’inertie est égal a 'expression trouvée. D’autre
part, il est égal &

27

wIad / (¢ —sing )2 (1— cosw )3 do
0
om
=g a’ !

- f (1—cosw)® dg — M=2a?.
Y]

Le deuxi¢me membre est la moitié du momentd’iner-
tic du méme corps autour de I'axe de révolution. Ce
moment d'incrtic est égal a

T . 2 3 h 9
635720 63 Ma?

3omsad f sint0d ) =
K

L)

40
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NOTE SUR LES APPROXIMATIONS DANS LE CALCUL
LOGARITHMIQUE ;

Par M. Viipistas PUCHEWICZ.

Les auteurs des manuels d’Algebre, en parlant de
I'approximation d’un nombre donné par sonlogarithme,
font laremarque que, la différence tabulaire étant A, on

ne peut obtenir le nombre qu’approché a i : remarque
qui scrait tout a fait juste, si le logarithme a I'aide
duquelnous calculons le nombre, ainsi quele logarithme
tabulaire, étaient cxacts. Mais, comme le logarithme ta-
bulaire n’est approché qu’a g(*), les différences qu'a 1, et
le logarithme du nombre cherché, résultat en général des
opérations sur d’autres logarithmes, qu’a une approxi-
mation variable, cette remarque ne nous suffit pas a
définir approximation d’un nombre calculé & 'aide des
logarithmes. Méme M. Vieille, dans son ouvrage spécial :
Théorie générale des approximations numériques, cn
s'occupant minuticusement des erreurs provenant de
'hypothése de la proportionnalité des petits accroisse-
ments des nombres et de leurs logarithmes, ne résout
pourtant pas la question générale.

Dans cette Note, je démontre que 1'on peut toujours
obtenir le logarithme d’un nombre approchéa §, je cal-

(') Lorsque je parle d’un logarithme, jappelle unit¢ Vunité du
rang du dernicr chiffre des logarithmes tabulaires; lorsque je parle
d'un nombre, le méme mot désigne Vunité¢ du rang du dernier chiffre
des nombres tabulaires. Je crois que ce double emploi du méme mot
ne présentera aucune difficulté au lecteur.
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cule I'approximation d’un nombre trouvé al'aide de son
logarithme, étant donnée I'approximation de ce loga-
rithme, et J’applique ces régles dans un exemple nuné-
rique. Je ne mentionne pas des crreurs provenant de
la proportionnalité, car, comme on le sait, elles sont né-
gligeables en présence des erreurs provenant de Pinexac-
titude des logarithmes tabulaires.

Soient ¢, et ¢, les errcurs des deux logarithmes tabu-
laires consécutifs, y = ¢, — ¢, I'errcur de la différence
tabulaire, ¢t d la partic fractionnaire du nombre dont
nous désirons obtenir le logarithme. L'errcur, dans ce
logarithme, scra alors la somme des erreurs du loga-
rithme tabulaire et de aceroissement calculé al’aide de
la différencey cetie erreur sera done

(1) g+ dy.

Comme lalimite de ¢ est 3, et quelalimite dey est1, on
pourrait croire, au premier coup d'eeil, que lalimitede
(1)est 135 nous démontrerons que cette limite est égale

Nous remarquons qu’il peut sc présenter les trois cas
suivants : 1°¢, et ¢, sont de mémes signes, ct, quant a
la valeur numérique, ¢, est plus grand ques,; 2° ils sont
de mémes signes, mais la valeur numérique de ¢, est
plus grande que celle de ¢ ; 3° ils sont de signes con-
traires.

Dans le premier cas, y est moindre que § et du signe
contraire a s, et comme d est une fraction proprement
dite, Pexpression (1)est une différence de deux fractions,
chacunc moindre que §; par suite cette expression méme
est moindre que 3.

Dans le deuxiéme cas, ¥ est aussi moindre que 3, mais
est.du signe contraire A =5 or, si 'on remplace =, par
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sy — Y, On obtient

—y+dy=z:n—(1—d)y,
¢t cette expression, ou y est du méme signe que <., est
de nouveau une différence de deux fractions, chacune
moindre que 3.

Daus le troisiéme cas, y peut ¢étre plus grand que 3
mais, si nous mettons dans (1) ss— 2, & la place de vy,

nous obtcnons
St d(za—z) = (1—d)z+ 2,

cl, comme ¢; ¢t ¢, sont de signes contraires, nous avons
de nouveau la différence de deux fractions dont chacune
est moindre que 3.

Nous voyons donc que, si nous tichons d’obtenir le
résultat avec la plus grande approximation possible, il
ne faut pas rejeter dans Paceroissement du logarithme
les chiffres du rang inférieur A celui des unités des loga-
rithmes. Méme dans les calculs élémentaires, il serait
bon de retenir ces chiffres, surtout lorsqu’on doit multi-
plier le logarithme par un nombre entier.

Nous avons supposé jusqu’a présent que le nombre
dont nous voulions calculer le logarithme, ainsi que sa
partie fractionnaire d, étaicnt exacts: si le nombre n’était
qu’approché a a, il faudrait, avant tout, connaitre 'erreur
(ui cn résultera pour le logarithme. Cette erreur aura
pour limite «A’, ou A’ est la limite supérieure de la
diflérence tabulaire. On trouve cette limite supérieure
en comparant la différence a coté du nombre donné avee
les différences voisines.

A Paide de ces régles, nous pourrons toujours définir
la limite de Perreur dans un logarithme résultant des
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opérations sur d’autres logarithmes ct représentant |¢
logarithme du nombre cherché : cetie limite pourca
¢tre mise sous la forme m.%. Si nous caleulons le
nombre correspoudant i un tel logarithme, nous devons

o
. . ~ . 0 ‘
ajouter au nombre tabulaire la fraction 7 ou A est la
diflérence tabulaire, et ¢ la diflérence entre notre loga-
rithme et le logarithme tabulaire. L’approximation de
Aest 1, cest-a-dire 2.4, ct celle de 5 est (m 1)1,
~
0

17 d’aprés la

Cherchons Uerrcur absolue de la fraction

formule

4P & AL —oy
Ay AT Ay

Pour trouver la limite supéricure de cette fraction,
remarquons que ¢ ct A sont positifs, ct 1‘epl‘éseutons par
% ety les valeurs absolues de § et v. Le numérateur de
cette fraction ne peut pas ¢tre plus grand que A% + oy,
et, a fortiori, que A( 2 -+'); le dénominateur ne peut
pas étre plus petit que (A —y') A, de maniére que la

. N B+
> 1) » » » A ] . -
fraction ne peut pas ¢étre plus grande que e En sub

stituant pour 2’ ety leurs valeurs limites (m -+ 1) sett,
nous obtenons la valeur limite de Uerreur

m—+3

(2) ‘)‘(T-—I).

Comme, en général, la division ¢ : A ne s’eflectue pas

exactement, il faudra ajouter encore a cette limite unc
. r , o e s e N

fraction £ (7 étant le reste de la division 3 : A), fraction

A—1
Dans le cas ou l'on wouve le logarithme dans les

(ui pourra Ctre remplacée dans la limite par

tables, la limite de Verrear est

m =1

(") SRGANNL
2(A —1)
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, 0o - . .
parce qu alors il faut metire 6 = 0, & cause de quoi le
terme 5*{ disparait dans le numérateur.

La fraction (2') représente la limite de ce qu’on de-
vrait ajouter au nombre tabulaire, si le logarithme qui
nous sert a calculer le nombre, ainsi que le logarithme
tabulaire, pouvaient ¢tre donnés exactement.

Comme exemple, calculons la surface d’un triangle
par la formule

__a?sinBsinG
T asm(B+G)’
ou
a= 513,38,  B=36"47 23",  C={g° 2% {0

L.e calcul sera

log a? = 5,2327116 approché a 21
log sin B = 1,77733976 » 13
log sin C = 7,8805774 » 1
log » = 1,06989700 (1)
log sin (B + G) = 0,00094708 » 13

log S8 = 4,590353584 approché a 54

Nous trouverons dans les tables cing chiflres entiers :

38953 auxquels il faudra ajouter la fraction "9’; en

5+3
tenant compte de Verreur ~—— = %—l

En effectuant la division 49,4 : 112, nous obtenons
le premier chiffre du quotient 4 et leresie 4,6; le second
chiffre du quotient scra aussi 4, ct le reste correspon-

(') Nous nc marquons pas I'approximation de log 2, car, si méme
on prenait ce logarithme avee huit chiffres, il serait o0,30103000, sa
valeur plus exacte étant 0,30102999506. ...

Comme lc nombre 2 entre souvent dans les calculs, il vaut la peine
de se souvenir que son logarithme n’augmente pas 'erreur, excepté
le cas ou il serait multiplié¢ par un nombre considérable.
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dant 0, 12. Si nous prenons S = 38953, 4, cctte valeur
sera en tout cas trop petite, la partic omise de accrois-
416

sement 2= étant plus grande que 'errcur du sens indé-
112

1 . p . 8.6
fini ——; mais I'erreur par défaut scra moindre que 8,6,
111 It

ct aussi moindre que o, 1. Sinous prenons S=238953, 44,
- 4,12 .
la limite de P’ecrreur scra %T’ moindre que 0,04.

Supposons maintenant que les données de ce caleul ne
sont pas des nombres exacts, mais approchés eux-mémes
a 1 de leur dernicr chiffre. Conformément a la signifi-
cation convenue du mot unité dans le nombre, la limite
de cette erreur aura pour chaque nombre Pexpres-
sion 3.

Pour le nombre a, la différence tabulaire est 105;
mais, aprés 105, nous trouvons des diflérences 106 : done,
pour limite supéricure de cette différence, il faut pren-
dre 106, et ’erreur du logarithme de a2, provenant de
I'inexactitude du nombre, aura pour limite

2.45.106 = 21,2},

On pourrait calculer de méme les limites dans les lo-
garithmes des sinus, mais nous rencontrons dans cet
exemple un cas spécial : (B + C) étant moindre que go°,
les errcurs de B et de C donnent des errcurs de méme
sens dans les logarithmes des sin B et sin C que dans le
logarithme de sin (B+ C), et, comme ce dernier loga-
rithme doit ¢tre retranché de la somme des deux pre-
miers, U'errcur totale sera aussi la différence des crreurs
correspondantes (*). Nous obtenons pour limite de ces

(*) Désignons les erreurs de B et G par 2 ct 8 (qui sont de signes
indétermings), Uerrcur de (B—+ C) scra alors (a-+ R); désignons les
limites des différences tabulaires correspondantes par Ap, Ag et LY
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trois erreurs 5 (282 — 13) - L (181 —13) = {3,771,
de maniére que la limite de Perrcur totale, dans le loga-
rithme, sera

(5 +21,2+43,7)3, cest-a-dire 704,

et la limite de Uerreur dans le nombre 2 713“ = 5{%

L’accroissement du nombre étant comme auparavant
‘ilgl’j > si I'on prend pour S les cing chilfres enticers, on
a une valeur de S approchée par défaut & moins de
85,9

= c’cst a-dire a moins d'unc unité. Si'on prend S
avec le premier chiflre décimal, le sens de Uerreur reste
36,5 4,6

2212 Cest-
i 112

indéterminé, ctla limite de Uerrcur est

a-dire moindre quce o, 4.

CERCLE TANGENT A TROIS CERCLES DONNES;
Par M. V. HIOUYX,

Professeur au lycée de Nantes.

1. Lasolution qui suit comprend, comme cas particu-
lier, celle de Gergonne, qui se trouve ainsi complétement
justifide.

Donnons-nous trois cercles (A), (B), (C), de rayons
inégaux; placons les centres aux trois sommets d'un
triangle ABC et, pour fixer les idées, supposons chaque
cercle extéricur aux deux autres. Appelons C le centre

la limite de Verreur scra
o r ' N
a AIB -+ {3 A’C — (1_|_|'3) AiH—C = (All; —_ Ai}—kC) -+ l‘(AC - AlS+C))

ou alors pour Ay, il faudra prendre non la limite supéricure, mais

la limite inféricure.
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de similitude directe de (A) et de (B); de méme A’ |e
“centre de similitude divecte de (B) et de (C); enfin B ¢

centre de similitude directe de (C) et de (A). Les cen-
tres de similitude inverse correspondants pourront étre
désignés par G, A', B,.

Si un cercle (w) touche deux quelconques des cercles
donnés, (A) ct (B) par exemple, en a ct b, les points
de contact seront, dans le systéme (A), (B), (w), ou deux
centres de similitude de méme nature, ou deux centres
de similitude de¢ nature différente.

n considérant le premier cas, on a les théorémes
suivants :

Tuiovive 1. — Siles points de contact d’un cercle
(w) et de deux cercles (A) et (B) sont deux centres de
stimilitude de méme nature :

1% Les points de contact a et b sont antiliomologues
par rapport au centre de similitude directe C' de (A)
et de (B):

2° Le cercle (v) coupe orthogonalement un cercle

fixe (H) de centre 7,



( for )

3° Le cercle (1) « le méme axe radical que les

cercles (A) et (B).

Deémonstration. — 1° On observe d’abord que les
trois centres de similitude a, b et C' sont en ligne droite,
puisque les deux premiers sont de méme nature et que
C' est un centre de similitude directe.

Soit M le point de rencontre des tangentes a (w) en
a et b ces tangentes sont égales et par suite le point M
est sur I'axe radical de (A) ev (B); il suit de la que
les points a ct b sont antihomologues par rapport au
point ¢, 'une des origines d’inversion de (A) et de (B).

2 Soit % la puissance d’inversion pour le point €.
On a

CaxCb=h.

Donce le cercle (w) coupe orthogonalement un cercle
(H), de centre C' et de rayon \/i.

3° On observe d’abord que tout cercle passant par
les points @ et b de (A) et de (B), antihomologues par
rapport a ¢/, coupe orthogonalement le cercle d’inver-
sion (H) relatifa C'.

Considérons en particulicr le cercle (w,) de centre M
ct de rayon Ma = Mb; il coupe orthogonalement les
cercles donnés. Soit m un de ses points de rencontre
avec (H). On aCax<Cb=k= C'n : done C'm est
une tangente menée de ¢/ au cercle (w,). Dés lors Mm
est perpendiculaire sur C'm ct se trouve tangent a (H)
en m. On a Ma = Mb=Mm. Le point M est d’égale
puissance par rapport a (A), (B) et (H), dontles centres
sont sur la méme droite AB.

Les trois cercles ont donc le méme axe radical.

C. Q. F. D.

Tutorime 1. — 8¢ un cercle (w) coupe orthogo-
Ann. de Matheémat., 3¢ série, L. X. (Septembre 1891.) 28
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nalement le cercle d’inversion (H) et touche (A) en a,
il touche également (B) en un point b antiliomologue
de a par rapport au centre de similitude directe C!.

En cffet, si 'on formela figurc inverse du systéme (A),
(w)et(H) en prenant €' pour origine et X pour module,
le cercle () se conserve, le cercle (w) est a lui-méme
son inverse ct vient toucher U'inverse de (A) qui est (B)
en un point b, anti-homologue de a sur la droite (Va.

C. Q. F¥.D.

2. Cela posé, soit (w) un cercle touchant (A), (B)
et (G) respectivement en a, b ct ¢, les points de contact
étant des centres de similitude de méme nature pour le
groupe (A, B) d'une part, pour le groupe (A, C) d’autre
part, ct par suite pour le groupe (B, C).

Soit (H) le cercle d’inversion de centre C’ pour (A)
ct(B); soitde méme (K) le cercle d'inversion de centre
B pour (A) et (C). Le cercle cherché (w) doit couper
orthogonalement chacun des cercles d’inversion (H) et
(K). Bone, en vertu du théoréme 11, on est ramené au
probléme suivant :

Tracer un cercle coupant orthogonalement les cer-
cles d’inversion () et (K) et touchant Uun des cercles
donnés, le cercle (A) par exemple.

La solution du probléme dépend des deux lemmes
suivants :

Levwe 1. — Yous les cercles coupant orl/zogonale-
ment les cercles (H) ev (K) ont pour axe radical la
ligne des centres C'B de ces deux cercles, ¢’est-a-dire
laxe de similitude directe des cercles proposés.

Considérons en effet deux quelconques de ces cercles
(wi) et (wy) 1 ils sont coupés orthogonalement par (H)
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et par (K); donc leur axe radical passe par C/, centre de
(H), et par B, centre de (K); cet axe radical est done la

droite C'1¥. C. Q. F. b.

Lesoe Il — L’axe radical .du cercle (A), par
exemple, et d’un cercle variable (v,) coupant ortho-
gonalement (11) et (K) tourne autour d’un point fixe
(I) de l'axe de similitude directe des cercles donnés,
quand le centre de (w,) se déplace sur Iaxe radical

de (1) et de (K).

Au cercle (A), associons deux cercles (wy) et (wa) or-
thogonaux a (H) et (K); leur centre radical 1 est un
point de I'axe radical de (©;) et (w,), c’est-a-dire un
point de C'B'; si 'on fait varier le cercle (w,) toujours
orthogonal a4 (H) et a (K), le point I, intersection des
deux axes radicaux fixes, ne changera pas; donc 'axe
radical tournera autour du point . C. Q. F. 1.

Remarque. — Sans tracer les cercles (H) et (K), on
peut obtenir a volonté un cercle (wy) qui les coupe
orthogonalement.

Pour cela, il suflit de se donner un point p sur (A) et de
construire son antihomologue ¢ sur (B) par rapport a
(! ¢t son antihomologue p sur (C) par rapport a B'.

On sait que tout cercle passant par p et ¢ coupe or-
thogonalement le cercle (H) et que tout cercle passant
par p et 7 coupe orthogonalement le cercle (K). Donc
un cercle (w,) circonscrit au triangle pgr coupera ortho-
gonalement les deux cercles (H) ct (K). En menant du
centre O, de (w,) la perpendiculaire sur I'axe de simi-
litude directe des cercles donnés, on aura I’axe radical

de (H) et (K) (1).

(') En oulre, laxe radical de (o,)ct de (A)tournit le point I par
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3. On peut maintenant résoudre le probléme en ques-
tion d'une maniére tout A fait générale :

Reégle générale. — Pour tracer un cercle () tou-
chant de la méme maniére trois cercles donnés (A ), (B)
et (C):

1° Construisez 'axe de similitude directe des cercles
donnés et tracez un cercle (o, ) coupant orthogonalement
les cercles d’inversion (H) et (K);

2° Du centre O, de (v,) menez la perpendiculaire
0, I sur ’axe de similitude et construisez ’axe radical
de (w,) et du cercle (A), par exemple, lequel coupe en 1
I’axe de similitude en question;

3° Du point I menez la tangente Iz au cercle (A) et
prolongez le rayon Aa de ce cercle jusqu’a sa rencontre
en O aveec O,F. Le cercle (w) de centre O et de rayon
Oa répond ala question.

Il y a deux solutions; car du point Ion peut, en gé-
néral, mener une deuxi¢me tangente Ia' au cercle (A), ce
qui fournit un deuxi¢me cercle (') répondant égale-
ment & la question.

Ce procédé de solution n’exige pas que le centre
radical des cercles donnés soit 4 distance finie.

Mais, comme c’est le cas le plus intéressant, il est bon
de I'étudier d’une facon toute particuliére.

4. Soit P le centre radical des cercles donnés : ¢’est
le centre d'un cercle (R) coupant orthogonalement les
cercles donnés; il coupe aussi orthogonalement chacun
des cercles (H) et (K), par suite d'une propriété déja
démontrée. L'axe radical des cercles (H) et (K) est donc
la perpendiculaire PF menée du point P sur I'axe de

ol vient passer la tangente en a au cercle (A) et au cercle cher-
ché (w).
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similitude directe des cercles proposés. En outre, pour la
détermination du point I, le cercle radical (R) peut ici
tenir lieu du cercle (w,) déja considéré.
On cst ainsi conduit 4 la régle suivante :

Reégle particuliére. — Pour tracer un cercle tou-
chant de la méme maniére trois cercles (A), (B), (C)
dont les centres ne sont pas en ligne droite :

1° Construisez ’axe de similitude directe et le centre
radical P des trois cercles et menez de ce point la per-
pendiculaire PF sur I’axe en question ;

2° Déterminez le point de rencontre I de cet axe ctde
la polaire du point P par rapport au cercle (A), par
exemple, et du point I menez les tangentes la ctIa’ &
ce cercle ;

3° Tracezles rayons Aa et Aa’ ct prolongez-les jusqu’a
la droite PF en O et en O'. Vous avez ainsi les centres
de deux cercles (w) et (o) qui répondent a la question
et qui touchent (A) en @ cten a'.

Remarque. — La corde de contact aa’, polaire du
point I par rapport au cercle (A), passe en P, puisque I
est sur la polaire de P. Soit a le pole par rapporta (A)
de I'axe de similitude directe; ce pole est sur aa’. Cette
droite est donc déterminée par ce podle a et le point P.

On verrait de méme que, si b8’ e¢stla corde de contact
de (B) avee (w) et (w'), elle passe par P et par 2, pole par
rapport a (B) de V'axe de similitude. Méme obscrvation
pour la corde de contact cc’ de (C) avec (w) et (o).

Corollaire. — La solution de Gergonne est une con-
séquence de la précédente et se trouve dés lors comple-
tement justifiée.

Observation finale. — Les cercles d’inversion (1) et
(K) n’interviennent que par Jeur axe radical PI. Or que
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fes modules correspondant a4 deux cercles d’inversion
soient positifs ou négatifs, leur axe radical sera toujours
la perpendiculaire menée de P sur I'axe de similitude qui
conticnt leurs centres.

On est ainsi conduit & appliquer la construction pré-
cédente a 'un quelconque des quatre axes de similitude,
en observant que les cercles (w) et (0') ne toucheront plus
dela méme maniére les trois cercles donnés. La polaire
déja utilisée du point P par rapport au cercle (A) servira
pour chacun des axes de similitude. On a ainsi, en géné-
ral, quatre groupes de deux, c’est-a-dire huit cercles
tangents a trois cercles donnés.

La méme méthode s’applique quand 'un des cercles
est remplacéd par une droite ou par un point et, en géné-
ral, quand on conserve au moins un cercle sur trois.
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CONSTRUCTION GEOMETRIQUE DU GENTRE DE COURBURE EN
UN POINT D'UNE COURBE RAPPORTEE A DES COORDONNEES
POLAIRES ;

Pir M. HUSQUIN DE RHEVILLE,

Ingénieur civil.

[. SoitO (fig.1) le pole du systéme de coordonnées.
On sait que le segment ON, limité sur le rayon vee-

« T o
teur d'angle polaire w + = par la normale AN cen un
.
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point A de coordonnées g et v, a pour valeur

dp
ON=—=.

0}

Nous nous proposouns d’indiquer unc interprétation

d2o d?w
et ——-

; ’ ‘0 . ’ ‘I
géométrique des quantités -2 e

‘ , . , .. d* s W ey
II. Représentation géométrique de i Soit C le
centre de courbure de la courbe au point A: menons NI
Fig. 1.

N c N A

F

perpendiculaire a la normale AN jusqu’a sa rencontre
en F avec le rayon. Joignons CF et menons-lui la pa-
rallele N'G par le point N’ symétrique de N par rap-
port a C. Cette derniére droite rencontre le rayon OA
en un point G, tel que

d2p
06 =—2w’
le signe — indiquant que le point G tombe sur OA

5

. 9 , o
ou sur son prolongement suivant que T est négatif ou
o
positif.
En ellet,

2

. . . Al . ON
0G =FG - FO = AN - — AF —
G =FG--FO = AN G Al ox
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En remplacant dans celte expression les (uantités par
les valeurs suivantes

1
dp\ 2] 1 do\?
q 52 fhad R — = |52 i
AN = [‘ +<dm> ] ) AF = p['} +<.___> ],

on obtient I'égalité cherchée
d?o
0G =— ..
dvy?
II. Centre de courbure d’une conchoide. — Ré-
ciproquement, si ’on connait la valeur de &p on peut
‘1proq ) do?’ p

construire linéairement le centre de courbure C.
Il suffit de porter sur le rayon vecteur OA une lon-

d?o .. . o
gueur OG = Tt de joindre le point I au milicu m
02 |

Fig. 2
_AA
P
f’—’ s
. -- .
- .
-- ;
- .
- ’
’ - - 4
e g
_i- -
-7 .
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N = . A
\ ,’
\ P
\ m
\
\ 4
\ i
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\ G
\ h
o /
/
/
\
V) 0
¥’
F

de NG. Cette droite Fm passe au centre de courbure C

cherché ( fig. 2).
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Si un point A’ décrit une conchoide de la courbe
donnée, ¢’est-a-dire si AA’ est constant quel que soit ]

do &
dw’ dw?

en A’ et le point m est fixe quelle que soit la lon-

point A, les quantités sont identiques en A ¢t

gucur AA’.

Pour construire le centre de courbure €' de la con-
choide au point A/, on méne NI perpendiculaire a la
normale NA’ jusqu’a sarencontre en F aveclerayon OA.
La droite I m, joignant le point I" au milieu m de NG,
passe au centre de courbure €' cherché.

IN. Représentation géometrique de T Joi-

gnons le centre € de courbure au pole O et soit D le
point de renconire de cette droite CO avec la perpen-
diculaire ND 4 la normale AN ( fig. 3).

d?w

Fig. 3.
) c |
VR 714 .
\o
B
Vs

l.adroite AD rencontre ON en un point B tel que

1
o’
(_[p"i

OA < OB =

<n effet, le wiangle ABN coupé par la transversale
COD, nous donne

AC _ DB

OB = ON — -,
B )]\XNCXAD
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On voit facilement (ue

AD ﬁi

DB _ ON -+ OB.ON

La premiére égalité devient alors, en y remplacant
DB

1 bar sa valeur et en la résolvant par rapport a OB,
—3
ON .AC

OB = —_ S
AN — AG(AN - ON)

‘n substituant aux quantités géométriques leurs va-
d» d?p . ..
lecurs en fonction de f 75 el o 2, on obtient, aprés sim-

plification,

En se rappelant que

2o d¥p 3
p=0A gE = duﬂ(do)

ceel peut s'éerire, sous la forme cherchée,

.I_

OA < OB =

&

w
dp?

.. . d?w
V. Réciproquement, si I'on connait la valeur de 7

au point A, on peut construire lindairement le centre C

de courbure.
1l suffit de porter sur le rayon vecteur d’angle polaire

0! —l—; une longueur OB telle que
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de joindrc AB qui rencontre en D la perpendiculaire NJ)
a la normale AN menée par Uextrémité N de la sous-
normale polaire ( fig. 4).

Fig. 4.

2.

La droite DO passe au centre de courbure C cher-
ché.

Remarquons que si, parle point N, on méne une pa-
ralléle a la droite F'B, elle rencontre le rayon vecteur
au point G précédemment défini par la relation
d?

I

(&)

0G =—

U

En effet,
- —2 —3
- ON _ ON ON ON
06 =0F G55 = 05X OB = 0A.0B
¢, comme

0AOB= ", on=%

4 b
2w dw

on voit que
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REALISATION ET USAGE DES FORMES IMAGINAIRES
EN GEOMETRIE.

CONFERENCES DONNEES PAR M. MaxmmiLiex MARIE

au Collége Stanislas, & Sainte-Barbe, a I’Ecole Sainte-Geneviéve
et a I'cole Monge (*).

Sommaire de la théorie du développement en
serie, par la formule de Taylor, d’une fonction
implicite y, définie par une équation algébrigue

Sz, y)=o.

1. Pour qu’une série 4 termes imaginaires soit conver-
gente, il faut que la série des parties réelles de tous ses
termes et la série de leurs parties imaginaires soient
séparément convergentes, ¢’cst-a-dire que, si le terme
général est représenté par A, Byy/—1, il faut, pour
que la série soit convergente, que A, et B, et par consé-

quent \/A2 + B2, tendent vers zéro.
u ud

2. Une série ordonnée suivant les puissances crois—
santes d’une variable, et dont tous les coeflicients sont
finis, est toujours convergente lorsque la variable nc
prend que des valeurs dont le module soit suffisamment
petit.

3. Une série ordonnée suivant les puissances crois-
santes d’une variable reste convergente lorsque le mo-
dule de la variable reste, si peu que ce soit, inféricur a
une certaine limite, et devient divergente lorsque le

(") Yoir t. X, p. 373.
Ann. de Mathémat., 3¢ séric, t. X. ( Septembre 18971.) 29
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module de la variable dépasse, de si peu que ce soit,
cette méme limite. Lorsque le module de la varialle
atteint la limite en question, la série est convergente oy
divergente, selon la valeur de la variable elle-méme;
mais la série, dans ce cas douteux, ne pourrait pas étre
utilisée comme étant trop peu convergente, si elle 14-
tait; en sorte qu’il importe peu de savoir ce qu'il en est.

4. Une série ordonnée suivant les puissances crois-
santes d’une variable est convergente ou divergente,
sauf les cas douteux, en méme temps que toutes ses déri-
vées ou intégrales.

5. Six, et y, sont deux valeurs, qui se correspondent,
de la variable x et de la fonction y, définie par unc
équation algébrique f(x,y) = o, la série

dy\ z—z, (dﬁ}f (z—>0)?
Ly 0 )y T
y°+<dx>o . dx?/y 1.2
qui reste convergente tant que le module de (x — x,)
reste suffisamment petit, mais & condition qu’aucun des

2 o .
coefficients différentiels & , Ly ,++- ne soOit In-
du 0 du2 0

fini, définit I'ordonnée d’un lieu tel que, si aux deux
équations f(x,y) =o d'une part et y = la série, de
I'autre, on adjoignait une méme relation complémentaire
quelconque ©(a, 8, o/, 8',)= o, les deux courbes déter-
minées, sur les deux lieux superficiels, par cette condi-
lion, auraient au point [x4, 0] un contact d’ordre
infini, c’est-a-dire se confondraient dans unc étenduc

ceay

\

plus ou moins grande 4 partir du point [xo,yo]»

6. Les ordonnées des deux lieux superﬁciels

flzyy)=0 et  y=]Iasérie

se confondront donc aussi dans un intervalle plus ou
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moins ¢tendu, ¢’est-a-dire que la séric fournira, dans un
intervalle plus ou moins étendu, la valeur de la fonc-
tion y définic par I'équation f(x,y)=o.

7. Mais 'identité des deux fonctions ne sera jamais
compléte, d’abord parce que la série ne restera pas
toujours convergente etque, devenuedivergente, elle ne
définirait plus aucune fonction; en second licu parce que
la fonction y, définic par Péquation f(x, y)=o, aurait
toujours 7 valeurs, pour toute valeur de &, si I'équation
f(x,y) =0 était de degré m par rapport a y, tandis
que la fonction définie par la série, supposée convergente,
n’en aura jamais qu'uune.

8. La série ne définira donc jamais qu’un segment de
lafonctiony, définie par I'équation f(x,y)=o0,etl'iden-
tité des deux fonctions ne s’étendrait en tous cas que
jusqu’aux valeurs de x telles que le module de (x— x,)
restat assez petit pour que la série elle-méme restat
convergente.

9. Les solutions de I'équation y = la série formeront
plaque sur le tableau, comme celles de I'équation
f(x,y)= o, mais la premiére plaquec ne sera jamais
qu'une portion de la scconde. Cetle premiére plaque
s'appellera la région de convergenceet le lieu des points
situés sur son contour s'appellera le périméire de la
région de convergence.

10. La valeur que ne devrait pas dépasser le module
de (x — xy), pour que la sérierestat convergente, dé-
pend, par rapport au lieu f(x,y)=o, du systéme des
deux valeurs initiales x, ct 3, de x et dey. Sikestla
valeur qui convient, en raison de la position du point
origine [y, 7], le périmétre de la région de conver-
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gence sera défini, quant aux abscisses de ses points,
par la condition

(a—a)+ (B — o) =

et quant 4 ses ordonnées, par les deux équations conte-

S+ py=r ad+fV=)=o,

auxquelles on joindrait les équations

nues dans

rl=a+8 e y=u+.

11. L’équation du périmétre de la région de conver-
gence sera toujours algébrique, sil’on suppose a]gél)rique
I'équation f(x = 0; mais la courbe représentée par

q . ). 5 P I
cette équation fournirait ])caucoup de branches para-
sites. Il faudrait en effet éliminer toutes celles de ces
branches, en nombre m —1, dont les ordonnées ne satis-
feraient pas a I’équation v = la série.

12. Lorsqu’une fonction atteint une valeur infinic
pour une valeur finie de sa variable, toutes ses dérivées
deviennent aussi infinies; lorsqu’une des dérivées d’une
fonction devient infinie, toutes les suivantes le devien-
nent aussi.

13. Un point d’un licu ou, soit 'ordonnée et ses déri-
vées, soit une des dérivées de 1'ordonnée et toutes les sui-
vantes, deviennent infinies, ne peut jamais se trouver
dans I'intéricur de la région de convergence, puisques
dans Thypothése contraire, ou bienla série pourrall
prendre une valeur infinie et rester convergente, ou
bien ce serait une des dérivées de la série qui pourralt
prendre une valeur infinie et rester convergente.

Mais il se trouvera toujours au moins un de ¢
points sur le périmétre de la région de convergence:
parce que celles des dérivées de la fonction qui devien”
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draient infinies au dela de la région de convergence
acquerront déja, en dega, des valeurs trés grandes four-
nies encore par les dérivées correspondantes de la série
primitive; et que la divergence ne pourra se produire,
pour ces séries dérivées, qu’a I'instant ou elles devraient
acquérir des valeurs infinies.

Les séries dérivées, d’ordres moins élevés, tomberont
alors dans le cas douteux et seront sur le point de deve-
nir divergentes, comme on I’a dit plus haut, en ce sens
sculement que ¢ terme général n’y tendra plus vers
zéro, ce qui ne veut pas dire que la somme d’un assez
grand nombre des premiers termes croitrait indéfini-
ment.

14. Les points particuliers dont il vient d’étre ques-
tion prennent le nom de points critiques du lieu en ques-
tion. Les uns, comme les points de contact des tangentes
paralléles & 'axe des y, varient dans le lien avec la
direction de l'axe des 33 les autres, au contraire,
comme la plupart des points de rebroussement, restent
fixes dans le lieu.

15. La premiére chose a faire pour préparer la dis-
cussion de la série suivant laquelle se développe l'or-
donnée d’un lieu est de déterminer exactement tous les
points critiques de ce lieu.

A cet égard, on remarquera d’abord que les dérivées
d'une fonction ne peuvent devenir infinies, & partir
d'un certain ordre, qu’aux points ou cette fonction a
acquis plusicurs valeurs égales. i

On commencera donc par relever tous les points du
lieu on plusieurs valeurs de I'ordonnée se confondraient.

Soient x et y les coordonnées de I'un d’eux et p son
degré de multiplicité. Si les dérivées premieres de ces p
valeurs de » sont toutes finies et dillérentes, leurs déri-



( 422)
vées d’ordres plus élevés resteront toutes finies etle point
en (uestion ne sera pas critique.

Si p—g¢ de ces dérivées se séparent des autres, sans
devenir infinies, et ont des valeurs distinctes, le point
considéré ne sera pas critique relativement aux formes
correspondantes de la fonction y.

Si, sur les ¢ dérivées restantes, g —r se séparent des
autres en devenant infinics, le point en question sera
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