Théorème d’Atiyah-Bott pour les variétés 𝔭-adiques et caractères des groupes réductifs
Analyse harmonique sur les groupes de Lie et les espaces symétriques (Actes du colloque du Kleebach, 20-24 mai 1983), Mémoires de la Société Mathématique de France, Serie 2, no. 15 (1984), p. 39-64
@incollection{MSMF_1984_2_15__39_0,
     author = {Clozel, Laurent},
     title = {Th\'eor\`eme d'Atiyah-Bott pour les vari\'et\'es ${\mathfrak {p}}$-adiques et caract\`eres des groupes r\'eductifs},
     booktitle = {Analyse harmonique sur les groupes de Lie et les espaces sym\'etriques (Actes du colloque du Kleebach, 20-24 mai 1983)},
     editor = {Duflo, Michel and Eymard, Pierre and Schiffmann, G\'erard},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {15},
     year = {1984},
     pages = {39-64},
     zbl = {0555.22003},
     mrnumber = {87b:22034},
     language = {mul},
     url = {http://www.numdam.org/item/MSMF_1984_2_15__39_0}
}
Clozel, L. Théorème d’Atiyah-Bott pour les variétés ${\mathfrak {p}}$-adiques et caractères des groupes réductifs, in Analyse harmonique sur les groupes de Lie et les espaces symétriques (Actes du colloque du Kleebach, 20-24 mai 1983), Mémoires de la Société Mathématique de France, Serie 2, no. 15 (1984), pp. 39-64. doi : 10.24033/msmf.299. http://www.numdam.org/item/MSMF_1984_2_15__39_0/

[1] M.F. Atiyah, R. Bott, A Lefschetz fixed point formula for elliptic complexes, I, Ann. of Math. 86, 1967, 374-407. | MR 35 #3701 | Zbl 0161.43201

[2] I.N. Bernstein, A.V. Zelevinskii, Representations of the group GL (n,F) where F is a non-archimedian local field, Russian Math. Surveys 31 (3), 1976, 1-68. | MR 54 #12988 | Zbl 0348.43007

[3] I.N. Bernstein, A.V. Zelevinskii, Induced representations of reductive p-adic groups I, Ann. Sc. E.N.S., 4e série, 10, 1977, 441-472. | Numdam | MR 58 #28310 | Zbl 0412.22015

[4] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint.

[5] P. Cartier, Representations of p-adic groups, Proc. Symp. Pure Math. 33, 1979, part I, 111-155. | MR 81e:22029 | Zbl 0421.22010

[6] G. Van Dijk, Computation of Certain Induced Characters of p-adic Groups, Math. Ann. 199, 1972, 229-240. | MR 49 #3043 | Zbl 0231.22018

[7] Harish-Chandra, A submersion principle and its applications, Proc. Indian Acad. Sc. (Math. Sci.) 90 (2), April 1981, 95-102. | MR 83h:22031 | Zbl 0512.22010

[8] Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, Queen's papers in pure and applied mathematics 48, 1978, 281-347. | MR 58 #28313 | Zbl 0433.22012

[9] D. Heifetz, p-Adic Oscillatory Integrals and Wave Front Sets, thèse, Columbia University, 1982.

[10] T. Hirai, The Characters of some induced representations of semisimple Lie groups, J. Math. Kyoto Univ. 8 (3), 1968, 313-363. | MR 39 #354 | Zbl 0185.21503

[11] V. Guillemin, S. Sternberg, Geometric Asymptotics, Math. Surveys 14, AMS, Providence 1977. | MR 58 #24404 | Zbl 0364.53011

[12] R.E. Kottwitz, Rational Conjugary classes in Reductive groups, Duke Math. J. 49 (4), 1982, 785-806. | MR 84k:20020 | Zbl 0506.20017

[13] R.P. Langlands, Base Change for GL (2), Annals of Math. Study 96, 1980. | MR 82a:10032 | Zbl 0444.22007

[14] J. Repka, Base Change and Induced Representations of Real Reductive groups, preprint.

[15] F. Rodier, Décomposition spectrale des représentations lisses, in Springer Lecture Notes 587, 1977. | MR 57 #542 | Zbl 0357.22004

[16] N. Wallach, Harmonic Analysis on homogeneous spaces, Marcel Dekker, 1973. | MR 58 #16978 | Zbl 0265.22022