A simple and efficient scheme for phase field crystal simulation
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 47 (2013) no. 5, p. 1413-1432

We propose an unconditionally stable semi-implicit time discretization of the phase field crystal evolution. It is based on splitting the underlying energy into convex and concave parts and then performing H-1 gradient descent steps implicitly for the former and explicitly for the latter. The splitting is effected in such a way that the resulting equations are linear in each time step and allow an extremely simple implementation and efficient solution. We provide the associated stability and error analysis as well as numerical experiments to validate the method's efficiency.

DOI : https://doi.org/10.1051/m2an/2013074
Classification:  65M12,  74S25,  74N05,  74N20,  82C26
Keywords: phase field crystal, semi-implicit time discretization, convex-concave splitting
     author = {Elsey, Matt and Wirth, Benedikt},
     title = {A simple and efficient scheme for phase field crystal simulation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {5},
     year = {2013},
     pages = {1413-1432},
     doi = {10.1051/m2an/2013074},
     zbl = {1286.74118},
     mrnumber = {3100769},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2013__47_5_1413_0}
Elsey, Matt; Wirth, Benedikt. A simple and efficient scheme for phase field crystal simulation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 47 (2013) no. 5, pp. 1413-1432. doi : 10.1051/m2an/2013074. http://www.numdam.org/item/M2AN_2013__47_5_1413_0/

[1] B.P. Athreya, N. Goldenfeld, J.A. Dantzig, M. Greenwood and N. Provatas, Adaptive mesh computation of polycrystalline pattern formation using a renormalization-group reduction of the phase-field crystal model. Phys. Rev. E 76 (2007) 056706.

[2] A.L. Bertozzi, S. Esedoglu and A. Gillette, Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16 (2007) 285-291. | MR 2460167 | Zbl 1279.94008

[3] M. Cheng and J.A. Warren, An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227 (2008) 6241-6248. | MR 2418360 | Zbl 1151.82411

[4] K.R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70 (2004) 051605.

[5] K.R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth. Phys. Rev. Lett. 88 (2002) 245701.

[6] K.R. Elder, N. Provatas, J. Berry, P. Stefanovic and M. Grant, Phase-field crystal modeling and classical density functional theory of freezing. Phys. Rev. B 75 (2007) 064107.

[7] D. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, in Computational and mathematical models of microstructural evolution, edited by J.W. Bullard, R. Kalia, M. Stoneham and L.Q. Chen. Warrendale, PA, Materials Research Society 53 (1998) 1686-1712. | MR 1676409

[8] K. Glasner, A diffuse interface approach to Hele-Shaw flow. Nonlinearity 16 (2003) 49-66. | MR 1950775 | Zbl 1138.76340

[9] M. Khenner, A. Averbuch, M. Israeli and M. Nathan, Numerical simulation of grain-boundary grooving by level set method. J. Comput. Phys. 170 (2001) 764-784. | Zbl 1112.74457

[10] J.N. Lyness and B.J.J. Mchugh, On the remainder term in the N-dimensional Euler Maclaurin expansion. Numer. Math. 15 (1970) 333-344. | MR 267734 | Zbl 0199.11801

[11] P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19 (2003) 439-456. Special issue in honor of the sixtieth birthday of Stanley Osher. | MR 2028853 | Zbl 1035.65098

[12] S.M. Wise, C. Wang and J.S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47 (2009) 2269-2288. | MR 2519603 | Zbl 1201.35027

[13] K.-A. Wu and A. Karma, Phase-field crystal modeling of equilibrium bcc-liquid interfaces. Phys. Rev. B 76 (2007) 184107.

[14] K.-A. Wu, M. Plapp and P.W. Voorhees, Controlling crystal symmetries in phase-field crystal models. J. Phys. Condensed Matter 22 (2010) 364102.

[15] K.-A. Wu and P.W. Voorhees, Stress-induced morphological instabilities at the nanoscale examined using the phase field crystal approach. Phys. Rev. B 80 (2009) 125408.

[16] D.-H. Yeon, Z.-F. Huang, K. Elder and K. Thornton, Density-amplitude formulation of the phase-field crystal model for two-phase coexistence in two and three dimensions. Philosophical Magazine 90 (2010) 237-263.