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PATHS THROUGH FIXED VERTICES
IN EDGE-COLORED GRAPHS

W.S. CHOU1,2, Y. MANOUSSAKIS3, O. MEGALAKAKI4
M. SPYRAT4S5, and Zs. TUZA1,6

RÉSUMÉ 2014 Chaînes alternées passant par des sommets donnés dans des graphes arêtes-colorés.
Nous étudions le problème de trouver dans un graphe arêtes-coloré une chaîne alternée joignant deux
sommets donnés et passant par des sommets donnés (une chaîne est alternée si deux arêtes adjacentes
arbitraires ont des couleurs différentes). Plus précisément nous démontrons que ce problème est NP-
complet dans le cas de graphes 2-arêtes-colorés.

Ensuite nous montrons que le problème de l’existence d’une telle chaîne est polynomial dans le cas
où l’on se restreint aux graphes complets 2-arêtes-colorés.

Nous étudions également le problème de trouver une (s,t)-chaîne (c’est-à-dire une chaîne de longueur
s+t qui se partage en deux sous-chaînes monochromatiques de couleurs différentes) joignant deux
sommets donnés et passant par des sommets donnés, dans un graphe complet arêtes-coloré.

ABSTRACT2014 We study the problem of finding an alternating path having given endpoints and
passing through a given set of vertices in edge-colored graphs (a path is alternating if any two
consecutive edges are in different colors). In particular, we show that this problem in NP-complete for 2-
edge-colored graphs.
Then we give a polynomial characterization when we restrict ourselves to 2-edge-colored complete
graphs.
We also investigate on (s,t)-paths through fixed vertices, i.e. paths of length s+t such that s

consecutive edges are in one color and t consecutive edges are in another color.
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1. INTRODUCTION AND TERMINOLOGY

Research in social sciences often deals with relations of opposite content, e.g., "love" -
"hatred", "likes" - "dislikes", "tells the truth to" - "lies to" etc. A good model for repre-
senting such relations is a so-called signed graph (a graph in which we associate to each
edge one of the signs "+" or "-"), i.e., a 2-edge-colored graph. In this work we deal with
problems directly linked to the existence of two relational patterns in a 2-edge-colored
graph: the alternating paths (cycles) and the (s, t)-paths (cycles). Pictorially an alterna-
ting path (cycle) is a path (cycle) any two adjacent edges of which are in distinct colors.
An (s, t)-path (cycle) is a path (cycle) of length s + t such that s consecutive edges are
in one color and t consecutive edges are in another color. The notion of an (s, t)-path
(cycle) is directly related to the balance of a graph introduced by Cartwright and Harary
[7] (and originated in psychology [7, 9, 13, 17, 19]). We recall that a 2-edge-colored graph
is balanced if, and only if, in each cycle the number of edges with color "-" is even. In

a recent work [16], it has been shown that a 2-edge-colored complete graph contains an
(s, t)-hamiltonian cycle (with s and t non-fixed) if, and only if, the graph is unbalanced.
In a further result the same authors showed that, for s and t fixed, a sufficiently large
signed complete graph contains an (s, t)-cycle if, and only if, the graph is unbalanced.

In this work we study the problem of finding alternating as well as (s, t)-paths having given
endpoints and passing through a given set of vertices in 2-edge-colored graphs. For fur-
ther results on the subject the reader is encouraged to consult [1-6, 8, 11,12, 14-16, 18, 20].

Formally, in what follows, unless otherwise specified, we denote the vertex-set, the edge-
set and the order of a graph G by V(G), E(G) and n(G), respectively. When just one
graph is under discussion, we usually write V, E and n instead of V (G), E(G) and n(G),
respectively.

Let A, B denote non-empty subsets of V. The graph induced in G by A is denoted by
G[A]. The set of all edges that have one endpoint in A and the other one in B is denoted
by AB. If A = {x}, then for simplicity we may write xB instead of {x}B.

A k-edge-coloring (or, for simplicity, a k-coloring) of G is a mapping c from E onto the set of
"colorsn {l, 2, ..., k}. If e E E(G), then c(e) is the color of the edge e. For any v E V and
any color i, let the color-i neighborhood of v be defined as Ns(v) _ {a E V1{v} ~ c(va) = i}.
For any non-empty subset A of V, we define Ni(A) = U N;(a). We let Gc denote a graph

aEA
G colored by a k-edge-coloring c. A complete graph .~1 n colored by a k-edge-coloring c is
denoted by Kc

Let x and y be two distinct vertices of Gc and let s be a subset of V (G~) 1 {x, y}. An
arbitrary simple path between x and y in Gc passing through all vertices of S is denoted by
~r, s, y. Whenever S contains only a few vertices, say ,~ = {zl, z2, z3}, then for simplicity,
we write Px, zl, z2, x3, ~ instead of Px, S, y, replacing S in the notation by a sequence of its
elements in any order.

Let us note that all paths and cycles considered in this paper are supposed to be elemen-
tary.
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Definition of an (si, s2, ~ ~ ~, 8a+l )-path.
Let P = be a path in Gc. Suppose that P is non-monochromatic and let

{Xi- j 1 j = 1, 2, ..., al denote the set of its alternating vertices, where 1;  ~+1)
j = 1, 2, ..., a - 1. The alternation sequence of P is defined to be the sequence

of a + 1 terms, and P is called a

If P is monochromatic its alterna-

tion sequence is defined to be the one-term sequence  1 &#x3E;.

Observe that an (sl, s2, ~ ~ ~ , i Sa+1)- path P in Gc is:
(1) Monochromatic iff a = 0 and
(2) alternating iff a &#x3E; 1 and si = 1, for aIl i = 1, 2,..., a + 1.

Here we investigate the following problem:

PROBLEM 1.1. Let S = f xi, X2, ..., Xl} be a set of 1 specified vertices in a k-edge-colored
graph Gc. Let x and y be two distinct fixed vertices in S. Under which conditions

does there exist a sequence (si, s2,  , 8a+1) such that there exists an (si, s2, , 8a+1)-
path between x and y containing the vertices of S ?

In the sections that follow, we study the complexity of the above problem for small values
of ~, and for the two special cases:

2. NP-COMPLETENESS RESULTS

The following theorem of [15] is used in this section.

THEOREM 2.1. The following problem II is NP-complete.
Instance. A complete graph K n , a set C = ~ 1, 2, ..., 1~} of k &#x3E; 4 colors, a k-edge-coloring
c : C four distinct vertices a*i, X2, Yl, Y2 in Ilg, a fixed permutation
q = (ci, c2, ~ ~ ~, ck ) of the colors of C.
Question. Does contain two vertex-disjoint alternating paths f rom xl to yi and from X2
to Y2 respectively, such that the sequence of colors of each is a concatenation of a number
of copies 

We start with an NP-completeness result in edge-colored graphs.

THEOREM 2.2. Let G~ be a 2-edge-colored graph. Let X, y and z be three distinct vertices
Deciding whether there exists an alternating path from x to y through z in 

NP-complete.

PROOF. Our problem obviously belongs to NP. To prove that it is NP-complete, we
transform the following so-called local path problem (LPP) [10], into an instance of our
problem: Given three distinct vertices x, y and z in a directed graph D, deciding if there
is a directed path from z to y through z in D is NP-complete.
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Consider now an arbitrary instance of LPP in a directed graph D. Let Gc denote the

2-edge-colored graph obtained from D as follows : Split each arc of D into two parts, the
first part (containing the tail of the arc) being colored 1 and the other part being colored
2; furthermore add a new vertex x’ and join this vertex with x by an edge in color 2.
Clearly, this construction can be done in polynomial time.

Now, if there is a directed path Px, z, y in D, then clearly there is an alternating path
y in Gc. Conversely, if there is an alternating path Px’, z, y in Gc, then we can easily

deduce the existence of a directed path Px, z, y in D. This completes the proof. o

THEOREM 2.3. The following problem is NP-complete.
Instance. A complete graph K,, , a set C = f 1, 2, ..., k} of k &#x3E; 4 colors , a k-edge-
coloring c : C of K,,, three distinct vertices x, z and y a fixed permutation
q = (cl, c2, ~ ~ ~, ck) of the colors of C.
Question. Does ~in contain an alternating path Px, z, y whose sequence of colors is the
concatenation o f a number of copies of q ?

PROOF. The transformation is established from the problem fl of Theorem 2.1 above.

Consider an arbitrary instance of H, by fixing four vertices xl, x2, yi , y2 in Ilg and by as-
suming, without loss of generality, that the required sequence of colors is q = (1, 2, , , k).
Let now denote a k-edge-colored complete graph obtained from Kc by adding k -1
new vertices wi, W2, ..., wk_i and the corresponding edges and then coloring the edges
by c* : C which is an extension of c defined as follows:

(1) maz((1, j}) if 1 i - j 1= 1 and c*(wiwj) = 1 if 1 i - j 1&#x3E; 1, i, j =

(4) The edges between Wl and Y(n)-{yl}, and between each wi and V(K in), 2  i  k-2,
are colored k.

(5) The edges between and {~2} are colored 1.
Clearly, the above transformations can be done in polynomial time.

Fix now three vertices x’, y, Z in by xl, y’ - y2, z’ - W2. It
is easy to see that contains an alternating path Pxr, zl, y, whose sequence of colors
is the concatenation of a number of copies of q if, and only if, contains two vertex-

disjoint alternating paths from x1 to yi and from X2 to Y2 respectively, such that the
sequence of colors of each is a concatenation of a number of copies of q. o

PROBLEM 2.4. Is the following problem NP-complete?
Instance. A complete graph a set C = { l, 2, ..., k} of k &#x3E; 4 colors, a k-edge-
coloring c : C of J(n’ three distinct vertices x, z and y in a positive integer
t.

Question. Does h’n contain an alternating path ~c, z, y such that each color appears at
least t times on 
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3. POLYNOMIAL CHARACTERIZATIONS

In the last section we have shown that the alternating Pp z, y-path problem with a par-
ticular sequence of colors is NP-complete for k-edge-colored complete graphs, k &#x3E; 4. In

Theorem 3.2 and Corollary 3.3 of this section, we show that the alternating Px, z, y-path
problem is no longer NP-complete, if we restrict ourselves to the case of 2-edge-colored
complete graphs. However, we note that in the case of three colors, the problem is still

open.

In view of the proof of Theorem 3.2 below, we prove the following lemma.

LEMMA 3.1. Let x, z, y be three specified distinct vertices in a k-edge-colored com-
plete graph &#x3E; 2. There exists an alternating path Px, z, y if, and only if, there exists
an alternating path containing at least one of the edges xz, zy in such that

z, y)’
PROOF. The existence of Px, z, y clearly implies the existence of in Conver-

sely, suppose that contains an alternating path .Px z, y and suppose it to be of shortest
length. Set P~, z, y 

= z; ... xp y, where for the sake of homogeneity we identify z
with Xi on this path. Assume by contradiction that 1  i  p. Let q, r denote the colors
of the edges Xi-l Xi and respectively. Since y is alternating, q =1= r. If the edge
xxi is colored otherwise than r, then is shorter than 7~, z, y, a contradiction
to the minimality property of Px, z, y. Similarly we obtain a contradiction if we assume
that the color of the edge YXi is other than q. It follows that the path xxiy is alterna-
ting and shorter than y, a final contradiction. This completes the proof of the lemma.

THEOREM 3.2. Let x, y, z be three distinct vertices in a 2-edge-colored complete graph
There is an alternating path in i f, and only i f, one o f the following three

conditions holds:

(2) c(xz) = c(yz) = 1, say, and either N1(x) fl or N1(y) fl N2(z) =1= 0.
(3) c(xz) = c(yz) = 1, say, N1(x) n N2(z) _ ~ = N1(y) n N2(z), and in the following
sequence of subsets of there is a positive integer t = 2s - b, b = 0 or 1, so that
Ct =1= 0 and either Ct is not contained in N1+6(X) n or the complete subgraph of
~in generated by U ’ " U C2s-6 is not monochromatic:
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PROOF.

SuiHciency: If (1) holds, then clearly the path xzy is alternating. If (2) holds, then
take u E Nl(x) f1 N2(z) =f 0 (respectively u E Nl(y) f1 N2(Z) 0 0) and the path xuzy
(respectively the path xzuy) is alternating. Suppose that (3) holds. Let t = 28 - 6 (with
b = 0 or 1) be the smallest positive integer satisfying (3). Then Ci = 0 for all 1  i  t.

Since Ci C Nl(x) fl Nl(y) if 1  i  t is even and Ci C N2(x) fl N2(y) if 1  i  t is

odd, it follows that the sets Cl, C2, ~ ~ ~ , ? Ct are pairwise disjoint. If Ct is not contained
in NI+6(X) fl Nl+b(y), take zt in Ct 1 (NI+6(X) fl Nl+a(y)) (we take zt = x if x E Ct,
or zt = y if y e Ct). Take E so that c(zt_izt) = 1 + b, Zt-2 E Ct-2 so that

= 2 - à and so on, and zi E Ci so that e(ziz2) = 1. If zt E N2-6(X), then
zi zy is the desired path. If zt E then zt y is the desired

path. Finally, suppose that Ct C NI+6(X) n Nl+b(y) but the complete subgraph of Kc
generated by U ~ ~ ~ U C2s-b is not monochromatic. Take zt, in U ~ ~ ~ UC2s-6
so that = 2 - b. Since the complete graph U ~ ~ ~ U is colored by
1 + b and Ct C Nl+a(x) n Nl+b(y), we have zt, e Ct. Now, take zt-1, zl as

above. Then is the desired path.
Necessity: Let Px, z, y denote an alternating path of shortest length from x to y through
z in Kc. From Lemma 3.1, Px, z, y is either of the form XZZ1 ... ZkY or of the form xzk...zlzy.
Without loss of generality, we may assume that = XZZ1 ... ZkY- If Px, z, y is of the

form xzy, then (1) holds. If Px,z,y is of the form xzzly, then (2) holds. Now, sup-
pose k &#x3E; 2 and let us assume, without loss of generality, that c(xz) = 1. In this case,

Ni (y) fl N2 (Z) = 0 = Nl(x) f1 N2(z), since otherwise there would be an alternating path
of length 3 from x to y through z. So, both Nl(x) and Nl(y) are contained in Nl(z).
Construct the finite sequence of subsets of Kc as in the statement of this
theorem. Set k - 1 = 2s + ~, ~ = 0 or 1. From the sufficiency part and the fact that
k is the smallest among all possible lengths of alternating paths from x to y through z,
Cl+b U ~ ~ ~ U C2i-I+6 is contained in and is monochromatic for all

1  i  s, and C2-6 U ... U is contained in Nl+b(x) n NI+6(y) and is monochro-
matic for all 1  i  s. Moreover, U ... U U C2s+a is also contained in

is not monochromatic we are done from
the sufficiency part. So, we assume that U ~ ~ ~ U C2.,-b U C2s+b is monochromatic.
Construct Ck as in the statement of the theorem. Then, zk E Ck. Note that zi E Ci for all
1  i  k - 1. Also note that c(Zk- 1 Zk) = 2 - ~. If Ck were contained in N2- 6(Y)
the path zzzi ... would not be alternating, contradicting our assumption. Therefore,
Ck is not contained in and the proof is complete. il

COROLLARY 3.3. There is an algorithm of complexity 0(n3) for finding an alterna-
ting path y (if any) in a 2-edge-colored complete graph.

PROOF. Clearly, Condition (2) of Theorem 3.2 requires 0(n’) time. Condition (3) needs
0(n3) time, since the length of the sequence of Ci’s is 0(n), while specifying each Ci re-
quires at most 0 (n 2) operations; therefore the decision algorithm costs 0(n3) operations
in the worst case. The algorithm for finding the desired path (if any) follows directly from
the proof of Theorem 3.2. il
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We shall finish this section with a result on (s, t)-paths through fixed vertices. In or-

der to state the next theorem we define a 2-edge-colored complete graph Go as follows (see
Figure 1):

The edges xy of both (?i and G2, omitted here, are colored arbitrarily either 1 or 2.
Dashed lines represent color 1, while solid lines represent color 2.

Figure 1

Partition the vertex set of a complete (non-colored) graph of order n &#x3E; 5 into three subsets
Vi, V2 and V3 such that 1 V3 1 == 3, say V3 = {.r, y, w}. Then color the edges between Vi
and V2 by 1, the edges between V3 and Vi U V2 by 2 and color one of the edges wx, wy by
color 1. AU other edges are colored arbitrarily. Clearly the obtained 2-edge-colored graph
Go has no (8, t)-path between x and y containing a vertex Zl of Vi and a vertex Z2 of V2.

THEOREM 3.4. Let be a 2-edge-colored complete graph, n &#x3E; 4. Let x, y, zi , Z2

be distinct fixed vertices 
(i)For some s and t, there exists an (s, t)-path Px, zl, y in ~in if, and only if, Iin contains
two distinct edges el and e2, other than x,y, such that el is adjacent to x, e2 is adjacent to
y and c( el) =1 c(e2).

For some s and t, there exists an (s, t)-path ~.~ y in ~~n if, and only if, there
exist the edges el and e2 of (i~ and in addition Iin is not isomorphic to any of Go, GI, G2
of Figure 3 (isomorphism here is considered in the usual sence and by taking into account
the colors of edges.

PROOF. Necessity being obvious, let us prove the "if’ case.
Proof of (i). Assume without loss of generality that the edge XZI is in color 1. If the

edge yzi is in color 2, we have finished. Otherwise by the hypothesis there is a vertex w in
such that at least one of the edges wy, wx is in color 2. Now, independently of

the color of the edge wzi , if c(wy) = 2 then Px, xl, y = otherwise P~, Zl, y = xwzly.
Proof of (ii). Let us assume without loss of generality that C(ZIZ2) = 1. c(yz2),
or clearly the path or XZ2ZlY is the desired one. Consequently,
in what follows assume C(XZI) = C(YZ2) and c(xz2) = c(yzl).
Assume first c(yzi) = C(XZ2) = c(xzl) = c(yz2) = 1. By the hypothesis, there exists a
vertex w in {.r, y, zi , z2} such that either wy or wx is in color 2. Now, independently
of the color of the edge WZ2, either the path or the path XWZIZ2Y is the desired
one.
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Assume next C(XZ1) = 1 = and C(XZ2) = 2 = c( yzl ). If n = 4, then Kc is isomorphic
to G1. In the sequel suppose n &#x3E; 5. If there is a vertex w in R = Ilg - {x, y, Zl, Z21
such that c(wy) = 2, then clearly the path xzlz2wy is the desired one. Assume therefore
that all edges between y and V(R) are in color 1. Similarly we may also assume that all
edges between x and V(R) are in color 1. Now if there is a color-1 edge between z2 (or
zl ) and a vertex say w of R, then the path (or the path XZ2Z1WY) is the desired
one. Otherwise, i.e., if all edges between z2} and V(R) are in color 2 then, in case
n = 5, Kg is isomorphic to G2 and in case n &#x3E; 6 the path xz2wziw’y is the desired one,
where w and w’ are two arbitrarily chosen vertices of R.
Assume finally c(xzl) = C(YZ2) = C(XZ2) = c(yzi) = 2. Let S denote the subgraph induced
by the color -1 edges of Kc and let V1 denote the component of S which contains both zl
and z2 (z, and Z2 belong to a same component of S, since C(Zl Z2) = 1, by assumption).
Set V2 = V B Vi. Clearly, if V2 is not the empty set, all edges between V1 and V2 are in
color 2 in If at least one of x, y belongs to Vl, say x E Vl, then there exists a color-1
path having x as one endpoint and z, or Z2 as the other endpoint and containing both z,
and z2. Indeed, since VI is a connected component of S, there exists a color-1 path, say
P, between x and z, in VI (and therefore in K"). If Z2 is an internal vertex of P, then P
is the desired path. Otherwise, we extend P to a new color-1 path P’ between x and z2
containg zl, by adding the edge ziz2. The path P (or P’) can be easily transformed to
an (s, t)-path between x, y passing through both zl and z2 by adding (the color-2) edge
zly (or Z2Y). Suppose therefore that y} C V2. By the hypothesis of case (ii) there
exists w E V B {x, y~ such that one of the edges wx, wy is in color 1. Now if w were
a vertex in VI then one of the vertices x, y would belong to Vi, a contradiction to our
assumption. Thus w E V2 and therefore V2 contains at least 3 vertices. Now if V2 has at
least 4 vertices, then the path YWZlZZ2X (or the path XWZlZZ2Y) is the desired one, where
z denotes any vertex in V2 B lx, y, w}. Consequently, in the sequel assume that V2 has
precisely 3 vertices, namely x, y and w. Now, if there is a monochromatic color-2 path
between z, and z2, say ZI t1 ... in Vl, then satisfies the conclusion of
the theorem. Otherwise, the vertices of V1 can be partitioned into 2 subsets Tl and T2
such that zl E Tl, z2 E T2 and all edges between Tl and T2 are in color 1. In this final
case Kc is isomorphic to Go. ci

Let us notice that the proof of the above theorem can be easily transformed to an algo-
rithm for finding, the desired paths (if any). More precisely, the proof of (i) has complexity
0(n), while the proof of(ii) has complexity 0(n2). The factor 0(n2) in (ii) comes from the
fact that we have to check if the graph induced by the color-1 (color-2) edges is connected.
It also comes from the determination of a color-2 path between zi and Z2 in Vi B w, y}.
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