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APPROXIMATION BY POLYNOMIALS

IN THE COMPLEX DOMAIN

By J. L. WALSH

Associate Professor of Mathematics in Harvard University.

—  ——

INTRODUCTION.

In the past quarter-century the theory of approximation in the com~
plex domain has developed from a few scattered results (due notably
to Runge, Hilbert, and Faber) into an extensive, coherent structure.
Several outslanding factors have contributed to this evolution :
1° Montel’s book (1910) made the previous results available, added
important new results, and has had a profound effect on later work;
2° the study of approximation in the real domain — notably by
S. Bernstein but also by Borel, Jackson, de la Vallée Poussin,
Lebesgue, Montel, and others — has supplied methods and a strue-
tural model of significance in the complex domain; 3° the great extent
of the theory of expansions in real orthogonal functions (Schmidt,
Riesz-Fischer, etc.) has been the inspiration for a corresponding
development in the complex domain; 4° progress in other parts of the
theory of functions of a complex variable, notably in conformal map-
ping and in Montel’s theory of normal families, has made possible a
corresponding advance in the study of approximation.

Tt is the object of the present essay to set forth at least in broad
outlines the present status of the theory of approximation, particu-
larly in the sense of uniform approzimation to a given function
in a given limited region. Due to lack of space, we are not able
even to slate all interesting results in detail. The choice of material
for detailed proof, summarizing, or bare reference is not necessa-
rily intended to indicate relative importance; indeed, such choice is
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2 J. L. WALSH.

to some extent arbitrary or accidental, depending on simplicity of
exposition. Broadly speaking, we have tried to indicate ¢ypical
methods in the discussion of each kind of problem, and also have
been at especial pains to point out numerous problems which await
solution. Many results "here set forth have not been previously
published.

Various topics have been deliberately left out of consideration.
Approximation of real functions, even though the behavior of such
functions for complex values has some significance, is set forth in books
by Borel, de la Vallée Poussin [2], S. Bernstein [2], and Jackson [5],
so that we have not considered it advisable to include that subject.
We emphasize the fact that our primary topic is approximation of
functions, not series of polynomials or expansion of functions. Thus
representation of funclions in series of polynomials which do not
involve uniform approximation has been omitted; this omission is not
serious, for everything known in the field is taken into account in
important recent papers by Hartogs and Rosenthal [1] and Lavren-
tieff [1]. Likewise the detailed discussion of the modern special
theory of Taylor’s series : summability, behavior on the circle of
convergence, gap theorems, overconvergence, zeros of approximating
polynomials, limits on coefficients, exceptional values, etc., has been
omitted. Finally, of the two major problems of the theory of inter-
polation : a. the existence of functions with certain properties taking
on prescribed values in given points; b. the approximate represen-
tation of a given function f(z) by means of other functions required
to coincide with f(z) in certain points — it is only the second of
these problems with which we shall be concerned. In particular, we
do not treal factorial series and their generalizations involving inter-
polation in an unlimited (unbounded) set of points: the interested
reader may refer to Nérlund [1, 2, 3].

Emphasis on degree of approximation, especially on the greatest
geometric degree of convergence, exerts a unifying influence on all
the subject matter that we present. The entire theory of approxima-
tion in the complex domain is still growing rapidly, and this essay
will achieve its purpose if it portrays that growth to the reader (*).

(') For help with the manuscript of this essay, the writer wishes to express his
thanks to Miss H. G. Russell, and to the Milton Fund of Harvard University.
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CHAPTER 1.

POSSIBILITY OF APPROXIMATION.

1. Point sets : preliminary definitions. — We shall be concerned
in the present essay enlirely with the plane of the complex variable.
A point set C is an arbitrary aggregate of points. Its complement
consists of all points of the plane not belonging to C. A neighborhood
of a point P is the interior of a circle whose center is P, A limit
point of C is a point P (whether belonging to C or not) in whose.
every neighborhood lie points of G other than P. A boundary point
of C is a point P in whose every neighborhood lie points of G and
points of its complement. A point P is exterior to C if there exists
some neighborhood of P containing no point of C. A point P is
interior to G if there exists some neighborhood of P containing only
points of C. A set C which contains its limit points is closed. A set C
whose elements are all interior points of C is open. A set is limited
if it lies within some circle.

A Jordan arc is a one-to-one continuous transform of a line seg-
ment, that is, a point set which can be represented

(1) z=£fi(8), y=,f(¢) (oStLy),

where f,(¢) and f»(¢) are continuous functions of ¢ and where the
system (1) has at most one solution ¢ for given = and y.

A point set G is connected if any two points of C can be joined by
a Jordan arc consisting only of points of C. A region is an open con-
nected set. A closed region need not be a region, but is a region
closed by the adjunction of its boundary points.

A Jordan curve is a one-to-one continuous transform of a circum-
ference, that is, a point set which can be represented

(2) xr=fi(0), y=/2(0),

where f}(6) and f+(0) are continuous functions of § with period 27 and
where any two solutions § of the system (2) for given # and y differ
by an integral multiple of am. We shall use the term contour in the
sense of rectifiable Jordan curve.

A Jordan curve C is known (theorem of Jordan) to separate the
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plane into precisely two regions, one limited (finite) and the other
not limited (infinite), respectively the interior and exterior of C. A
Jordan regionis alimited (finite) region bounded by a Jordan curve.
A Jordan arc cannot separate the plane into two or more distinct
regions.

A function is analytic at a point if it can be expanded in Taylor’s
series valid throughout a neighborhood of that point. A function is
analytic on a point set if it is analytic at each point of the set.

An expression of the form a@,z"+ a,5" ' 4...+ a, is called a
polynomial in z and in particular a polynomial of degree n.

The term integrable refers to integration in the sense of Lebesgue.

2. Runge : approximation to analytic functions. — In the study of
the possibility of approximation 1o a given function the fundamental
theorems were given by Runge in his classical paper [1] of 1885.
These theorems are of the greatest importance in the present essay;
we omit the proofs, however, because they are to be found in many
standard works [such as Picard, 1; Montel, 1]. Moreover, the
method of Hilbert, which we shall consider later in some detail, also
includes a proof of Runge’s theorems. We give the name Runge’s

Jfirst theorem to the following, although Runge’s own statement was
somewhat different in content :

If the function f(z) is analytic in a closed Jordan region C,
then in that closed Jordan region f(z) can be uniformly approxi-
mated as closely as desired by a polynomial in s.

Runge’s theorem is more readily proved for the case of a convex
region than for the general case [Painlevé, 1]. ‘

The two concepts, possibility of uniform approximation by a poly-
nomial with an arbitrary small error, and uniform expansion in a
series or sequence of polynomials, are of course .equivalent (without
reference to the present situation), in the sense that each implies the
other directly.

Runge’s theorem specifies that the region under consideration shall
be a Jordan region; it is essential that the region not be an arbitrary
simply-connected region, as we shall now illustrate by an example
[Walsh, 2]. Let Cbe a strip, closed at one end, which winds around the
outside of the unit circle y : i 2| =1 infinitely often and approaches y
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The circle y belongs to the closed region C. Choose f(z) = %; there

exists no sequence of polynomials approaching f(z) uniformly in the
closed region. For if we assume Lhe existence of such a sequence
pn(2), it converges uniformly on y and we may integrate term by

term over y,
. dz .
lim fp,,(z)dz =f——, 0=2%i,
= Jy v #

which is absurd.
Runge’s theorem was extended by him to include simultaneous
approximation in several distinct regions :

Let functions f,(z), fa(3), ..., fu(5) be analytic in mutually
exclusive closed Jordan regions Cy, Ca, ..., Cy. Then in these
closed regions the functions fi(z) can be simultaneously uni-
formly approzimated with an arbitrarily small error by a poly-
nomial in z.

We state for reference the two classical theorems of Weierstrass on
approximation, generalizations of which are to be mentioned later.

I. If the function f(z) is continuous on the interval a<z<b,
then on this interval the function f(z) can be approximated as
closely as desired by a polynomial in 3.

1. If the function f(6) is continuous for all realvaluesof 8 and
periodic with period 2m, then for all values of 6 the function f(0)
can be approxzimated as closely as desired by a trigonometric

N

polynomial of the form Z(an cosnf + bpsinnd).
n=20

By virtue of the equations which hold on the unit circle

N gh— gz—n Zn 4 z—n

sinn® = (-—.—), cosn = (--————-)
21 2

' zh=cosnbd + {sinnd, z—n=cosn —isinnd,

this second theorem can be expressed :

If the function f(z) is continuous on the unit circle G:|z| =1,
then on C the function f(z) can be approximated as closely as
desired by a polynomial in 5 and ;-
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3. Approximation to analytic functions; more general point sets.
— The theorems already mentioned are of much importance in ans-
wering such questions as the following, which we now consider :

When can a function defined and continuous on a given point
set be uniformly approxzimated by a polynomial on that point
set? Of what point sets G is it true that every function analytic
on G can be uniformly approximated by a polynomial on that
point set? Of what point sets C is it true that every fuction con-
rinvous on G can be so approximated? Of what closed necions G
is it true that an arbitrary function analytic in the corresponding
closed region can be uniformly approximated in the closed
region? Of what closed regions C is this true for an arbitrary
Junction analytic interior to G, continuous in the corresponding
closed region ?

Approximation on unlimited point sets is easily disposed of :

A necessary and sufficient condition that a function f(z) can
be uniformly approximated on an unlimited point set C as closely

as desired by a polynomial in z is that f(z) itself should be on
C a polynomial in z.

The proof is not difficult and is left to the reader.

Uniform approximation by a polynomial of a function f(z) on a
limited point set G which is not closed is equivalent to uniform
approximation to an extension of the function f(z) on the set G com-
posed of C and the limit points of C. If e > o0 is preassigned, a
sequence of polynomials p,(3) converging to f(5) uniformly on G
satisfies the inequality |pn(z) — pm(3)|<e, 5 on G, for >N,
m > N, where N depends only on e. This inequality, valid on C, is
also valid on (/, so the sequence converges uniformly on C'. The
function f(z) is naturally continuous on G, and if that function is
defined on C' by means of the sequen'ce of polynomials (or, what is
equivalent, by the requirement of continuity on C') then f(5) can be
uniformly approximated by a polynomial on C'. Thus, in our future
consideration of approximation, it is sufficient to study approxima-
tion of continuous functions on closed limited point sets.

The study of approximation’ of functions merely continuous on a
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given closed set is much more delicate than the study of functions
assumed analytic on the given set, so we turn first to the latter problem.

Let C be an arbitrary closed limited point set and let the func-
tion f(z) be analytic in every point of C. Then a necessary and
sufficient condition that f(z) can be uniformly approximated
on C as closely as desired by a polynomial in z is that C should
separate no singularity of f(z) (considered as one or more mono-
genic analytic functions) from the point at infinity.

Let G/ denote the complement of the infinite region whose boun-
dary consists of points of G but which contains in its interior no points
of C. Then the condition (otherwise expressed) is that f(z) can be
extended analytically from G along paths of C' so as to be ana-
lytic on the entire set C'. Naturally, if C falls into several distinct
components, the monogenic analytic function defined on one compo-
nent may have a singularity on or interior to another component.

The example given in paragraph 2is of interest in this connection.

The condition of the theorem is sufficient. If the condition is satis-
fied, the function f(z) can be extended so as to be analytic and
single-valued not merely on G but everywhere within a positive dis-
tance ¢ of C. Hence there exist one or more mutually exterior Jordan
curves G, G,, ..., Gy such thal every point of C lies interior to
some curve. and such that f( 3) is analytic on and within each curve.
Then by Runge’s theorem (§ 2) the function f(5) can be uniformly
approximated on and within the curves Gy, hence on C.

The condition of the theorem is necessary. Let P be a singularity
of f(z) separated from the pointat infinity by C and assume that f(z)
can be expressed on C as a uniformly convergent series of polyno-
mials; we shall reach a contradiction. The point P is not a point
of G, but lies interior to alimited simply connected region R bounded
entirely by points of C. In fact, the points which can be joined to P
by Jordan arcs not meeting C form a region which contains P in its
interior and whose boundary consists wholly of points of CG. That
region need not be simply connected, but if it is multiply connected
and if suitable points are adjoined to the region, there results a
region R with the properties mentioned.

The series of polynomials representing f(z) on C converges uni-
formly on the boundary of R, hence uniformly in the closed region B,
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and represents a function ® (z) analytic interior to R, continuous in
the corresponding closed region, equal to f(z) on C. The func-
tion f(z) is analytic on G, hence analytic in a suitable neighborhood
of the boundary of R. The function f(z) — ®(z) is analytic in a sub-
region of R adjoining the boundary of R and approaches zero when
z interior to R approaches the boundary of R. We shall prove that
Jf(z) — ®(3) vanishes identically interior to R. '

Levma. — If the function W (z)is analytic in an annular region
interior to but bounded in part by y : |z| =1 and if W(z) is
continuous in the corresponding closed region and zero on vy,
then W(z) vanishes identically in the original annular region.

The function W(z) can be extended analytically across y by
Schwarz’s principle of reflection; the function W, (5) :

¥ () = W(3), z on and within v,

¥, (z)= llf'(—:: ) ’ Z exterior to v,

is analytic in an annular region which contains y in its interior and
vanishes on y, hence vanishes identically.

If R is mapped onto the interior of the unit circle, the function
J(3) —®(z) corresponds to a function W(z) which satisfics the hypo-
thesis of the lemma, when W (z) is suitably defined on y, so f(z) — ®(3)
vanishes identically in an annular region interior to R, hence throug-
hout R. Thus P, not a singularity of ®(z), cannot be a singularity
of f(3), and the theorem is completely proved.

An immediate consequence of the theorem is : Let C be an arbi-
trary closed limited point set. A necessary and sufficient con-
dition that every function f(z) analytic on C can be uni-
Jormly approximated on C as closely as desired by a polynomial
in 3 is that G should be the complement of an infinite region.
Otherwise expressed, this condition is that G should not separate
the plane.

4. Jordan configurations. — The results subsequent to Runge’s
theorems that we have considered [due primarily to Walsh, 2, 3, 6;
but see also Hartogs and Rosenthal, 1] are entirely satisfactory so far
as concerns approximation of functions analytic at every point of the
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closed considered. If one desires more refined results, methods cor-
respondingly more refined must be used. Here the modern theory of
conformal mapping is of service, particularly results of Carathéodory,
Courant, and Lindeldf, and one can prove :

If the function f(z) is analytic in a Jordan region, continuous
in the corresponding closed region, then in that closed region f( z)
can be approxzimated as closely as desired by a polynomial in z (*).

This is a generalization of Runge’s theorem.

If f(z) is continuous on the Jordan curve G, in whose interior
the origin lies, then on G the function f(3) can be approxzimated
as closely as desired by a polynomialin z and ;

This is a generalization of Weiersirass’s theorem on approximation
by trigonometric polynomials (§ 2).

If f(z) is continuous on a Jordan arc G, then on C the function

J (5) can be approximated as closely as desired by a polynomial
in 3.

The special case where C is an interval of the axis of reals gives us
Weierstrass’s theorem on approximation by polynomials.

The three theorems just.stated are due to Walsh [2, 3|; they are
all contained in the following more general theorem [ Walsh, 6] :

Let C be a closed point set composed of a finite number of
Jordan arcs and regions, which separates no pair of points not
belonging to C. Then an arbitrary function analytic in the inte-
rior points of C and continuous on C can be uniformly approzi-
mated on G as closely as desired by a polynomial in z.

5. Further results. — From the discussion of paragraph 3 we see
that if a closed limited point set C has the property that every

)

(') We remark in passing that this yields an immediate proof of a general form
of the Cauchy-Goursat theorem : If f(z) is analytic interior to a rectifiable
Jordan curve C, continuous in the corresponding closed region, then we

have ff(z) dz =o.
c
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JSunction continuous on G can be uniformly approximated on C,
then C must have no interior points and cannot separate the
plane. Lavrentieff [Hartogs and Rosenthal, 1] has stated the con-
verse, that an arbitrary function continuous on the closed limited
set G, which has no interior points and does not separate the
plane, can be uniformly approximated on C. This result is highly
important; it is to be hoped that publication of the proof will not be
long delayed. The special case that C is of superficial measure zero
has been treated by Hartogs and Rosenthal [1].

The first and last questions mentioned in paragraph 3 are still
unanswered, although the following contribution is due to Farrell [1]:

Let G be a limited simply connected region and let w — ®(z)
map Cconformally onto|w| <<1.Inorderthat ®(z) when suitably
defined in the corresponding closed region G can be uniformly
approximated in C by a polynomial in z, it is necessary and suf-
ficient that every point of the boundary of C be contained in just
one boundary element (Primende) and that the boundary of C be
also the boundary of an infinite region. An arbitrary function
analytic interior to such a region C, continuous in C and cons-
tant on each boundary element, can also be uniformly approxi-
mated in C.

A few other problems deserve mention. Approximation not by an
arbitrary polynomial (that is, a linear combination of the functlions
1, 3, 3", ...) but by a linear combination of functions 1, z, z,...
has been studied by Carleman [1]. Approximation by polynomials
whose roots lie in an infinite sector or are subject to broader condi-
tions has been studied by Lindwart and Pélya [1]. Approximation
in a region by polynomials not vanishing in that region has been stu-
died by Walsh [13]. Some open questions of interest are : Determine
the regions G with the property that an arbitrary function f(z)
analytic and limited interior to C can be representedin C by a sequence
of polynomials p,(z) such that we have

3) lim [max | pn(2)], 2 in G] = Bound [| f(2)], z in C]3
ny>w ,

compare Carleman [1]. Given an arbitrary region C and a function
JS(z) analytic and limited interior to C; when can the given function
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f(2) be represented in the given region C by a sequence of polyno-
mials p,(z) such that (3) is valid? If () and its derivative f'(3)
are analytic interior to a Jordan region and continuous in the corres-
ponding closed region C, can f(z) and f'(z) be expressed in C as the
uniform limit of the respective sequences p,(3), p,(2)? The answer
is affirmative if the boundary of C is rectifiable.

‘What can be said of the possibility of approximation to a func-
tion f(5) analytic in a region by a polynomial p(z), as measured not
by max |f(s)—p(z)| but by the line or surface integral of
|f(3)—p(2)|P, p>o, taken over the boundary (assumed recti-
fiable) of the region or over the region itself provided the correspon-
ding integral of | f(5)} exists? Results for a Jordan region for the
case p = 2 have been given by Smirnoff [1] and Carleman [1] res-
pectively. If approximation is measured by a line integral and if f(z)
is not analytic on the boundary, then boundary values in some sense
are Lo be used in the line integral.

CHAPTER 1L

DEGREE OF CONVERGENCE. OVERCONVERGENCE.

We have hitherto considered primarily the question of possibility
of approximation. We turn now to the study of degree of approxi-
mation — study of the asymptotic behavior of the error of approxima-
tion : max[|f(2) — pn(3)|, 5 on C], as n becomes infinite.

6. Lagrange-Hermite Interpolation Formula. — Let the distinct
POLRLS B4y Bay .ony Bpy IRAICES Yy, Vay ...y Vp, and values wr, wi!, ..
Wik, for k=1, 2,..., p be given, where

*

(vi+1) + (Va+TI) 4ot (Vp+1) =R +1.

Then there exists a unique polynomial p(z) of degree n which

satisfies the equations p

Pz =™  (m=o0,1,2,...,; k=1,2,..., p),

where the notation p\™ (k) indicates the m-th derivative of p(z) at
the point 3 = Zp, and p“’)(zk) =P(zk).



12 J. L. WALSH.

The determination of the polynomial p(z) depends on the solution
of a system of n—+1 linear equations for the n 41 coefficients a,
of p(z). The vanishing of the determinant A of the coefficients of
the @, in this system is a necessary and sufficient condition for the
existence of a polynomial of degree n not identically zero which
vanishes, together with its first v; derivatives, in the point z;; such a
polynomial is known not to exist. Hence A is different from zero,
and the required polynomial p(z) exists and is unique.

As a convention, we frequently express these requirements on p(z)
by saying that p(z) shall take on prescribed values in the points zz,
counted of respective multiplicities v; + 1. In particular the values
w{™ may be the derivatives f(™)(3;) of a given function f(z). In this
case the polynomial p(z) is said to coincide with or lo interpolate ta
the function f(z) in the points 3;, considered of respective multipli-
cities vz 4 1.

For our present purposes, we require a formula for the polynomial
p (%) of degree n which coincides with the function f(z) (analytic
en and within a contour C) in the points (not necessarily distinct)
By Bay .., sn.y Interior to G. We have

o f(z)—P(z)=—I— P (8 —3%1)--. (38— 2a4) f(2) dt

ani Jo (8 —21) ... (t—ZBnga) (£ — 2)

z interior to C, as we shall proceed to verify. It is seen by inspection
that f(z)=p(z), k=1,2,..., n+ 1. Moreover, if f(z) is
expressed by Cauchy’s integral taken over C, the resulting expression
for p(z) is clearly a polynomial of degree n. The conditions stated
determine p(z) uniquely if the 5; are distinct. The reader will
verify the fact that the formula (1) is valid even if the points z; are
not all distinct (*) [ Hermite, 11].

Formula (1) is also correct if C is composed of several distinct
contours bounding one or more distinct finite regions, provided f(z)
is analytic (and single valued) in each closed region, and the points 2z
all lie in these regions.

(') Thanks to the convention made relative to multiple points z,, it is easily
proved frem (1) that the polynomial p(z) is a continuous function of the z;. This
continuity is uniform for z in any limited region, and for the z, on any closed point
set interior to C.
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7. Expansion in powers of a polynomial. — We shall use the term
lemniscate to indicate alocus | 5 — @y)(z — ). . .(3 — &) | = >0}
a lemniscate thus consisls of one or more contours which are mutually
exterior except that each of a finite number of points may belong to
several contours. By the interior of this lemniscate we mean the
interiors of the contours composing it :

(g —a) (s —a).. (3 —ay) | <p

If the function f(z)is analytic on and within the lemniscateT :
|p(2)| =p, where p(5)=(z—a)...(5— o), then interior to T
the function f(z) can be expanded in a series of polynomials of
which the nth term is a polynomial of degree v —1 multiplied by
the (n — 1) st power of p(3z). The sum S,(z) of the first n terms
of the series coincides with f(z) in the POINLS &y ,a, ..., &y, each
counted of multiplicity n. Moreover, for z on the set G :

ip(z)lSpi<p
we have

(2) |f<z>—sn<z>|§M(§?,)»

where M, independent of n and z, is suitably chosen.

The Cauchy-Taylor development is a special case of the series con-
sidered here, and for that case these properties are well known.

Define S,(z) as a polynomial of degree va — 1 which coincides in
the points o (each counted of multiplicity n) with f(z). Then the
polynomial S,(z) — S,_; (%) is of degree vn — 1 and has n — 1 roots
in each point ax. Thus we can write the formal expansion in the form

f(3) = q1(3) + q:(2) [ (2)} + qa(2) [p () +. ..,

where gx(2) is a polynomial of degree v — 1.
‘We have by (1),

f(5) —Sn(3) = — 4(2—“0"(3—“0"---(z—“v)"f“) at.

ani Jp(t—a)r (t—an)t...(t—ay)" (¢t — 3)

For z on C and ¢ on I' we clearly have |p(3)|Spu<<p=|p(?)|,
which implies convergence as stated.

We shall need to apply the theorem just proved in a case where
the number v is of no significance, so we express our result in a
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slightly less precise form, in which v no longer occurs. The function

v\/ (%) is analytic (although not necessarily single-valued) and without
branch points exterior to C. The function

°_‘”/11z_>_ .
w=\/" = ®(3)

maps conformally (not necessarily uniformly if G falls into several
distinct pieces) the exterior of C onto the exterior of the circle
|w|=1 so that the points at infinity correspond lo each other. The
lemniscate I can be expressed

_J/E
I‘l’(z)l—‘/pl

v /Y o\ Ve
and the right hand member of (2) can be writtenas M \/ f;f <\/ %) ;

the exponent is precisely the degree of the polynomial S,(3).
Let us now introduce the notation

P (3)=py (B3)=.. .= pav—(3) = 81(3),
Pav—1(2) = pav(3) =...= psv—(3) = 83(2),
Psv——i(z) = psv(3) =. e = Pi—a(3) = S3(32),

here pn(2)is a polynomial of degree n, and we can write for z on C

v—2

o oo (/5 won(5)

To be sure, we have defined no polynomials of degrees n =0, t, ...,
v — 2, but any polynomials whatever of these degrees can be used, -
and (3) will be valid for z on C for all n if M, is suitably modified.

Let Cy denote the locus |®(z)| =R >1. We have shown that if
f(5) is analytic on and within Gy, then polynomials p,(z) of res-
pective degrees n =10, 1, 2, ... exist such that

(=)= pala) IS 2

is valid for z on C.

The method we have used is due to Jacobi [1], Hilbert [1], and
Montel [1], although these other writers did not emphasize the precise
inequalities involved.
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We can now generalize, to the case that Cis no longer the interior
of a lemniscate but is the interior of an arbitrary Jordan curve.

8. Expansion in arbitrary Jordan regions. — It is Hilbert’s impor-
tant achievement [1] to have shown that an arbitrary Jordan curve
can be uniformly approximated by a lemniscate. More explicitly,
let C be a Jordan curve and 8 >> o arbitrary. Then there exists a
lemniscate C' consisting of a single contour such that every point
of C is interior to C' but within a distance 8 of C', and every point
of C' is within a distance ¢ of C. Hilbert's proof is based on the
logarithmic potential and will be omitted here. As Faber suggests, it
would be worth while to give an elementary proof of this result.

It is to be noted that a proof of Runge’s first theorem (§ 2) is now
easy to supply. Let f(z) be analytic in the closed Jordan region C;
choose ¢ in Hilbert’s result less than half the shortest distance from G
to a singularity of f(z). Hilbert’s lemniscate C' : | p (5)| = p contains G
in its interior, and f(2) is analytic on and within C/. A suitably
chosen lemniscate | p(5)| = ps << also contains C in its interior.
The approximation studied in paragraph 7 now yields Runge’s theo-
rem. We shall obtain, however, a more precise result.

Let us say that a variable Jordan curve C") approaches the fixed
Jordan curve C provided the écart of C and C(» approaches zero,
where the écart of C and C(" is the distance to G of the most distant
point of G plus the distance to C® of the most distant point of C.
Denote by Cg as before the curve |®(z)| =R> 1, where the func-
tion w = ®(z) maps conformally and uniformly the exterior of G
onto the exterior of | w| =1 so that the points at infinity correspond
to each other, and similarly for C¢'. Then if C») approaches C, the
curve G approaches Cg, and monotonic approach of Ci") to C
implies monotonic approach of Gy to Cyg. This fact is by no means
elementary; the proposition follows from the fundamental work of
Lebesgue [ 1] on harmonic functions, or from the study of conformal
mapping of variable regions as made by Carathéodory [1].

Not merely is it true that a Jordan curve C can be approximated
by a lemniscate C!") and that the curve Cy is approximated by the
curve C’; the reasoning can be applied to more general point sets.
Let us prove :

Let Cbe an arbitrary closed limited point set (not a single point)
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whose complement is simply connected. Let w = ®(z) map the
complement of C onto the region |w|>1 so that the points at
infinity correspond to each other. Let Cy denote the' curve
|®(z)| =R > 1. If the function f(z)isanalytic on and within Cg,
then there exist polynomials pn(z) of respective degrees n=o,
1, 2, ... such that the inequality ‘

1f(3)—pa(®) IS > Bon G,

is valid, whére M is independent of n and z.

®(2)
P
of |w| =1 so that the points at infinity correspond to each other, so

[Cplr is the curve 'gi:_)‘ =R, or the curve Cyr. Thus for a suitable

choice of p > 1, the function f(z) is analytic on and within [C,]s.
There exists a lemniscate C’ consisting of a single contour interior
to this G, containing C in its interior; indeed there exists such a
lemniscate between C;, and G, The curve Gy is interior to Gpp.
Our theorem now follows from the last result of paragraph 7.

This theorem is due to Faber[ 1 | (implicitly) and Szego [ 1] (expli-
citly) in the case that C is a Jordan region, and to Walsh [ 4] in the
general case.

The function w —

maps the exterior of C, onto the exterior

9. Overconvergence. — We now prove, for application in studying
the converse of the results just proved, the following

Lemma. — If C is a closed limited point set (not a single point)
whose complement is simply connected and if the polynomial P (z)
of degree n satisfies the inequality |P(z)|<L, for z on G, then
we have

(4) |P(3) |SLR~, z on or within Cg.

This lemma was proved by S. Bernstein [1] in the case that C is a
line segment. The present method of proof is duc to M. Riesz [1]
and to Montel [2]. The lemma itself was proved by Faber [4] and
Szego [4] in cases slightly less restrictive than here, and by Walsh [4]
in the general case. Let us proceed to the proof.
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The function i q) ( )] is analytic exterior to G even at infinity (if

suitably defined there), where ®(z) has the same meaning as before.
No maximum of the modulus of this function can occur exterior to G,
unless the modulus is everywhere constant. When z approaches C,
the modulus can approach no limit greater than L. Thus the ine-

quality l O (( z))]n

on Cy. The modulus of P(z) can have no maximum interior to Cg,
and hence (4) is also valid for z interior to Gy; the proofis complete.
The following theorem is a consequence of the Lemma :

<L is valid for z exterior to C and (4) is valid for 5

If the polynomials pn(z) of respective degrees n=o,1, 2, ...
satisfy the inequalities

5) ()= pa(3) 1< e

Jor z on an arbitrary closed limited set G whose complement is
simply connected, then the sequence p.(z) converges for s interior
to Cy, uniformly for z on any closed point set interior to Cy. The
function f(z) (or its analytic extension) is analytic interior to Cy.

From the inequalities for 3 on C

If(z)—-Pn(Z)l§%7 _[f(z)—Pn+1(z)f§ Rr%-—l,
we have for z on C

M
|Pasa(3) — Pa(2) 1S 1 (M + ﬁ>.

For z on Gy, Ry <R, we have by the Lemma

|Prea(3) = pu() 1< 1k (M + 1 )3

the sequence converges to f(z) on G; the theorem follows at once.

The theorem was proved in the special case that Cis aline segment
by S. Bernstein [1], and in the general case by Walsh [4].

We shall use the term overconvergence for this phenomenon,
namely, that certain sequences known 1o converge on a given point
set G with a certain degree of convergence necessarily converge on a
point set containing C in its interior. The term overconvergence is
used by Ostrowski (see paragraph 17) in a different connection.

MEMORIAL DES SC. MATH. — N° 73.
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10. Greatest geometric degree of convergence. — Let C be an
arbitrary closed limited point set (not a single point) whose com-
plement is simply connected and let f(z) be analytic within C,
but (considered as a monogenic analytic function) have a singu-
larity on C,, where p is finite or infinite. Then (§8) if R <p is
arbitrary, there exist polynomials p,(z) of respective degrees
n=o0,1,2, ... such that (5) is valid for s on G, where M depends
on R but not on n or z. Moreover, there exist (§ 9) no polyno-
mials p,(z) such that (5) is valid with R > p.

A less specific theorem but one of some interest is :

Let C be an arbitrary closed limited point set (not a single
point) whose complement is simply connected. A necessary and
sufficient condition that f(z) be analytic on C is that there exist
polynomials p,(z) of respective degrees n=o,1,2,..., such
that (5) is valid for z on G for some R greater than unity.

These two theorems were given by S. Bernstein [1] in the case
that C is a line segment (here C, is an ellipse whose foci are the ends
of the segment) and in the more general case by Walsh [4]. The first
part of the second theorem was later proved by Szego [5] in an ele-
mentary way, without the use of conformal mapping.

Thus far we have made the polynomials p,(z)to depend on R <p,
arestriction which we shallremove in Chapter III. A sequence of poly-
nomials p,(z) of respective degrees n = o, 1, 2, ... which converges
to the given function f(5) so that (5) is valid on G for every R <p
where M depends on R but not on n or s is said to converge to f(3z)
on C with the greatest geometric degree of convergence; this con-
cept appears throughout the remainder of the present essay. Such a
sequence converges everywhere interior to C;, uniformly on any
closed set interior to C,, and converges also on every Cq (o <<p) with
the greatest geometric degree of convergence. Condition (5) may here
be replaced by

Tm Ven= s pi=max[]f(3) = pa(3)], 3 on C}.

A sequence of polynomials which converges with the greatest

geometric degree of convergence may or may not converge at indivi-
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dual points exterior to C,; compare paragraph 34. It is not known
whether a sequence of polynomials can converge with the greatest
geometric degree of convergence and can still converge in a region
exterior to C,. although it can be shown that convergence like a
convergent geometric series in a region or on a Jordan arc exterior

to C, is impossible. Moreover. the following theorem can also be
proved [ Walsh, 9] :

A sequence of polynomials which converges on C with the grea-
test geometric degree of convergence can converge uniformly in .
no region which contains in its interior a point of G,.

It would be of interest to study the implication of (5) not for all »
(or for all n > N) but for an arbitrary infinite sequence of numbers n.

11. Approximation on more general point sets. — In paragraphs 8,
9, 10 we have studied for the sake of simplicity approximation on a
point set G whose complement is simply connected. Not merely the
results but also all the methods can be directly extended to a more
general closed limiled point set G, provided C is bounded by a finite
number of mutually exterior Jordan curves, or more generally, pro-
vided the complement K of C is connected and regular in the sense
that Green’s function with pole at infinity exists for K. There exists
a function w = ®(z) mapping K onto the exterior of |w| =1 so that
the points at infinity correspond to each other, and |®(5)] is single
valued in K even if ®(z) is not; the reasoning is nevertheless valid.
We leave to the reader the care of verifying the possibility of this
extension; the details are given by Walsh and Russell [1].

Let G be an arbitrary closed limited point set whose comple-
ment is connected and regular and let f(s) (considered as one or
more monogenic functions) be analytic and single-valued within G,
but not within any C, p' >p. Thenif R <p is arbitrary, there
exist polynomials p,(z) of respective degrees n —=o, 1, 2, ... such
that (5) is satisfied for zon C, where M depends on R but not on n
or z. Moreover, there exist no polynomials p,(z) such that (5) is
valid on C, where R is greater than p.

The curve (or curves) C, is characterized by the fact that the
function f(z) (when suitably extended analytically from C along
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paths interior to G,) is analytic and single valued interior to G,, but
is not analytic or is not single valued or fails in both particulars
interior to every G, p'>p, when extended from C along paths
interior to C,. Thus, (a) at some point P of C; the function f(2)
has a singularity for analytic extension along paths interior to G,
terminating in P; or (b) the curve G, has at least one multiple point Q,
and there is disagreement at QQ among the various analytic extensions
of f(z) from the various parts of C to Q along paths belonging to the
several regions separated and bounded by Cg; or (¢) both (@) and (&)
occur.

It is worth noticing that this theorem applies to the case where G
consists of a finite number of segments of the axis of reals.

The discussion just outlined for the case that the complement K
of C is connected and regular can be modified to yield certain results
for the case that K is connected and not regular. If K is not regular,
there exigts a sequence of regular regions K(), K2, ... interior to
K, K interior to K("*1), such that every point of K is interior to
some K(». Denote by C") the complement of K. Then the
curves Gy, where R>1 is fixed and n becomes infinite, approach
monotonically a limit T'y which is independent of the particular choice
of the K", The limit Ty may consist of the boundary of C, may
consist of part of the boundary of C together with curves or parts of
curves lying in K, and may consist entirely of curves in K. Each point
of G is either a point of Ty or is separated from the point at infinity
by I';. In any case, it follows from the methods and results already
given that if f(z) is analylic on and within Iy, there exist polyno-
mials p,(z) of respective degrees n such that (5) is valid for z on G;
if (5) is valid for z on G, then f(z) is analytic interior to [y.

Study of this situation in more detail is an interesting open problem;_
compare paragraph 29.

CHAPTER IIl.

BEST APPROXIMATION.

12. Tchebichef approximation. — As we have already remarked,
the polynomials p(z) considered in paragraphs 8-11 are not uniquely
determined and in fact largely arbitrary. Nevertheless, unique poly-
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nomials with minimizing properties exist which are included in the
category already studied.

Minimizing polynomials (where the usual measure of approximation
is considered) were first studied by Tchebichef; their existence and
uniqueness were established by Kirchberger in the real case and by
Tonelli [1] and later de la Vallée Poussin [1] in the complex case :

Let the function f(z) be defined and continuous on the closed
limited point set C containing at least n +1 points. Then there
exists one and only one polynomial n,(3) of degree n such that

(1) tn = max[| f(z) — xa(%)], z on C]

is less than the corresponding expression for any other polyno-
mial of degree n.

The function | f(5) — m.(3) | takes onthe value p, in atleast n + 2
points of G if C contains 7 + 2 or more points. The polynomial 7, (z)
is called the T'chebichef polynomial of degree n for approxima-
tion to f(z)on C. Relatively few properties of the individual 7,(2)
are known, such as the distribution of the points of C where
[ f(3)—mn(2)| =pn, or when the Tchebichef polynomial of degree n
for approximation to f(5) on C is also the Tchebichef polynomial
of degree n for approximation to f(z) or f,(z) on C,; but if C has
infinitely many points and p., approaches zero as n becomes infinite,
the sequence m,(z) converges to f(z) on C more rapidly than any
other sequence of polynomials of respective degrees n. If f(z) can
be approximated on C as closely as desired by a polynomial in z,
then the polynomial m,(z) approaches f(z) uniformly on C, as the
reader will easily prove. This remark has obvious application to the
configurations of Chapter I.

It is entirely possible to use not (1) but

max[n(2)|f(z) — %a(5)], z on C]

as a measure of the approximation of 7, () to f(z) on C, where n(2)
is conlinuous and positive on C. This may be called approzimation
in the sense of Tchebichef with the norm function n(z). If C
contains at least n —+ 1 points, and if f(z) is continuous on C, a unique
polynomial m,(2) of best approximation exists [ Walsh, 12].

It is clear that if C is a closed limited point set (not a single
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point) whose complement is simply connected, and if f(2)isana-
lytic on C, then the sequence . (3) of best approximation in the
sense of Tchebichef with a norm function converges to f(z) on G
with the greatest geometric degree of convergence. For, under the
hypothesis 0 <N,<n(2)<N,, 5 on C, and R <p, we have from

paragraph 10 :
n(z)[f(z)——p,,(z”gM._le_’., zon C,

whence for the polynomials 7, (z) of best approximation,

n()1f(2) — ()| S XN, zonc.

‘We can now write

N.
1(5)—ma(s) S sonG,

as we were to prove. Consequently the properties mentioned in
paragraph 10 are all valid for the sequence Ta(3).

Proof of the convergence interior to Cy is due to Bernstein [1] for
the case n(z)=1 and C a line segment, and to Faber [3] (by a
method different from the one just used) for the case that n(z)=1
and C is an analytic Jordan curve; the present more general results
are due to Walsh [7, 8].

It is also clear that in the study of approximation in the sense of
Tchebichef [2(2) =1] in a closed limited region to a function f{( z)
analytic interior Lo that region, it is immaterial whether approximalion
is measured in the closed region or on the boundary, for the expres-
sion | f(3) — pn(2 )| has its maximum value on the boundary.

13. Other measures of approximation. — The Tchebichef measure
of approximation is the one used directly in the study of uniform
convergence, but there are other measures which have the advantage
of facility of computation of the polynomials involved. For the sake
of generality we shall introduce norm functions in these other mea-
sures of approximation. Each norm function n(z)orn(w)isassumed
positive and continuous where defined.

a. If C is a rectifiable Jordan curve, the integral

. [G n(2)1f(3)—pa(z) P ds  (p>o),
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is of significance as a measure of approximation of the polynomial p,(3)
to the function f(z) continuous on C. The most imporlant special
case is n(z)=1, p—=2.

b. Let C be an arbitrary limited closed region. A suitable measure
of the approximation of the polynomial p,(z) to the function f(z)
continuous on C is ffn(z) |f(2)—pu(2)PdS  (p>o).

c. Let C be an arbitrgry limited closed point set (nola single poinl)
whose complement is simply connecled. Let the exterior of G be
mapped onto the exterior of y : [w|=1 so thal the poinls at infinity
correspond to each other. We consider as measure of approximation,

of the polynomial p,(z) to the function f(z) analytic on C the
integral

(2) Lr@l—pupas (p>o.

To be sure, the function f(z)— p,(z) is not necessarily defined
on y but the limit exists along the radius almost everywhere
on y (Fatou); it is these values that are to be used in (2).

These three measures a, b, ¢ are all distinct and each has advan-
tages over the other two.

d. | generalization of (a)]. If C is a rectifiable Jordan curve, a recti-
fiable Jordan arc, or more generally if C consists of a finite number
of rectifiable Jordan arcs or curves and is the boundary of a closed
limited point set whose complement is simply connected, then the
integral used in (@) is still a natural measure of the approximation ot
the polynomial p,(z) to f(5) on C.

e. If C is an arbitrary limited simply connected region, map C onto
the interior of the unil circle y : j w| =1, and choose

() L@ @ —puirds @ >o)

as the measure of approximation of p,(z) to f(z), assumed analytie
interior to C. Of course the functions which appear in (3 ) need not be
defined on y, but the limits may exist almost everywhere in the sense
of radial approach and it is those boundary values thatare to be used
in (3). To be sure, this measure of approximation depends on the
particular point 3, interior to C which is made to correspond to w = o,
but best approximation for a particular choice of z, with a particular



24 J. L. WALSH.

norm function n(w) is equivalent to best approximation for an arbi-
trary choice of 3, with a suitable norm function.
J- Under the transformation just used in (e), we may employ

S, ro @ —papds @)

as a measure of approximation.

g- Even if the complement K of the given set C is not simply
connected, the method of Tchebichef applies directly if K is connected
and regular; methods a-f can be extended so as to apply with the
analogous restrictions if K is of finite connectivity.

In each of the cases a-g if () is continuous on G, there exists at
least one polynomial of degree n of best approximation to f(z) on G,
although in case (¢) we require the function f(z) to be defined
continuously in the closed neighborhood of C exterior to C. The
existence of this polynomial is conveniently although not necessarily
proved by the use of Montel’s theory of normal families of functions
[see for instance Walsh, 12]. The polynomial of best approximation
when approximation is measured in the sense of least p-th powers,
0 << p <1, need not be unique; the uniqueness when p > 1 results
from the fact that if two polynomials give cqual approximation. then
half their sum gives better approximation; the general inequality

(4)

CEDP < tllap 18] (aBip>0),

can be applied directly.

Best approximation in the sense of least p-th powers has been
studied in some detail in the real case by Jackson [5]. It is interes-
ting that in the case of approximation to a continuous function on a
Jordan arc G, the polynomial of degree n of best.approximation in the
sense of least p-th powers approaches as p becomes infinite the poly-
nomial of degree n of best approximation to that function on Cin the
sense of Tchebichef [Pdlya, 1; Julia, 2]. This result extends to
each of the cases a-g, even with a norm function. Here we have a
theoretical method for the detérmination of the polynomial of best
approximation in the sense of Tchebichef, for the determination of
the polynomial of best approximation in the sense of least p-th powers
is an algebraic problem.
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The general problem of studying the dependence on f(3z), n(3),
n, p, G, of the polynomial of degree n of best approximation on C in
the sense of least p-th powers would yield results of much interest.
These polynomials of best approximation are intimately connected
with interpolation, whether interpolation is the only requirement on
the polynomial or an auxiliary condition. For instance, best appro-
ximation on C with a fixed norm function which becomes infinite
at a point of C implies interpolation in that point. Best approxima-
tion corresponding to a variable norm function when that function
becomes infinite at one point and not at other points is likewise related
to interpolation in that point. The theorem proved at the end of para-
graph 30 also deserves mention here.

14. Approximation measured by line integrals. — We proceed to
study convergence of the sequence of polynomials of best approxi-

mation in the various cases méntioned. In case () the following lemma
is useful :

Lemma. — Let C be an arbitrary rectifiable Jordan curve and C!
an arbitrary closed point set interior to C. If the function P (z)is
gnalytic on and within G and if we have

() fclP(Z)IPdS§L” (p>o),

then we have
|P(2)|SL'L, zon ¢,

where L' depends on C, C', and p, but not on P(3) nor L.

Letay, o, ..., az be the zeros of P(z) (necessarily finite in number)
interior to G and let w = ®(5) denote a function which maps the
interior of € onto the interior of | w| =1. We set

P
(6) F(z)= tI)(z()z-)—lI)(a,) ’
H 1—®(a,) ®(32)
where F(z) is defined at the points a, so as to be analytic there and
where II is extended over all the zeros of P(z) interior to C with

proper allowance for their multiplicities. Then F(z) is analytic and
has no zeros interior to C; the function [F(5)]? is analytic within C,
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continuous on and within C when suitably defined on G :

[F()lr dt
21:L C t— 3

[F(z)lr= z interior to C.

The relation | F(z)|=|P(z)] is valid for 5 on G, so by (5) we have
|F(2)|SL'L, 3 on C'. From (6) follows the inequality | P (3)|<|F(3)/,
z interior to G, so the Lemma follows at once.

We can now easily show that if f(3) is analytic on and within G,
and if approzimation is measured as in (@), then the (for p <1,
any) sequence T, (3) of polynomials of best approximation of res-
pectives degrees n converges on C with the greatest geometric
degree of convergence. The notation of paragraphs 811 involves
the mapping of the complement of a given set C onto the exterior of
the unit circle. Under the present circumstances (and below) we map
similarly the ezterior of C. In the notation analogous lo that of para-
graph 10, let R < p be arbitrary; choose R;, R <R, <<p. For poly-
nomials p,(z) of paragraph 10 we have

7)1 £5)—pa(3) P ds S gy
C [

where M, is a suitably chosen constant; this inequality holds a for-
tiori if the p,(z) are replaced by the m,(z). The general inequa-
lities
(7 i | Xa+xa PSPt g P+ 2P [P (P >1),

I+ xalPSlxalP+1x21P (0 <psy),

yield by virtue of the boundedness of —— 0] ( 3]

M,
£15n+l(z)—”n(z)lp ds$ =0 R"/’

By the Lemma we have

(8) | Taa (B) — ®n(8) IS g—;. zon (.
By inequality (8) we have (§9) :

| Trt1(38) —®ma(3)| S %’ z on C;_‘;‘

R

This inequality is therefore valid for z on G, for C’ can be chosen
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(§ 8) so that C is interior to Cq g ; the limit of 7, (z) on G is f(3);
the theorem follows at once.

The theorem we have just proved was established by other methods
by Szegd [1] in the important case n(3) =1, p =2, C an analytic
Jordan curve, by Szego [2] in the case that G isa circle, p = 2 [ with
only very light restrictions on n(z)], and by Smirnoff [1] in the
case n(z)=1, p=2, G an arbitrary rectifiable Jordan curve satis-
fying certain mild restrictions. We shall discuss details of these cases

later (§ 20).

15. Approximation measured by surface integrals. — The proof
in case (b) is somewhat different in detail from the proof just given;
let us indicate the modifications.

Lemma. — 'f the function P(z)is analytic interior to aregion G
and if we have
P(z)|?P dSSIP > o),
(9) S [irr@passiy p>o0

and if C' is an arbitrary closed point set interior to C, then we

have
|P(z)|SLL, z on C,

where L' depends on C! but not on P(3).

27
The integral 2%: [ | P(z0+ re®)|?df, p > o, is well known to be

a non-decreasing function of r, in an arbitrary circle K which toge-
ther with its interior lies interior to C. Here (r, 6) are polar coordi-
nates with pole at the point z,. The limit of this integral as r appro-
aches zero is obviously | P(z,)|?, so we have

27
1P S [ 1P (st re) o ab.
27 o

Multiply both members by rdr and integrate from zero to k, the
radius of K; we find 1

1

L Y WALCTE
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or by (9),

P
Pearser [ f1P@rass g [ f1perass g

This inequality is valid for every z, interior to C provided merely
that the distance from %, to the boundary is not less than &, and
hence holds for suitable choice of & for every z, of C'.

The application of this lemma is not greatly different from that
already given in case (a) and is left to the reader.

The measure of approximation (b) was used by Carleman [1] for
n(s)=1, p = 2, but without a proof of our result on degree of con-
vergence and overconvergence. A less general form of the Lemma is
given by him and another by Julia [ 3].

16. Approximation measured after conformal mapping. — Case (c)

is of some interest (see paragraph 21), so the treatment will be
outlined.

Lemma. — Let C be an arbitrary closed limited point set (not a
single point) whose complement is simply connected and let
3="W(w) represent the inverse of the usual w=®(z) which
maps the complement of G onto |w|>1. If P(z) is a polynomial
of degree n and if we have

fIP(Z)I"ldWIéL”, p>o  yiwi=1,
Y

then we have also
|P(2)|SLL'R®,  z on Ca,

where L' depends on R but not on P(z).

Let a,, o, ..., ax denote the zeros of P|W(w)] exterior to y.
Assume purely for definiteness P(" (z) £ o. The function

(10) Q) = PLw(w)) LTI,

is analytic and different from zero exterior to y (if properly defined
at the points «,). For the values taken on by normal approach to y
we have | Q(w)| = |P[¥(w)]|. By hypothesis we have then

(11) S idwi<ir,
Y
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Let us use Cauchy’s integral for the function ___—_[Q(::)]p
[Qw)]r _ 1 f[Q(o)]ﬂ dv

w ‘21:1'“r (v —w)p

(Iw|>1).

The Lemma now follows easily by means of (10) and (11).

The application of this Lemma is entirely similar to the treatment
in paragraph 14 and is left to the reader.

The discussion in case (d) (including the important case of
approximation on a line segment) is only a slight modification of the
discussion just given.

17. Summary. — We have discussed in detail Tchebichef
approximation, and also methods (&), (4), (¢). It is true, however,
and can be similarly proved, that in each of the cases a — g, if
the function f(z) is analytic on and within C, and if C, is defi-
ned as in paragraphs 10 and 11, then the sequence of polyno-
mials of best approximation converges to f(z) on G with, the
greatest geometric degree of convergence. The sequence thus
converges interior to G, uniformly on any closed point set interior
to Gy, but uniformly in no region containing in its interior a point
of G,.

The case p = 2 will be discussed in more detail in Chapter IV,

The general results on methods a — f are given by Walsh [9];
those on methods (g) [except the extensions of (¢) and (d)] by
Walsh and Russell [1]; those on (g), extensions of (¢) and (d), are
due to Walsh and still unpublished.

Study of degree of convergence and of actual convergence of the
sequences of polynomials of best approximation must then be regar-
ded as fairly satisfactory so far as concerns regions of uniform con-
vergence. The question of convergence or divergence on and exterior
to G, is unanswered except under certain circumstances for p = 2
(see paragraphs 20 and 21).

If the given function f(z) is not known to be analytic on and
within G, but is merely analytic interior to C and continuous on the
corresponding closed set, the discussion already given is essentially
valid in cases (@), (&) (if C is a Jordan region), (d) (if C consists of
Jordan curves), (e), (f) (if C is a Jordan region), (g) [in the cases
corresponding to (a), (&), (d), (e), (f), with the restrictions just
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mentioned ], to prove convergence to f(z) interior to G, uniform
convergence on any closed point set interior to G, of the polynomials
of best approximation; for Tchebichef approximation with a norm
function, convergence is naturally uniform on the closed set C. Let
us treat case (@) for instance. We set

Pn = fn(z)]f(z)—ﬂ:n(z)]”l dz | (P>°)’
C

where m,(z) is the polynqmial of degree n of best approximation

to f(z) on C. It is known (§ 4) that polynomials p,(z) exist such

that lim [max|f(5) — pn(5)|, 5 on C] =o. Hence p, approaches
nywo

zero wilh%; 3?:£[f(z)—nn(z)lpldz|=o. The stated conver-

gence of the sequence 7,(z) now follows from a slight extension of
the Lemma of paragraph 14.

If the given function is analytic interior to C and is integrable on C
together with its p-th power, then in the case p =2 further results
have been obtained, to be discussed in paragraphs 20, 21. It would
be of much interest to extend that study to include the general value
of p>o. '

For the method (a), when C is the unit circle, n(z)=1, p =2,
certain subsequences of the polynomials of best approximation (par-
tial sums of the Maclaurin series) may converge uniformly even exte-
rior to G, as was pointed out by Porter and later studied in more
detail by Ostrowski and others. Is this behavior typical of general
sequences of polynomials of best approximation ?

In the study of approximation on an interval G of the axis of reals,
S. Bernstein [2, 3] has developed highly interesting facts on the rela-
tion between the behavior of the function on C, (particularly with
reference to poles) and the degree of approximation (not necessarily
geometric) on G; see also Mandelbrojt [1], Geronimus [1], Achieser
[1, 2]. Almost nothing is known of the corresponding facts in the
more general situation, especially concerning continuity properties
of f(z) on G, (existence of generalized derivatives, Lipschitz condi-
tions, etc.) although reference should be made to two notes by
Jackson [2, 4]. Moreover, Faber [3] has indicated a method of some
generality.

Can Bernstein’s results be extended to the other measures of
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approximation that we have considered, and to more general point
sets G? When f(z) is analytic merely interior to the Jordan region C,
what is the relation between behavior of f(z) on the boundary and
continuity properties of the boundary on the one hand, to the degree
of convergence in C and convergence on the boundary on the other
hand ?

From our present viewpoint, the Hadamard theory of the Cauchy-
Taylor series is of much interest. Let C be the unit circle |z| =1
and let f(z) be analytic interior to C, defined on C by normal
approach, and integrable together with its square on C. The poly-
nomial p, () of degree n of best approximation to f(z) on C in the
sense of least squares is (§ 19) the sum of the first » 41 terms of
the Maclaurin development f(z) = 2@, 3". The measure of approxi-
mation is

/lf(z)—Pn(z)|2 ds=2x[| @npi |*+ | @y 2+, ],
Y

so the Hadamard theory gives not only a relation between singula-
rities of f(z) and asymptotic properties of the a,, but indirectly @
relation between singularities of f(z) and degree of approzi-
mation on C, and thisis true whether the singularities of f(z)lie on
or exterior to C. The writer is not aware that this connection has
been worked out in detail, either for approximation in the sense of
least squares or for'other measures of approximation.

Our results on various methods of approximation are clearly not
exhaustive. Another measure of approximation — say for the case
that C is the unit circle — is

max[24(2)1 f(2)—pa(5)F, 5 on C)+ [ na(2)| f(3)— pa(3) 1P ds
Cc
of [ @ —pa () a8
+max[n,(3)|f(3)—pu(z)F, —1<3<+1]
1 1\ o
7(s) =)
The fundamental facts we have developed concerning convergence

are valid also in this case. What is the most general measure of

approximation and what is the most general norm function for which
these characteristic results apply ?

+ ng
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CHAPTER 1V.

POLYNOMIALS BELONGING TO A REGION.

Let C be a region or more generally an arbitrary point set. If the

polynomials pe(3), pi(2), pa(5), ... are such that an arbitrary
function f(z) analytic on C can be expanded on C in a series of the
form

f(3)=aepo(2)+aip1(3)+ as ps(3) +... (@ constant),

then the polynomials p;(z)are said to belong to the region or point
set C. An obvious illustration is that C is the set| 2| <1 and pi(5) = z*;
the series is the Maclaurin development of f(z).

Polynomials belonging to a region are parucularly useful in e fec-
tively determining an expansion of a given function valid in that
region, and hence deserve to be studied in some detail. Indeed, the
polynomials most easily determined are frequently those of Faber.

18. Faber’s Polynomials. — Let C be an arbitrary analytic Jordan
curve of the s-plane, let the function

(1) z=0(t)=%+ao+a1t+a,t’+...= +E(7), [t]sr,

map the exterior of C onto the interior of the circle [¢| =r; then r
is uniquely determined. Let us suppose, moreover, a suitable trans
lation to be given to G so that the coefficient a, vanishes. The poly-
nomial P,(z) of degree n is now uniquely determined by the fact
that the coefficient of z" in P,(z) is unity, and that by (1) we have

Pll(z)=t—ln‘+tEll(t)7 |t|§r’

where E,(t) is a series of positive powers of ¢ It follows that
P,(z) =1, P,(s) = z, and that the recursion formula is valid

Pn1(3)=23Pn(3)—a; Pry(3)—as Pps(z3)—...—an.

Cauchy’s integral formula in the z-plane, where the integral is
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taken over G, involves when transformed to the z-plane the function

0'(t) s —E(6)—tE(s)

I
T=6() t " T+ iEB()—i5

and the polynomials P,(s) are also the respective coefficients of the
terms £ in the development here.
The polynomials P,(z) satisfy the important relations

lim Pn+1(z) - I

lim V/{P,.(z =L
n>w Pn(z) t, n;m ‘/[ n )| ’

[2]
where z is any point exterior to G, and where ¢ and z are connected
by (1). If f(2) is analytic interior to C, but has a singularity on Gy, the

development f () = 3, @nPn(2), tn= 5 f £16(2)]em dt, is
1L=r

unique and valid for z interior 1o 'Cy, uniformly interior to G,
o' < p. The series converges on C with the grealest geometric degree
of convergence, diverges exterior to C,, and the coefficients satisfy
the relation Tim {/[ax | = "5"

The fundamental propérties of these polynomials were developed
by Faber [1, 2, 3]; interesting generalizations also exist [Faber, 2;
Montel, 1; Kénig and Krafft, 1].

Faber’s polynomials are of great interest, and have exerted a large
influence in the history of the theory of functions. We might well
have used them in paragraph 7 instead of Hilberl’s method of inter-
polation, were it not for the fact that Hilbert’s method applies equally
well to simultaneous approximation in several distinctregions, whereas
Faber’s method has not yet been extended to apply to this more
general case. Faber’s polynomials have the advantage over those of
Hilbert of applying directly to a region bounded by an arbitrary
analytic Jordan curve instead of by a lemniscate.

Faber [1] formulates the problem of determining polynomials
belonging to the most general Jordan region. That problem seems
. never to have been completely solved by Faber’s method. 1t is quite
conceivable that modern results on conformal mapping would yield a
solution, and it would be of much interest to investigate this question.

Be that as it may, there are now other solutions of Faber’s problem.
The first of these is due to Fejér, and will be discussed in paragraph 28.
Other solutions will be discussed in paragraphs 21 and 23.

MEMORIAL DES SC. MATH. — N° 73. 3
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19. Orthogonality. — A set of functions p, (), Pi(3), pa(3), ...
all integrable together with their squares on a curve C is said to be

orthogonal on C provided we have fpk(z)pn(z)ds:.o,k#n, and
C
is said to be normalon C if we have fpk(z)pk(z)ds =1I.
[

A finite number of normal orthogonal functions p,(z) on C are
linearly independent on C in the sense that

(2) ‘£|aoPo(z)+a1p1(Z)+...+a,,pn(z)]‘lds=o

implies ax= o;'indeed this integral has the value
Iao|’+|a1 I2+...+!an 1°.

If the functions Po(2); pi(3), ... are normal and orthogonal on C,
and if f(z) is integrable with its square on G, then

sf(z)~a0p(.(z)+aip,(z)+a2p,(z)+...,

3 _ ——
( ak—[f(Z)pk(z)ds,

is called the formal expansion of f(z) on C. If the sign ~ (here
used simply to denote formal correspondence) can be replaced by the
equality sign and if the series converges uniformly on C, then the
coefficients a; are unique and given by the formulas indicated. For
we can multiply the equation (3) through by p;(z)ds and integrate
over G term by term.

Under the hypothesis that the pi(z) are normal and orthogonal
on G and that f(3) together with its square is integrable on C, the
best approxzimation to f(z) on C in the sense of least squares by a
linear combination of the functions po(z), pi(%), ..., Pa(3) s
given by

sn(3) = agpo(2) + a1 p1(3) +...+ @npa(3), ak=Lf(z)m ds.
Indeed, we have clearly

S1f@) =2 apaa)1ds

C

= [1f—=0pa) [F— 2 %apx] ds
(4

=fffds—2)\k Fprds—2 X% [ frrds + = hiia
C Cc [4

=fff'ds—2aka—k+ (ar— )\k)(a—k—-ﬂ),
c -
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-and this last expression is a minimum when and only when we
have \i=ax, k=o0,1,2, ..., n.

The remarkable fact just proved is noteworthy not merely in giving
a simple formula for the linear combination of best approximation in
the sense of least squares, butalso in that the coefficients ax for best
approzimation do not depend on n, for n2 k.

Itis a familiar and easily proved fact that the functions 1, z, 22, .
are orthogonal on an arbitrary circle C : | 5| = R whose center is the
origin. Consequently, if £(z) is an arbitrary function analytic on and
within G, then the polynomial

Qg+ @13+ A 22 4. .+ an 3l
— shas = L [L&)
ak_-;nR“./c.f(z)z ds ani,J 26+ 4z,

is both the polynomial of degree n of best approximation to f(z) on C
in the sense of least squares, and the sum of the first » 4 1 terms ot
the Maclaurin development of f(z).

If functions ¢,(3), ¢1(3), g2(3), ... integrable and with an inte-
grable square be given on G all linearly independent in the sense
mentioned in connection with (2), then by the well known Gram-
Schmidt method of orthogonalization may be found functions (unique
except for arbitrary multiplicative conslants of unit modulus)
Po(2), pi(2), - .., normal and orthogonal on C, such that p,(z) is a
linear combination of the functions g, (2), ¢,(2), .. ., ga(3); recipro-
cally, gn(z) is a linear combination of the functions Po(5),
P1(3); - .., pn(3). Thus, if f(z) is integrable and with an integrable
square on C, it possesses a formal expansion (3) in terms of the func-
tions px(z), and the sum of the first » + 1 terms of this expansion is
the linear combination of the first 7+ 1 functions qi (=) of best
approximation 10 f(z) on C in the sense of least squares.

If ayqo(2) 4+ aiq:(z) +. ..+ @ngn(3) is the linear combination of
the functions g,(z), .. ., gu(3) of best approximation to f(z) on C in
the sense of least squares, the following equation is then valid :

S = qu(m) ...~ an ga()) D I ds [ = o
(k=o,1,2,..., n)

It is likewise true, and was proved by Jackson [1] for the case of
real functions, that if a4q,(3)+...+ a, qn(2) is the linear combi-
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nation of the functions go(2), . . ., gn(3) of best approximation to f(z)
on G in the sense of least p-th powers (p > 0), then we have

;/.Lf"“oq«)—-------titnqnl"’—2 Lf— @ go—...— angn)qrldz| =0
c v

(k=o,1,..., n)

20. Szegd’s polynomials. — It is obvious that the results described
in paragraph 19 can be applied to expansions in polynomials; the
qi(%) are the functions 5%, k=0, 1, 2, ..., and the functions Pr(%)
are then normal and orthogonal polynomials of respective degrees k.
It is the great merit of Szegd [1] to have applied the method of ortho-
gonalization, long familiar in the real domain, to these functions
qx(3) =5t considered on an arbitrary rectifiable Jordan curve in the
z-plane, and lo have studied the corresponding expansions.

Szegd's fundamental theorem regarding approximation (all but the
last part is proved in paragraph 14) is that if C is an analytic curve
and if f(5)is analytic within C, but has a singularity on Cy, then
its formal expansion in terms of the orthogonal polynomials p.(z)
belonging to C converges to f(z) interior to Gy, uniformly on any
closed set interior to Gy, and diverges exterior to C,.

Szego obtains other results. If the polynomials p.(z) are orthogo-
nal on C but instead of being normal are subject to the restriction

f | pa(5) |*ds = I, where lis the length of G, then under the hypo-
C

thesis given on f(z) we have
1 —_—
= nPn y n=7 n d: 9
f@=Napata),  a=7 [fopale)ds
=—n I I o
T flar=5  Dlak=g [1A=)rd

If C is an analytic curve, then a function which maps the interior
of C onto the interior of | w| =1 so that z = a corresponds to w =0
is, for z interior to G,

521_75 IT;—&_)f [K(aaz)J"'dz,y |5l=17 '

K(a, 2) =2pn(a)pn(2)-

n=0
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The following asymptotic representation is valid uniformly exterior
to G, if in p,(3) the coefficient of z” is chosen positive :

pr(z)= e'(”i)“\/ﬁ V& (2)[@(3)] [1-+e(3)],

where w = ®(z) maps the exterior. of C onto the exterior of | w|=1
so that the points at infinity correspond to each other, and where
¢n(3) approaches zero. As a corollary we have

®(z)=elim -P""'—i(zl, z exterior to C.
n>w Pn(%)

Smirnoft later [1, 2] treated Szegd’s problem by a new method, and
obtained sharper — perhaps the sharpest possible — results relative
to expansion in a region bounded by an arbitrary rectifiable Jordan
curve, of a function not necessarily analytic in the closed region.
This treatment requires delicate study of conformal mapping and of
the representation of functions by Cauchy’s integral. Smirnoff’s pri-
mary results are : (i) the extension of Szegé’s theorem on approxima-
tion to the case of an arbitrary rectifiable Jordan curve (proved in
paragraph 14; Smirnoff makes an additional assumption regarding the
curve), (ii) proof thatif f(z) is analytic interior to the analytic
Jordan curve G and if f(z) has boundary values almost everywhere
on G and is represented by Cauchy’s integral over C, then the formal
development of f(3) is valid for z interior to C, uniformly on ‘any
closed set interior to C. Under the hypothesis of (i) and if the inte-

gral f C] JS(3)[?|dz| of the boundary values exists, then the formal

development converges in the mean to f(z) on C, and this implies
convergence to f(z) of the formal development interior to C, uni-
formly on any closed point set interior 1o C; this is also true (although
not mentioned by Smirnoff) even if a positive continuous norm func-
tion is introduced. The corresponding result for the most general
rectifiable Jordan curve G is doubtful.

21. Analogous results. — In paragraph 19 we considered line
integrals as the measure of approximation and hence also in defining
the corresponding condition of orthogonality. One may likewise use
surface integrals with no modification in the formal work. This mea-~
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sure of approximation was used for analytic functions by Bergman,
Bochner, and Carleman [1]; the last-named carried through the ana-
logue of Szegd’s study for the new measure of orthogonality. Carle-
man’s chief results in this connection are that if f (z) is analytic interior

to aJordan region C and if the integral 3)|2dS exists, then the
g g .

formal expansion of f(z) in the new orthogonal polynomials p, (z) con-
verges to f(z)interior to G, uniformly on any closed set interior to C.
He also develops an asymptotic formula for these polynomials ana-
logous to that of paragraph 20. Proof of overconvergence in the case
that f(z) is analytic on and within G [Walsh, 9] is given in para-
graph 15.

It is worlh noticing that the polynomials 1, 5, 22, ... are ortho-
gonal not merely on the circumference | z| =r but over the area
|2{<r, as the reader can easily verify, so that Taylor’s series is a
special case not only of Szego’s but also of Carleman’s series.

The discussion of approximation on C in the sense of least squares
is readily modified so as to apply to approximation on C in the sense
of least squares with a norm function n(z).For simplicity take n(z)
positive and continuous on C. The minimizing of the integral

fcnu) |£(2) — T arpe(2) |2 ds =fcl VA(Z) f(3) — X as pr(3) Yr(3) | ds

is most conveniently studied if the functions pi(2) V/n(3) are ortho-
gonal on C, that is to say, if we have

4) S @ P pal@)ds =0 (ks n).
C

This relation is called orthogenality of the set pi(z) on C with respect
to the norm function n(z). A given set of linearly independent func-
tions ¢x(z), integrable and with an integrable square on C, can
obviously be orthogonalized on C with respect to n(z) by orthogona-
lizing the set g;(z)y/n(z). Thus there exists a theory of approxima-
tion in the sense of least squares with a norm function, a theory which
is analogous to and can be derived from the corresponding theory
without a norm function (with norm function unity).

It is clear that every case of approximation studied in Chapter I1I
where an integral measure of approximation with the exponent p = 2
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is involved, with or without a norm function, leads to a set of poly-
nomials belonging to a region or other point set C, and thus to a
solution of Faber’s problem (§ 18) for the point set C. We have, then,
a solution of Faber’s problem if C is bounded by a rectifiable Jordan
curve (Szego, Smirnoft, Walsh), if C is a Jordan region (Carleman),
if G is an arbitrary point set whose complement is simply connected
(Walsh; herein lies the chief interest of paragraph 16), and if C con-
sists of several Jordan regions (Walsh and Russell). Faber’s problem
can similarly be solved for an arbitrary point set whose complement
is regular (§ 11) and of finite connectivity.

Analogues of well known results on Taylor’s serics, such as gap
theorems, study of functions with natural boundaries, zeros of approxi-
mating polynomials, summability. etc., have never been worked out
for these more general series.

Of particular interest in connection with approximation in the sense
of least squares with respect to a norm function is the case that C is
the interval —1<5<+ 1. Various norm functions lead to expanslons
in terms of well known polynomials; for instance, n(3) =1 corres-
ponds to Legendre polynomials. The curves G, turn out 1o be ellipses
with foci at the points +1 and — 1. The polynomials are the nume-
-+l n( t)

, (t—2)
sions in terms of these polynomials have been widely studied, by C.
Neumann [ 1], Heine [1], Frobenius, Laurent, Tchebichef, Pincherle,
Darboux [1], Stieltjes, Picard, Markoff, Faber [2, 4], Blumenthal[1],
Van Vleck, Nielsen, Fejér, Bernstein [4], Szego [2], Angelesco 1],
Abramesco [2], Jackson [3], Shohat [1], and many others. The most
general results are those of Szegs, Faber, Jackson, Bernstein, and
Shohat. We omit the detailed discussion of these polynomials; the
behavior of the corresponding expansions of analytic functions is
not essentially different (so far as is known) from the behavior dis-
cussed in paragraph 10, provided the function n(z) is suitably restric-
ted; for further information the reader is referred to two articles on
orthogonal polynomials for this Mémorialto be written by Mr. Shohat.

If orthogonality is studied not on a single interval but on several
intervals, the polynomials [r(z) =1] are generalizations of those of
Lamé; here too the expansions have been studied in detail, by Lin-
demann [1], Faber[4], Shohat[1], and others; compare paragraph 17.

ratorsin the expansion of f dtasacontinued fraction. Expan-
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The analogous situatibn (including the continued fraction) deserves
further study, where the integral is extended not over a line segment
but over one or more rectifiable arcs or curves.

22. T-polynomials. — Lel C be a closed limited point set containing
an infinite number of points. Then there exists precisely one polyno-
mial of the form T,(3)= 2"+ a;3" ' + a,3" 2+ ...+a, whose
maximum modulus g, on C is least; indeed, the problem of determi-
ning T,(z) is that of approximating to the function z* by a polyno-
mial of degree n — 1, so by the results of Tonelli (§ 12) the existence
and uniqueness of T, (s} are assured. The designation T-polynomial
is fitting because Tchebichef determined these polynomials when G
is a line segment; we use the shorter form to avoid confusion with the
polynomials of paragraph 12. T-polynomials have a surprisingly large
number of applications in various fields in the theory of functions.

Faber studied the T-polynomials in the complex domain in a note-
worthy paper [3] and derived their fundamental properties for the

case that C is a region bounded by an analytic Jordan curve. The
relations

o Ent 1 . n 1
lim &&= = -, lim Vgn=-»
n>w gn r n>» r

(in the notation of paragraph 18) are fundamental; generalizations are
discussed in paragraph 29. The polynomials Tr () differ relatively
little from Faber’s polynomials P, (5) :

| Tu(z)—Pa(2)| < M(ﬁ)"en, % on Cp,

where M and 6 <1 are suitably chosen. The relations

. T (Z) I e WA I
1 il hat i Sodll/ 1 T,(3)]| = —
Im ey = VTG =

are valid for z exterior to C, where ¢ and z are related as in para-

graph 18.
An arbitrary function analytic interior to C, can be expanded in a
unique series chTn(z) entirely comparable in properties to the

other series of Faber.
It would be of interest to determine the pairs of curves G and c’
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for which all the T-polynomials are the same, or for which the
T-polynomials are the same for an infinite sequeuce of degrees. In
the latter case it is necessary that C be Cy or that C’ be Cy for sui-,
table R and it is sufficient that G and C’ be lemniscates of the form

C:lzm+kyzmt+...+hp|=p,
C:lamahizgmtag. .+ hkn|=p

23. Polynomials in z and é — We have hitherto discussed prima-

rily the expansion of given functions known to be analytic in some
region. We consider now the further problem of expanding functions
defined merely on a Jordan curve C. This work is particularly related
to Weierstrass’s theorem II of paragraph 2 and its generalization
of paragraph 4. '
* If f(z) is integrable together with its square on C : |z| =1, then
[F. and M. Riesz, 1] f(3) can be expanded formally (§ 19) on C in
each of the two orthogonal systems 1, 3, 22, ...; 571,572, ... (ortho-
gonal also to each other on C) :

() =ay+ arz+ a-z2+.... (|z|<I), I J(z)
(5) %f a ars Q= Ef d d

fr(B)=azl+a.z2+... (|3]|>1), 2+

The two series (5) converge as indicated; the functions represented
have as boundary values on G (found by normal approach almost
everywhere) functions f,(z) and f,(z) also integrable together with
their squares on G. On C we have almost everywhere

Sf(z) =fi(z) + fa(2),

so the sum of the two series (5) is a formal expansion of £(z) on C.
The functions f) () and f(z) can also be represented

f(t) Si(z) (=1 <L)
6 d ’
(6) 21:zft—z b= {ff,(z) (lz]>1),

where the integral representing f,(z) is to be taken in the clockwise
sense on C. If f(2) is analytic or satisfies a Lipschitz condition on C,

the same is true of f, (z) and f, (), continuous respectively for | z [<1,
and | z|2>1, and (5) is valid also on C.

This entire situation is difficult to generalize to an arbitrary recti~
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fiable Jordan curve C. Assume the origin to lie interior to G. The two
sets of functions 19 2, 22, ...; 37", 372, ... are not orthogonal to each
other on such an arbitrary curve — indeed it seems not to be known on
what curves these two sets are orthogonal to each other. If f(z) satis-
fies a Lipschitz condition on an analytic Jordan curve C, then f(z)
can be split up as in (6) for the circle. Two developments can then
be given, for f, () and f,(z) respectively, in terms of polynomials in

z belonging to the interior of G and polynomials in 2_ belonging to

the exterior of G. The determination of the coefficients directly in
terms of f(z) on C is nol immediate, and here lies another open
problem of interest. Perhaps for an arbitrary C there exists a weight
function n(z) such that all the functions 1, z, 32, ... are orthogonal
on C with respect to n(3) to all the functions z ', 572

Let C be an arbitrary analytic Jordan curve. Walsh [1 5] has
exhibited a set of polynomials in 5 and z~' respectively po(3),
Pi(2)y <« o5 p—1(5), p—2(3), ... belonging respectively Lo the interior
and exterior of G, such that an arbitrary function f(z) satisfying a
Lipschitz condition on G can be expanded on C in the sum of 1two
corresponding series. The coefficients in the two series arc found
directly from f(3) by integration on C, and the two resulting series
converge respectively in the closed interior and exterior of C. This
result is of interest; nevertheless the method is relatively artificial
and the polynomials exhibit no natural extremal property. It is desi-
rable to solve the same problem by use of other polynomials.

Ghika [1] has made a general study of expansions of functions
defined on a curve C in terms of functions analytic interior to C or
analytic exterior to C and zero at infinity, but scems not to have
made application to expansions by polynomials.

We add a further remark relative to orthogonality on C :

Let f(z) be integrable on an arbitrary rectifiable Jordan curve C
in whose interior the origin lies. A necessary and sufficient con-
dition that f(z) be orthogonal on C lo each of the functions 1, z,

D) —0 ior
22, ... w[f—?“”‘ = o, 5 exterior to C. A necessary and suffi-
cient condition that f(z) be orthogonal on C to each of the func-
tions z=', 372, ... is f ti(t—i-l dt| = o, z interior to C.
. C -
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24. Open problems. — The polynomials 1, 3, 32, ... are orthogonal
not merely on a single circle | z| =1 but are orthogonal on every
circle | 5| =R. Other sets of polynomials are orthogonal on more
than one curve with respect to suitable norm functions; for instance,
the set 1, 3—¢, 5(z—¢), 52(5—+¢), ..., ¢ > o0, is orthogonal on
every circle | z| =R > ¢, with respect to the positive norm func-
tion ZW—C:)T——C) The following fundamental question is still
unanswered : When does the same set of polynomials p;(3) result
from orthogonalizing the set 1, z, 32, ... on a curve G, with respect
to a norm function r,(5) and also from orthogonalizing that set on
another curve G, with respect to a norm function n,(z)? Given G,,
can n, (s) always be found so that C; and ny(z) exist? Given C, and C,,
can 7, (z) and n,(z) always be found ?

The present writer has some partial results on this problem,
hitherto unpublished, such as the following :

If a set of polynomials pi(z) results from orthogonalizing the
set 1, 5, 2%, ... on a curve Gy with respect to the norm func-
tion n,(z) and also results from orthogonalizing that set on the
curve C, with respect to the norm function n,(z), then either C,
is a curve (C.)y (notation of paragraph 8) or C, is a curve (C,)z.

Other problems worth studying are these : When are the polyno-
mials of Faber orthogonal (with respect to a norm function) on the
curve G or on a curve Cp ? When is this true of the generalized
Faber polynomials ? When is a set of polynomials orthogonal in a
region C in the sense of Carleman and also orthogonal on the boun-

dary or on Gy in the sense of Szego? When is a sequence of polyno-
‘mials of the form

L (s—aw), (F—w)(3—as), (5—a)(z—as) (5 — ),

— here the formal development is a series of interpolation; compare
paragraph 25 — orthogonal on a curve G or on several curves with
respect o a norm function? In any case, what can be said of the
convergence on the curve C of the various developments of a func-
tion analytic interior to C, with certain continuily properties on G
[studied for particular polynomials by Walsh, 1, 5]; what can be

said of convergence on G, (notation of §10) if the function is analytie
on and within C?
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Many classical sets of orthogonal and other polynomials satisfy
recurrence relations. Polynomials which satisfy such relations arise
naturally also in connection with difference equations. The conver-
gence of series of such polynomials was investigated by Poincaré [1]
and Abramesco [1], and the analogous expansion of arbitrary functions
by Pincherle [1]. These polynomials p,(z) share with orthogonal
polynomials, Faber’s polynomials, T-polynomials, and many sets of
polynomials used in interpolation, the property that

lim V[pu(2)1 = 1w (2)]
exists. It is clear that whenever this limit exists, an arbitrary series
Zanpn (2), where Iimya, = :—L, converges for |w(z)| <<y and
diverges for |w (z)|> p. This fact can be used both to determine
regions of convergence and divergence of a given series, and frequently
to determine the asymptotic properties of the coefficients in the
known expansion of a given function. Ordinarily the function w (z)
can be expressed as 7®(z), where ®(z) maps the exterior of some

set G onto the exterior of the unit circle so that the points at infinity
correspond to each other. When that occurs, when

lim VI pa(2) | =|w(3)|

uniformly on every C;(o > 1), when p,(3) is of degree n, and when
(as is usual) the sum f(z) of the series has a singularity on
|w(z)|=p.>|r|, then the series converges to f(z) on G with the
greatest geometric degree of convergence. It would be decidedly worth
while to bring not merely the convergence of such series but the
corresponding expansions of an arbitrary function into a single-
theory.

Many, if not all, of the developments we mention in Chapters I'V
and V can be derived from the expansion

I - .
= 2 pn(3)gn(t), =z interior to G, ¢ on or exterior to C,

where p,(z) is a polynomial, by applying Cauchy’s integral over C or
a contour containing C in its interior. The detailed study of-the
functions ¢,(¢) and of expansions in terms of them has been made in
but few cases, notably that in which the p,(z) are the Legendre poly-
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nomials, and in the general case should be quite fruitful. Here it is
of interest to study orthogonality not merely in the sense of (4) but

also in the sense f n(z) px(3) pm(2) dz = 0; compare the references
C

given in paragraph 21, and Geronimus [2].

CHAPTER V.

INTERPOLATION,

The two principal methods for the effective determination of poly-
nomials of approximation are the use of polynomials belonging to a
region and the use of interpolation; some important polynomials,
such as those used in the Taylor expansion, belong in both classes.
We now turn to the determination of polynomials by interpolation.

25. Interpolation in arbitrary points. — The following problem is
fundamental : Given a function f(z). Let the polynomial p,(z) of
degree n be defined by the requirement of coinciding with () in
points 5", z9°, ..., 2" , with the usual convention (§ 6) relative
to multiple points 5. To study the convergence of the sequence p, ().

The sequence p,(z) clearly need not converge to f(z) in an arbitrary
region C provided merely f(z)is analytic in C and the points 24" are
chosen in C. Indeed, let us choose /"= o, f(z)_ y so that

E—1)
pn(3) is the sum of the first » + 1 terms of the Mdclaurm development

of f(2). The function f(z) is analytic over the entire plane except
at 5 =1, yet convergence of p.(z) lo f(z) takes place only in the
circle | 2| <<1. Another example, due to Méray, where the sequence
pn(3) fails to converge to f(z) except at a single point, is given in
paragraph 31.

We have already (§ 7) seen an illustration of sequences found by
interpolation, although the sequence p,(5) there considered was not
originally defined for all values of n. That sequence can be readily
replaced, however, by one whose convergence properties are essen-
tially the same and which is defined directly by interpolation for all
values of n. We need merely require [ compare Martinotti, 1] that p, ()
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should coincide with f(z) in the first 7z + 1 points of the sequence

(1) %1y, Ggy  e..y Gy, Oqy, Uy, ..., Oy, %y, O,

In a general way, the points z}” of interpolation may happen to be
so chosen that z{™ =z does not depend (for >k —1) on n.
Whenever this occurs, the polynomial p,(z) is the sum of the first
n -1 terms of a series of the form

(2) A+ a1(2—31) + A (32— 31) (3 — 3»)
+ a3(3—231)(2— %) (3—33)+....

Indeed, the polynomials p,_,(z) and p.(3) are equal in the points z,,
B3y ..., Zn, and their difference is a polynomial of degree n, hence
a constant multiple of (2 — z,) (38— 2,)...(5— 3,). Series (2) is
called a series of interpolation, in distinction Lo a sequence of poly-
nomials of interpolation such as those defined by the general
condition p, (") = f(2{"), k=1, 2, ..., n+1.

Thus the .polynomials of paragraph 7 can be replaced by polyno-
mials corresponding to the sequence (1) which yield a series of
interpolation of form (2). The polynomials (5 — a;)(5 — as). . . (58 — &tz)
then belong to the interior of the lemniscate. The series converges
(proved as in paragraph 7) to f(z) interior to the largest lemnis-
cate | p (z) | = p which contains in its interior no singularity of f(z),
converges on every point set | p ()| <p' << p with the greatest geome-
tric degree of convergence, and diverges (for the proof see para-
graph 24) exterior to | p(2)|=p.

The series just discussed is typical of many series and sequences of
interpolation corresponding to points z;” whose asymptotic proper-
ties are comparable with those of the sequence (1). For detailed
references the reader may consult Norlund [1, 2]. Moreover, Porit-
sky [1] has studied the convergence of certain sequences, such as
polynomials po,_;(3) of respective degrees 2n—1 delermined by

sz,f)_. (a) =f(2l)(a)7 Pg_'2l'll-‘!| (b) =f(2l)(b)) (l =0,1,...,0 _I)'

The following result [Méray, 1] is one of the most interesting rela-
tive to interpolation in points not completely prescribed :
If all the points =V satisfy the inequality |2y |<B, if the
function f(3) is analytic for|z| <T > 2B, and if the polynomial
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pa(2) of degree nis found by interpolation to f (3) in the points 3y,
k=1, 2,..., n+ 1, then the sequence p,(z) converges to f(z)
for]z|<T—2B, upiformly for |5|SZ<T —2B.

A slightly more general theorem than that of Méray has recently
been proved by the present writer [10] :

Let R, and R, be closed limited point sets and let L be the set
consisting of the closed interiors of all circles whose centers are
points of Ry and which pass through pointsof Ry. If f (2) is analytic
on the closed set L, and if the points 3" have no limit point exte-
rior to Ry, then the sequence of polynomials p,(3) defined by

interpolation to f (z)in the points zy" converges to f(z) uniformly
for z on R,.

26. Interpolation in roots of unity. — Given a function f () ana-
lytic in a region C, it is quite conceivable that by proper choice of
the points of interpolation, a sequence of polynomials might be
constructed which would converge to f(z) throughout C. A beautiful
illustration was given by Runge [2], who considers a function analytic

in the unit circle and chooses the (n + 1)st roots of unity as points
of interpolation. Let us prove :

Let the function f(z) be analytic for |z|<<R >1 but have a
singularity on the circle |z| =R. Let p,l(z) be the polynomial
which of degree n coincides with f(z) in the (n—+1)st roots of
unity. Then the sequence p,(z) converges to f(z) on C : |z|<1
with the greatest geometric degree of convergence; consequently
the sequence p,(z) approaches f(z) everywhere interior to|s|=R,
uniformly on any closed point set interior to the circle | 5| =R.

Moreover, if Pn(z) is the sum of the first n—+1 terms of the
Maclaurin development of f(z), then we have

3) ]~i>m [pn(3)—Pn(z)j =0 for|z|<R°, uniformlyfor |z|<Z<R".
n w
The convergence for | 5| <1 is proved by Runge; the remainder of

the theorem is due to Walsh [10]. We have, if T denotes a circle
lzl:Pl“ 1<RI<B~)

F(2) = pa(z) = —— [((Ei=nf(e)dt

Py [v(t"'"‘—-l___)(th)" g interior to T,
g+ f(¢) de . .
3)— z)= S i%C
J(2)—=Pn(z)= 27:zft"+1(t—z)’ z interior to T.
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Consequently we find by subtraction

tn+1_— gn+1 t) dt
Pn(3)—Pa(z)= '_I_‘/[:t(n+1(tn+f_ [;{t(_)z)'

; Z interior to I'.
27

The integrand suitably interpreted has no singularity for ¢ = z and
hence this equation is valid for all values of z. In particular for

| 2|=Z>R,, the right-hand member approaches zero uniformly
Rlil+l -+ Z.n+t
provided we have Z<_R}. For Z =1, the right-hand member is in

provided the expression approaches zero, that is to say,

modulus less thanfl{\%, where M is suitably chosen. The sequence P,(z)
converges to f(z) on G with the greatest geometric degree of conver-
gence. The proof is complete (*).

It is worth noticing that equation (3) enables one to conclude the
divergence of the sequence p,(z) for R <<|z| <<R2, Abel’s theorem
and its modified converse for the sequence p,(3), etc.

27. Fejér’'s extension. — Runge raised the question whether this
example could not be generalized to apply to a more general region.
In a brilliant paper, Fejér [1] considers an arbitrary Jordan curve C of
the z-plane and the set of n+- 1 points in the z-plane (called equally
spaced on C) which correspond to the points w"*'=1 when the
exterior of G is mapped onto the exterior of |w|=1 so that the
points at infinity correspond to each other. The following theorem
is proved with the aid of Hilbert’s method (§ 8); only the first part
of the theorem is stated by Fejér, but the second part [compare
Szegd, 1] is an immediate consequence of his formulas :

Let C be an arbitrary Jordan curve in the z-plane and f(z) an
arbitrary function analytic on and within C. Then if p,(z) is a
polynomial of degree n found by interpolation to f(z) in n—-41
equally spaced points on C, the sequence pp(z) converges to f(z)
uniformly in the closed interior of C. More explicitly, the se-
quence pp(z) converges to f(5) on G with the greatést geometric
degree of convergence. '

(') We remark that (3) is also valid if the p,(z) are determined by interpolation
to f(%) in the points 2"+ =« , where |a, | <1,
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Fejér also shows, as a complement to Runge’s result, that if f(2)
is analytic interior to C: | z| =1 and continuous in the closed region,
then this sequence of polynomials p,(s) converges to f(z) for
| 2| <1, uniformly for |z|<r<C1. Convergence need not take
place on G itself, as Fejér shows by an example. The corresponding
result would be well worth studying for a more general Jordan or
other region.

28. Interpolation and Jordan regions. — At the end of his paper,
Fejér considers the points of interpolation z,, %2, 53, ... on an arbi-
trary Jordan curve G which correspond, under the conformal map
previously described, to points w=c¢, ¢?, ¢, ..., where ¢ is no root
of unity. He states without proof that if f(z) is analytic on and
within C, and if the polynomial p,(z) of degree n is dctermined by
interpolation to f(z) in the points 5y, 2, ..., Zu.1, then the sequence
pn(z) approaches f(z) uniformly on and within C. The corres-
ponding series is of form (2), so we have here not mercly a series of
interpolation but also a series of polynomials belonging to the
region G, the first solution of Faber’s problem (see paragraph 18)
for an arbitrary Jordan region.

The following is a more general problem. Given a Jordan curve C.
To characlerize the sets of points

(4) EACIE 'L PR N

on or within C such that for an arbitrary function f(z) analytic
on and within G, the polynomial p,(z) of degree n which coincides
with f(z) in the points z;* has the property

(5) lim pr(z)=f(z), uniformly for z on or within C.
n>wo

Fejér considers further the choosing of points on the curve C.
There results the following theorem; the sufficiency of the condition
is due to Fejér, the necessity was proved later by Kalmar [1].

é

Let C be an arbitrary Jordan curve and let points (4) be chosen
on G. A necessary and sufficient condition that (5) be valid
JSor every f(z) analytic on and within G is that the transforms
of the points 2" be uniformly distributed (see below) on 7y :

MEMORIAL DES SC. MATH. — N° 73. 4
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|w|=1 when the exterior of C is mapped onto the exterior of v
so that the points at infinity correspond to each other.

The transforms wj® of the points z{" arc said to be uniformly dis-

tributed on y[ Weyl] if and only if we have lim 22 = =, where ¢
2w 27
is the length of an arbitrary arc of y and v, is the number of points w{",

w, ..., wi®  which lie on this arc.

Fejér points out that his discussion (§ 27) is also valid if G is a
line segment instead of a Jordan curve. Indeed, the discussion is
valid if C is a Jordan arc. It would be of interest to adapt his
methods (§§ 27.28) to the study of a more general point set G, even if
the complement of C is not simply connected. Compare Szeg6[3 |.

The general problem of the nature of the points (4) was further
considered by Faber [3], who shows that if'C is a Jordan curve

. . 1
and if the lemniscates [(z —2") (2 — ") ... (s —2.\) | = 751

(notation of paragraph 18) approximate C uniformly, then (5) is
satisfied for every f(z) analytic on and within C. It is also true in this
case (although this is not mentioned by Faber) that the sequence p,(2)
converges to f(z) on G with the greatest geometric degree of conver-
gence. It is not true (contrary to Faber's statement) that this con-
dition of approximation to G by lemniscates is necessary for (5), for
every f(z) analytic on and withih C.

Kalmar [1] gives the following solution of the general problem
mentioned. A necessary and sufficient condition that (5) should
hold for every f(z) analytic on and within the Jordan curve C is
(nolation of paragraphs 8 and 18) that we have for z exterior to C

o2

| (z—3")(z—38)...(z2—3)) |n+i=
n>wo r

In a paper as yet unpublished, Fekete has proved : Let C be an
arbitrary Jordan curve, and let the points (4) lie on or
within C. Then a necessary and sufficient condition that we have
lim p,(2)=f(3) interior to C (not necessarily uniformly) for
n>wo
every f(z) analytic on and within C, is

lim VM, = ;, M,y = max||(z — z(¥)...(z — z,) ], 5 on C].
R L3 .
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If this condition is satisfied, we have iz_r)ri Pn(3)= f(3) uniformly
on any closed set interior to G, for every such f(z). The quan-
tity ;!. (§ 18) is also the transfinite diameter (§ 29) of C.

29. The transfinite diameter. — The term transfinite diameter
was introduced by Fekete, and the fundamental properties which here
concern us are primarily due to him and to Szegé, Pélya, and Pélya
and Szegd [1] ; the last paper includes a bibliography.

Let C be a closed limited point set containing an infinity of points.
The absolute value of the Vandermonde determinant of order n has
a maximum value for each n, where the 3", i =1, 2, ..., n, belong
to C but are otherwise arbitrary :

j=n nin—1)

(6) |V,,|=]]|z£n)_.}(,m[~_—_dnz
1<j=1

Then the quantities d, decrease monotonically with % and approach

the limit d, the transfinite diameter of C. The term transfinite diameter
is equivalent to the term capacity of the logarithmic potential.
For this same point set G, let z, be a point exterior to C, and
let a,(z,) and ®,(z,) denote the least upper bounds of | pn(2,)]|
.and | p'»(30)| respectively for all polynomials p.(3) of degree n
whose absolute value on G is not greater than unity. Then
li;n Van(30) and li;n'\'/w,.(zo)zo:(zo) exist and are equal; the
n>x n @®
value is finite or infinite according as d is positive or zero. In par-
ticular, if G is a set whose complement is simply connected, then
for 3, exterior to C we have a(z,) =|®(3,)| in the notation of para-
graph 8; this result is to be compared with the Lemma of paragraph 9.
The transfinite diameter of C has interesling properties relative
to the T-polynomial T ( 3) for C. If we set p2 = max [ | T»(5)|, 50n CJ,

then we have limp, =d; compare paragraph 22. A connection of
"> o

the transfinite diameter with interpolation was likewise indicated by

Fekete [1]; the following is a generalization of his result which may
be proved by his methods.

Let C be a closed limited point set whose complement K is
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connected and regular (§ A1), and let f(3) be analytic on C.
Let P,(z) be the polynomial of degree n — 1 of interpolation to
f(3) in the n points 2", i=1, 2, ..., n, which give to|V,|its
mazximum value. Then the sequence P,(z) converges to f(z) on
C with the greatest geometric degree of convergence.

The set of points 5! here used is, in case C is a circle, identical
with the set used by Runge and Fejér (8§ 26, 27).

The modification of this theorem and those of paragraph 11 to
include the case where K is not regular would seem still to be
closely connected with the concept of transfinite diameter.

30. A synthesis of interpolation and Tchebichef approximation. —
We have seen many illustrations of the close connection between
individual polynomials of interpolation and approximation.

Let f() be analytic in the region C and let a closed pointjset Cp
containing at least n + 1 distinct points belong to C. Let p,(3) be the
polynomial of degree n of best approximation to f(z) on G, in the
sense of Tchebichef. If C, contains precisely n+ 1 points, then
Pn(5)is the polynomial which coincides with f(5) in those n + 1 points
and is found by interpolation. If C,, does not depend on n, then p, (3)
is the polynomial of degree n of best approximation to f(z) on C,
in the sense of Tchebichef as we have always considered it. In any
case p,(3) exists and is unique, and the sequence p,(z) may converge
to f(z) in C.

The writer hopes to elaborate this remark (for instance where C,
consists of certain roots of unity) on another occasion.Here we merely
present a relatively simple illustration.

1f f(z) is analytic for |z|<R>1 andif pa(z) is the poly-
nomial of degree n of best approximation in the sense of Tche-
bichef to the function f(z) on the point set C,:|z|=r,<1, then
the sequence p,(z) converges to f(z) for | 5| <R, uniformly for
| 2|<Z < R. In fact, the sequence p,(3) converges to f(z) on C:
| 1 =1 with the greatest geometric degree of convergence.

Let Ry <R be arbitrary, R; > 1. Then in the Cauchy-Taylor
development f(5) = Za, 5, the coefficients satisfy an inequality of

the form | an | 7+ If Pr(2) denotes the sum of the first 7+ 1 terms
- [}
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of the development, we have for | | =r,<1
oM
Ry Mgt
I'n = R1——I R’,‘

I— R1

| f(2)—Pu(3)|S| @np1 8™+ apygznt2+... | £

Then by the definition of the polynomial p,(z) we have a fortiori

M ,.I£+|
lf(Z)—Pn(Z)l§~R—1-_—l-'£{—,IL') for | 3| =rp.

Combination of these two inequalities yields

) oM rit!
(7) |Pa(z)—Pu(a) | S oy for|s|=ra,
1—1 1

whence by paragraph 9 we have

2Mr,

i
[p"(z)-P"(z)lé(mt’ fOrlz‘:l.

The sequence P,(z) is known to converge to f(z) on G with the

greatest geometric degree of convergence, so our theorem is comple-
tely proved.

Another remark (to be elaborated elsewhere) emphasizes the close

relationship for polynomials of a given degree between interpo-
lation and approximation in the sense of Tchebichef :

Let f(z) be analytic at the origin, let p,(z) be the polynomial
of degree n of best approximation to f(z) on the set | s|=r, and
let Pn(z) be the sum of the first n+ 1 terms of‘the Maclaurin
development of f(s). Then as r approaches zero e have

limp,(3) = P,(3), for all values of z, uniformly for all values of z
on any closed limited point set.

For suitably chosen M, and for suitably small r the derivation of
(7) 1s valid, with only minor and obvious changes :

| pn(3) —Pn(z) | M, ro+1, for | z|=r.
Then for |2|<Ry>r we have (§ 9) the inequality
|Pn (5) — Py (3)] M, %,v
2

and the right hand member approaches zero with r.
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31. Least squares and interpolation in roots of unity. — Qur
result of paragraph 26 brings out in a striking manner the close
connection between approximation on the unit circle in the sepse of
least squares and interpolation in the roots of unity. Another result
[Walsh, 44] also reveals this connection :

Let f(z) be defined and continuous merely on the unit circle
C:|z| =1 and let the polynomial p,(z) of degree n be found by
interpolation to f(z) in the (n -+ 1)st roots of unity. Then the
sequence pp(z) approaches the limit f,(z) = ;%—Jf%(_—t)zdt Jfor

C
| 2| <1, uniformly for |z|<r<Cr1.

This function f,(3z) is also the limit for | z| <1, uniformly for
|2|Sr <<t of the sequence of polynomials P,(z) of degree n of
best approximation to f(z) on G in the sense of least squares.

The special case f(z) = g was given by Méray |1], as an illustra-
tion to show that a sequence of polynomials found from a given ana-
lytic function by interpolation need not converge to that function
in any region. We verify at once p,(z)=12", limp,(3)=0o,
for |z] <<1. "

It would be of interest to study the corresponding situation for
curves C more general than the unit circle.

32. Further remarks. — Certain other sets of points have been
used for interpolation. Faber [3] shows that if C is an analytic
Jordan curve and if f(z) is analytic on and within C, then the
sequence of polynomials L,(z) of degree n found by interpolation
to f(5) in the roots of T, (2) (see paragraph 22) converges to f(z)
on C with the greatest geometric degree of convergence ; the sequence
Ln(z) diverges exterior to Cg(§ 10). Szego [1] proves the exact
analogue for interpolation in the roots of his polynomials. These are
generalizations of known results for the case that C is a line segment.
Interpolation in the roots of Shohat’s polynomials (§ 35) would also
be worth studying.

The open problems in addition to those mentioned are particu-
larly concerned with convergence on and exterior to the boundary of
the regions considered, in connection with interpolation in the
special points considered and also in connection with interpolation
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in general points, especially study of the relation between continuity
properties of f(z) and convergence on the boundary of the region
of convergence. Compare Fejér’s remark, paragraph 27.

CHAPTER VL

APPROXIMATION WITH AUXILIARY CONDITIONS AND TO NON-ANALYTIC FUNCTIONS.

33. Approximation with interpolation to given function. —
Perhaps the most obvious form of auxiliary condition in the study of
approximation by polynomials is to require the approximating poly-
nomial p,(s) to coincide with the given function in v fixed points
independent of n. We have the theorem [ Walsh, 5] :

If the function f(z), defined on the bounded point set S, can
be approzimated on S as closely as desired by a polynomial in z,
and if distinct points z,, 7, ..., 5, be chosen on S, then on S the
function f(z) can be approximated as closely as desired by a
polynomial which satisfies the auxiliary conditions : ‘

(1) p(z)=f(z) (?:I,‘.).,...,V).

The proof follows easily by the Lemma [for instance Walsh, 5],
whose proof we omit :

Lewma. — If R and the distinct points z,, z,, . .. , By are fized,
if we have |Gi|<n, k=1,2,...,v, and if G(z) denotes the
polynomial of degree v—1 which takes on the values Gy in the

points zx, then there exists a constant M independent of m such
that we have | G(z)|<Mn, for | z|<R.

Choose R so that S lies interior to the cirele [zl=R.Lete>o0
be arbitrary. Then a polynomial ¢(z) exists such that we have
If(@) —q(3)|< (_1'-:_M)’ z on 8. Define G(z), a polynomial of degree
v —1, by the equations

G(2x) = q(22) — f(3k) k=1, ...,
Then for the polynomial p(z)= 9(2) — G(3) we have by the
Lemma,

f(")—P(z)|§1f(z)—q(3)l+lG(z)|§—I-_-'_E—ﬁ+ IMTEM.—,E, zoaS.
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The proof is complete. Theorem and proof (and the Lemma) extend
under suitable circumstances to the case of points z; not necessarily
distinct. Compare also the method used below.

In all the cases in which we have studied polynomials of best
approximation (Chap. IIT) on a set C, the introduction of such auxi-
liary conditions as (1); where the points z; (not necessarily distinet)
are interior to G, does not alter the existence and uniqueness of
polynomials of best approximation, provided the degree of the
polynomial is at least v — 1. The new sequences of polynomials of
best approximation converge in every case with the same degree of
convergence as the old (geometric or not), and hence may exhibit

the same phenomenon of overconvergence. We shall prove by way
of illustration :

Let C be a closed limited point set whose complement is regular,
let f(z) be analytic and single-valued interior to C, but not inte-
rior to any Cgy, p'> p. Let the points z, z,, . . ., 3, (not necessarily
distinct) belong to C. Then the sequencel,(z) of polynomials of
best approzximation to f(z) on C in the sense of Tchebichef with
the auziliary conditions I, (z) = f(3k), k=1,2,...,v, converges
to f(z) on G with the greatest geometric degree of convergence.

Let R <p be arbitrary. Let p(z) be the polynomial of degreev —1
which takes on the values f(z;) in the points z, and let us set
I(z)=(s—2%)(5— %1)...(2—25). The function [z )[[(zl;(z)
is single-valued and analytic interior to G, if suitably defined in the
points 3z, so polynomials p,(z) of respective degrees o, 1, 2, ...
exist such that we have for z on C

S(z)—p(2) M
T A S Y i

1£(2) = p(3) + Pa(s) W(2)] 1< M.

This last inequality holds on C for the polynomials p(z) + pn (2)H(z)
of respective degrees n + v which satisfy the auxiliary conditions,
and hence the corresponding inequality holds for the polynomials
O,(z), n=v,v+1, .... The proof is complete.

34. Interpolation exterior to C. — Auxiliary conditions in the
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form of interpolation may also be given to apply exterior to the
point set C on which approximation takes place. Such auxiliary
conditions [either alone or in conjunction with such conditions
as (1) on C] do not alter the possibility of uniform approximation
on C, and they alter the degree and region of uniform convergence
when and only when they prescribe values for the sequence of
polynomials of best approximation in disagreement with the normal
limit (interior to the usual C,) of that sequence of polynomials. The
first of these remarks is a simple modification of our first application
of the Lemma, for by Runge’s theorem regarding several Jordan
regions, the requirement of approximation (hence of interpolation)
exterior to C does not alter the possibility of approximation
on C. The second of these remarks is more accurately described in
the following theorem [a special case is given by Walsh, 8], easily
applied to our other measures of approximation. We omit the proof,
which is similar to the last proof given in paragraph 33.

Let the function f(z) be analytic on the closed limited point
set C, whose complement is regular. Let p,(z) be the Tchebichef
polynomial of degree n for approxzimation to f(s) on G with the
auxiliary conditions

pr(a)=f(a,), a,0onGC (i=1,2,..., k),
pa(B) =170 B.moton C  (i=1, 2,..., k).

Let o denote the largest number such that f(z) is single-valued
and analytic interior to C; when extended analytically from C
along paths interior to Cq, and such that Cs contains within it no
point B; at which y, is different from the value f(B.) of this ana-
lytic extension of f(z). Then if R <o is arbitrary, the inequality

1f(5)—pa(s)|S pgs zo0n G,

is valid for suitably chosen M. The sequence pp(z) converges to
f(z) interior to Cq, uniformly on any closed point set interior

to Cg, and converges uniformly in no region whose interior
contains a point of Cg.

35. General approximation with auxiliary conditions. — Many
extremal problems of the theory of functions are related to approxi-
mation by polynomials. The typical problem of this sort is
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Prosrem I. — Let C be (a) the boundary of a limited region
or (b) a rectifiable Jordan curve or (c) an arbitrary closed
limited region, and let the function f(z) (analytic or not) be
defined on C. Given also points z,, 5, ..., 3, interior to C and
Sunctional values y,, ya, ..., y, corresponding to these points. To
study the function F () analytic interior to C which takes on the
values yi in the points s and which is the function of best
approximation to f(3) in the sense of (a) Tchebichef on C, (b),
(¢) least p-th powers integrated over C.

In the most general Problem I as thus formulated we subject F(z)
to no restrictions other than those mentioned, except that the suitable
measure of approximation (a), (b), (¢), in some sense should exist;
thus in cases (@) and (6) the function F () is naturally to be defined
on G in terms of the boundary values taken on as z interior to C
approaches C. It is clear that Problem I (and similarly Problem II
below) can be modified so as to subject F (3) to still other restrictions
— such as being different from zero or univalent (schlicht) interior to
C, or that F(z) can be approximated on C by polynomials as closely
as desired, etc. — in all the cases (a), (b), (¢). Merely for the sake
of simplicity the norm functions are taken positive and continuous
on C.

A slight modification of (a), itself of interest, is that C be an
arbitrary limited region and that Tchebichef approximation be
considered with reference to the entire region rather than its boun-
dary. These two methods of approximation are equivalent if f(z)is
analytic interior to G and if the norm function for the region is the
modulus of a function analytic interior to C.

The usual convention relative to multiple points z; is assumed. In
particular we may have v=o, so that there are no auxiliary conditions.
Or we may have v £ 0, f(3) =0, so the problem is that of determi-
ning the admissible function (i. e., analytic interior to C and salis-
fying the auxiliary conditions) of minimum rorm :

(a) Bound [n(z)|F(3)|, 5 on G|,

(8) fcn(Z)IF(z)lPlel (p>o),
(¢) f‘/(:n(z)lF(z)[P s (p>o)
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The function F(z) of Problem I may also be restricted to be’a
polynomial of given degree :

Prosrem II. — Under the circumstances of Problem I, to study
the polynomial p,(z) of degree n (n2v—1) which satisfies the
auziliary conditions and is of best approximation to f(z) on C.
More particularly, to study lim p,(z), z interior to C, and the

>

relation of this limit to F(z). Under suitable restrictions the poly-
nomial p,(z) exists, and is unique if p>1; see for instance
Walsh [9, 12].

Problem II is of interest not merely as a specialization of Problem I,
but may also be of interest in connection with the general Problem I
itself : to prove the existence of the function F(3), to determine F(z)
effectively, and to derive a polynomial expansion of F(z). '

If v=o0 and f () is analytic on and within C, Problem II is preci-
sely the problem studied in Chapter III. If f(z) is analytic on and
within C and if we have Yt= f(3), then Problem II is Lhe problem
of paragraph 33. If we set f(z)=2z", n=m —1,v=o0, the poly-
nomial p,(z) of Problem II is the T-polynomial belonging to C in
case (a)[n(z)=1], a multiple of the Szegé-Smirnoff polynomial
belonging to C in case (b) (p=1), a multiple of the Carleman poly-
nomial belonging 10 C in case (¢)(p=12), and is a polynomial stu-
died by Shohat [1] in case (b)(p21).

Problems I and IT can both be reduced to the case v = o. Let r(3)
be the polynomial of degree v — 1 which satisfies the auxiliary condi-
tions and let us set M(z) = (5 — 3,).. -(2—23,). We study on C

N _ f(3)—p(z) _F(z)—p(s)|
(@) D =F()p=n(a)in(s) p| FEEE  ZE_pGIp,

If F(z) (which here need not be the solution of Problem I) is admis-
sible, the function ®(z)= [ﬂw is analytie interior to C
(when suitably defined in the points z;). Reciprocally, if ®(3) is
given analytic interior to C, then the function

F(z)= ®(2)(2)+ p(z)

is admissible. Thus, approximation to Sf(z) on C by the func-
tion F(z) with auxiliary conditions is equivalent to approximation
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on C with the norm function n(z) |II (z) |? to the function [_f(Ll)I(—'zi)o(i)]
by functions ®(z) analytic interior to C but without auxiliary condi-
tions. Moreover, if F(z) is an admissible polynomial of degree n,
the function ®(z)is also a polynomial and is of degree n — v. The
transformation just made of Problems I and II is valid in cases
(@) (we set p=1), (b), and (c¢), but in (¢) the new norm func-
tion is no longer positive on C and the new approximated function

[f(z) —p(2)]

2) may not be integrable on C if the points z; are not distinct.

The transformation (2) can be somewhat improved in cases (a)
and (b) if we relinquish the requirement that ®(z) be a polynomial
whenever F(z) is a polynomial, and if the given region is simply
connected. Let the function w = n(z) map the interior of C onto the
interior of | w| =1; we may use (2) with II(z) replaced by

I (3) = [’q(_z_);— n(21)][n(5) —n(5:)]...[0(2)—n(zy)] ,
[—=1CGoaz) ] [i—1G) n(2)]. .. [1—7(z) n(2)]

and this function is of modulus unity on C.

Without going into details, let us simply remark that the natural
method for proof of the existence of the function F(z) of Problem 1
is the use of normal families [compare Walsh, 12], and the natural
method for proof of uniqueness is that used in paragraph 13.

Even if F(3) exists and is unique, we do not necessarily have

(3) lim p,(z)=F(3),
ny> o .

uniformly for z in C, as is shown by the example of paragraph 2.
Nevertheless, it frequently occurs that this equation is valid and
even that the sequence p,(z) converges to F(z) with the greatest
geometric degree of convergence, so that overconvergence takes
place.

Problems I and IT in their most general form are still unsolved;
even if C is a Jordan region these problems have not been comple-
tely treated in the literature, although the present writer has some
unpublished results in this field. Let us indicate some results in
connection with these problems.

36. Case (c¢) : surface integrals. — The first study (other than
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‘cases of Chap. III) of Problems I and II seems to be that of Bieber-
bach [1] : C is a limited simply connected region, f(3)=o,
n(z)=1, p=2, v=1, y,=1, approximation is measured by (¢).
The function F(z) exists and is unique, and turns oul to be the deri-
vative of the function which maps the interior of C onto the interior
of a circle so that z, corresponds to the center. If the boundary of C
is also the boundary of an infinite region. equation (3) is valid for z
on G, uniformly for z on any closed point set interior to C. It is also
true (although not indicated by Bieberbach) that if F(z) is analytic
in the closed region C, then the polynomial p,(z) converges to F(z)
in G with the greatest geometric degree of convergence. Thus over-
convergence also takes place.

Julia [3, 4] has considered Bieberbach’s problem with the require-
ment p = 2 omitted, and also the case f(z)=o0, n(s) =1, with the
boundary conditions F(o)=o, F'(o) =1, for general p. Both of
these cases arc intimately connected with the conformal mapping of C
onto the unit circle. Kubota [1] considers Problem I with f(3)=o,
n(z) =1, v=2, p =2, which is also related to conformal mapping.

Problem I has recently been studied in the case p =2, n(3) =1,
v=o0, by Wirtinger [1], where f(z) is suitably restricted, and an
explicit formula for F(z) derived. Problem II is not mentioned by
Wirtinger, but it follows from the results of Carleman [1] that if C
is a Jordan region, then (3) is valid for z in C, uniformly for z on
any closed point set interior to C.

Let us devote some atlention to the most general Problems I
and II for a Jordan region, where the measures of approximation
10 f(z) have a meaning and where p=2; we shall further choose
n(z) =1, although that choice is only for simplicity. Approximation
to f(z) by polynomials in the sense of Problem II is a linear pro-
blem. More explicitly (notation of paragraph 33), any admissible
polynomial p,(2), n>v — 1, 1s of the form

P(2)+ay(5)+ a1z 1(3) +...4+ ap_yzt—y n(z).
Then by the Riesz-Fischer Theory the sequence of polynomials p;,(2)

of best approximation converges in the mean on G to, some func-

tion F(3) :
(4) lim ff|F(z)—pn(z)|“dS=o.
A .

ny> o«
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It follows from the Lemma of paragraph 15 that the sequence p,(2)
converges to F(z) interior to G, uniformly on any closed point set
interior to C. The limit function F(3) is admissible and is the unique (as
in paragraph 13) solution of Problem I. Indeed ( paragraph 33 and Car-
leman [1]), the formal expansion by admissible polynomials in the sense

‘of least squares of any admissible function @ (z) <henceff| ®(z)[2dS
c

exists), converges in the mean to ®(3) on C. Thus, if F(z) is the

solution of Problem I, then equation (4) is equivalent to

Iim [ fc @ —pupds= [ [1f)—F ()1 as

for the polynomials p, () of best approximation to f(z) on G or for
any other admissible polynomials; compare paragraph 14, inequa-
lity (7).

The fact that the p,(z) are the admissible polynomials of best
approximation to f(z) on C implies also that the p,(z) are the
admissible polynomials of best approximation to F(z) on C. Thus
the sequence pn(z) always converges to ¥(z) interior to C, uni-
Jormly on any closed set interior to C; and if F(z) is analytic in
the closed region C, the sequence pn(z) converges to F(z) on G
with the greatest geometric degree of convergence, so overconver-
gence takes place in the usual manner (§§ 10 and 33).

37. Case (a) : method of Tchebichef. — The Tchebichef mea-
sure of approximation has the advantage of being invariant under
conformal transformation, and therefore Problem I for an arbitrary
simply connected region is equivalent to a similar problem (the auxi-
liary conditions must be suitably modified) for the unit circle. For
the unit circle, the case f(z)= o0, zx=o0 corresponds to the pres-
cription of the first v coefficients of the Taylor development of F(z).
Problem I for this case (n(z)=1) was studied by Carathéodory and
Fejér (1911). This and the more general problem (z; not necessa-
rily zero) were later studied by Gronwall, Pick, Schur. Kakeya,
Nevanlinna, F. Riesz, Walsh; Kakeya [1.] gives a method for the
effective determination of F(z); for further references see Walsh [8].

Of particular interest (the interior of C simply connected) is the
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case n(z) =1, (%)= o, and auxiliary conditions of the form

(5) F(a)=o, F(a)=1.

Here the solution of Problem I is (as we shall prove) a function which

maps the interior of C onto the interior of a circle, and this fact is

the basis of the well known Fejér-Riesz proof [Rado, 1] of the funda-

mental mapping theorem for an arbitrary simply connected region.

Indeed, an equivalent Problem I found by mapping Conto y : |w| <1

so that « corresponds to w = o, involves the auxiliary conditions

F,(o)=o0, F|(0)=a o, F,(w)=F(3). An arbitrary admissible
function is of the form

Fi(w)=aw+ a-w?+azws+... (Jw| <1).

The least upper bound of |F,(w)| for |w| <1 cannot be assumed
interior to y (principle of maximum) so this least upper bound is
approached when |w| approaches unity. The least upper bound is
the same for F, (w) and for the function @ + @y w +azw?+-. .., and
hence the smallest least upper bound is |a|, attained only by the
function F, (w) = aw, which maps the interior of y onto a circle.
Problems I and II for n(z) =1, f(z) = o, and the auxiliary condi-
tions (5) were studied in detail by Julia [1]; Problem II leads to a
development of the mapping function for C (bounding a simply
connected region) in a series of polynomials, frequently valid throu-
ghout the interior of C. Problems I and II for these same conditions
were considered later by Walsh [8], who studied convergence of the
sequence p,(z)on the boundary of the region considered and proved
overconvergence in case the boundary is an analytic Jordan curve.
Walsh also studied the more general Problem I, f(z) meromorphic
interior to G, v arbitrary, and determined the function F(z), and
studied convergence of p,(z) on the boundary and overconvergence.

In particular the case v=o, f(z)= (z_-l—T)
which maps the interior of C onto the exterior of a circle.

Problem I has never been studied for the most general limited
function f(z). Even in the case (3) and where C is a Jordan curve,
the convergence of the sequence p,(z) on C is doubtful.

leads to a function F(z)

38. Case (b) : line integrals. — In the case n(z)=1, p=72,
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v =0, C the unit circle, the function F(z) is represented for | 5| <1
by Cauchy’s integral F(3z) = 3—;—; /c‘ -if_(_—t)é dt; compare paragraph 23.

Kakeya [2, 3, 4] studied Problem I for the case n(z)=1, f(z)=o,
C the unit circle; he proved the existence and uniqueness of the
function F(z), and in the case that the z; are all distinct gave the
effective determination of the function. F. Riesz [1] studied the case
n(s)=1, f(5)=o, p==1, G the unit circle. Kubota [1] studied the
case n(z)=1, f(s)=o,v=1 or 2, p=1 or 2, C the unit circle,
which is connected with conformal mapping. Takenaka [1, 2, 3]
considered particularly the case n(3) =1, f(s)=o,y=o for k> 1,
C the unit circle and also (p = 2) the case n(3) =1, f(z)=o, all
the z; distinct. Walsh [11] took up the more general case n(z)=1;
f(z)=o0, p=2, G the unit circle, in connection with both Pro-
blems I and II.

Julia [4] studied both Problem I and Problem II again for
n(s)=1, f(z)=o, auxiliary conditions F(z,) = o, F'(3,) =1, and
for the auxiliary conditions F(z,)=1; here too there is intimate
connection with conformal mapping.

The application of the Riesz-Fischer theory given at the end of
paragraph 36 requires only minor and obvious modifications to apply
in the present case, p =2, provided that a function F(z) is admissible
if it is analytic interior to C and satisfies the auxiliary conditions, is

()

represented interior to C by an integral :Ia- / ~ dt where «(z) is

ci—
integrable together with its square on C, and where there exists a
sequence of polynomials in 2z which converges in the mean to a(z)
on C. This class of functions F(z) has been studied in detail by
Smirnoff [1]. In this modification of the discussion of paragraph 36,
the Lemma of paragraph 14 is applied instead of that of para-
graph 15.

39. Further remarks. — It will be noticed from the account given
that much remains to be done in solving Problems T and II in the
most general cases, and especnally for multiply connected regions.
These problems can be still further modified by requiring that the
function F(z) shall not vanish interior to C. Interpolation by non-
vanishing functions has been considered by Kakeya [4] and approxi-
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mation by Walsh [13], but these papers represent only the begin-
nings of the theory.

Broader problems may also be formulated by assigning as auxi-
liary conditions non-successive derivatives at various points. Or one
may place restrictions on a function F(z) and study the measures
corresponding to (a), (b), (¢) for F'(z) or some other derivative.
Many other extremal problems similar to T and II are also of impor-
tance.
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