Quasi-abelian categories and sheaves
Mémoires de la Société Mathématique de France, no. 76 (1999) , 144 p.
@book{MSMF_1999_2_76__R3_0,
     author = {Schneiders, Jean-Pierre},
     title = {Quasi-abelian categories and sheaves},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {76},
     year = {1999},
     doi = {10.24033/msmf.389},
     zbl = {0926.18004},
     mrnumber = {2001i:18023},
     language = {en},
     url = {http://www.numdam.org/item/MSMF_1999_2_76__R3_0/}
}
TY  - BOOK
AU  - Schneiders, Jean-Pierre
TI  - Quasi-abelian categories and sheaves
T3  - Mémoires de la Société Mathématique de France
PY  - 1999
DA  - 1999///
IS  - 76
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/MSMF_1999_2_76__R3_0/
UR  - https://zbmath.org/?q=an%3A0926.18004
UR  - https://www.ams.org/mathscinet-getitem?mr=2001i:18023
UR  - https://doi.org/10.24033/msmf.389
DO  - 10.24033/msmf.389
LA  - en
ID  - MSMF_1999_2_76__R3_0
ER  - 
%0 Book
%A Schneiders, Jean-Pierre
%T Quasi-abelian categories and sheaves
%S Mémoires de la Société Mathématique de France
%D 1999
%N 76
%I Société mathématique de France
%U https://doi.org/10.24033/msmf.389
%R 10.24033/msmf.389
%G en
%F MSMF_1999_2_76__R3_0
Schneiders, Jean-Pierre. Quasi-abelian categories and sheaves. Mémoires de la Société Mathématique de France, Serie 2, , no. 76 (1999), 144 p. doi : 10.24033/msmf.389. http://numdam.org/item/MSMF_1999_2_76__R3_0/

[1] M. Artin and B. Mazur - Etale Homotopy, Lecture Notes in Mathematics, no. 100, Springer, Berlin, 1969. | MR | Zbl

[2] A. A. Beilinson, J. Bernstein and P. Deligne - Faisceaux pervers, Astérisque 100 (1982). | MR | Zbl

[3] H. Cartan and S. Eilenberg - Homological algebra, Princeton Mathematical Series, no. 19, Princeton University Press, Princeton, 1956. | MR | Zbl

[4] R. Deheuvels - Homologie des ensembles ordonnés et des espaces topologiques, Bull. Soc. Math. France 90 (1962), p. 261-320. | EuDML | MR | Zbl | Numdam

[5] A. Grothendieck - Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9 (1957), p. 119-221. | MR | Zbl

[6] R. Hartshorne - Residues and duality, Lecture Notes in Mathematics, no. 20, Springer, Berlin, 1966. | EuDML | MR | Zbl

[7] M. Kashiwara and P. Schapira - Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften, no. 292, Springer, Berlin, 1990. | MR | Zbl

[8] M. Kashiwara and W. Schmid - Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups, Lie theory and geometry, Progress in Mathematics, no. 123, Birkhäuser, Boston, 1994, p. 457-488. | MR | Zbl

[9] O. A. Laudal - Sur les limites projectives et inductives, Ann. scient. Éc. Norm. Sup. 3e série 82 (1965), p. 241-296. | EuDML | MR | Zbl | Numdam

[10] G. Laumon - Sur la catégorie dérivée des D-modules filtrés, Algebraic Geometry (M. Raynaud and T. Shioda, éds.), Lecture Notes in Mathematics, no. 1016, Springer, Berlin, 1983, p. 151-237. | MR | Zbl

[11] S. Maclane - Categories for the working mathematician, Graduate Text in Mathematics, no. 5, Springer, New York, 1971. | MR | Zbl

[12] B. Mitchell - Theory of categories, Pure and Applied Mathematics, no. 17, Academic Press, New York, 1965. | MR | Zbl

[13] F. Prosmans - Algèbre homologique quasi-abélienne, Mémoire de DEA, Université Paris 13, Villetaneuse (France), June 1995. Available on the web at <http://www-math.math.univ-paris13.fr/~prosmans/>.

[14] D. Quillen - Higher algebraic K-theory I, Algebraic K-Theory I : Higher K-Theories (H. Bass, éd.), Lecture Notes in Mathematics, no. 341, Springer, Berlin, 1973, p. 85-147. | MR | Zbl

[15] J.-P. Schneiders - Cosheaves homology, Bull. Soc. Math. Belg. Sér. B 39 (1987), p. 1-31. | MR | Zbl

[16] H. Schubert - Categories, Springer, Berlin, 1972. | MR | Zbl

[17] J.-L. Verdier - Catégories dérivées : Quelques résultats (état 0), Séminaire de Géométrie Algébrique du Bois-Marie (SGA41/2). Cohomologie Étale, Lecture Notes in Mathematics, no. 569, Springer, Berlin, 1963, p. 262-312. | Zbl

Cited by Sources: