On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) no. 6, pp. 1555-1576.

A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this bound is extended to the fine level by adding a proper correction term. Because the approximate problems are affine, an efficient offline/online computational scheme can be developed for the certified solution (error bounds and stability factors) of the parametric equations considered. We experiment with different correction terms suited for a posteriori error estimation of the reduced basis solution of elliptic coercive and noncoercive problems.

DOI : https://doi.org/10.1051/m2an/2012016
Classification : 35J05,  65N15,  65N30
Mots clés : parametric model reduction, a posteriori error estimation, stability factors, coercivity constant, inf-sup condition, parametrized PDEs, reduced basis method, successive constraint method, empirical interpolation
@article{M2AN_2012__46_6_1555_0,
author = {Lassila, Toni and Manzoni, Andrea and Rozza, Gianluigi},
title = {On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
pages = {1555--1576},
publisher = {EDP-Sciences},
volume = {46},
number = {6},
year = {2012},
doi = {10.1051/m2an/2012016},
zbl = {1276.65069},
mrnumber = {2996340},
language = {en},
url = {http://www.numdam.org/item/M2AN_2012__46_6_1555_0/}
}
Lassila, Toni; Manzoni, Andrea; Rozza, Gianluigi. On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) no. 6, pp. 1555-1576. doi : 10.1051/m2an/2012016. http://www.numdam.org/item/M2AN_2012__46_6_1555_0/

[1] I. Babuška and S.A. Sauter, Is the pollution effect of the FEM avoidable for Helmholtz equation considering high wave numbers? SIAM Rev. 42 (2000) 451-484. | MR 1786934 | Zbl 0956.65095

[2] M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An ‘empirical interpolation' method : application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris, Sér. I Math. 339 (2004) 667-672. | MR 2103208 | Zbl 1061.65118

[3] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 2nd edition. Springer (2002). | MR 1894376 | Zbl 0804.65101

[4] F. Brezzi, and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Comput. Math. 15 (1991). | MR 1115205 | Zbl 0788.73002

[5] Y. Chen, J. Hesthaven, Y. Maday and J. Rodriguez, A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations. C. R. Acad. Sci. Paris, Sér. I Math. 346 (2008) 1295-1300. | MR 2473311 | Zbl 1152.65109

[6] J.L. Eftang, M.A. Grepl and A.T. Patera, A posteriori error bounds for the empirical interpolation method. C. R. Acad. Sci. Paris, Sér. I Math. 348 (2010) 575-579. | MR 2645176 | Zbl 1190.65018

[7] J.L. Eftang, A.T. Patera and E.M. Rønquist, An “hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32 (2010) 3170-3200. | MR 2746617 | Zbl 1228.35097

[8] J.L. Eftang, D.J. Knezevic and A.T. Patera, An “hp” certified reduced basis method for parametrized parabolic partial differential equations. Math. Comput. Model. Dyn. 17 (2011) 395-422. | MR 2823470

[9] J.L. Eftang, D.B.P. Huynh, D.J. Knezevic and A.T. Patera, A two-step certified reduced basis method. J. Sci. Comput. 51 (2012) 28-58. | MR 2891945 | Zbl 1244.65172

[10] A. Ern and J.-L. Guermond, Theory and practice of finite elements. Springer-Verlag, New York (2004). | MR 2050138 | Zbl 1059.65103

[11] L.C. Evans, Partial Differential Equations. Amer. Math. Soc. (1998). | JFM 42.0398.04

[12] A.L. Gerner and K. Veroy, Reduced basis a posteriori error bounds for the stokes equations in parametrized domains : a penalty approach. Math. Mod. Methods Appl. Sci. 21 (2011) 2103-2134. | MR 2851708

[13] D. Green and W.G. Unruh, The failure of the Tacoma bridge : a physical model. Am. J. Phys. 74 (2006) 706-716. | MR 2340102 | Zbl 1219.74013

[14] M.A. Grepl, Y. Maday, N.C. Nguyen and A.T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM : M2AN 41 (2007) 575-605. | Numdam | MR 2355712 | Zbl 1142.65078

[15] A. Holt and M. Landahl, Aerodynamics of wings and bodies. Dover New York (1985). | MR 809176 | Zbl 0161.22502

[16] D.B.P. Huynh and G. Rozza, Reduced basis method and a posteriori error estimation : application to linear elasticity problems (2011). Submitted.

[17] D.B.P Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability costants. C. R. Acad. Sci. Paris, Sér. I Math. 345 (2007) 473-478. | MR 2367928 | Zbl 1127.65086

[18] D.B.P. Huynh, D. Knezevic, Y. Chen, J. Hesthaven and A.T. Patera, A natural-norm successive constraint method for inf-sup lower bounds. Comput. Methods Appl. Mech. Eng. 199 (2010) 1963-1975. | MR 2654002 | Zbl 1231.76208

[19] D.B.P. Huynh, N.C. Nguyen, A.T. Patera and G. Rozza, Rapid reliable solution of the parametrized partial differential equations of continuum mechanics and transport. Available on http://augustine.mit.edu.

[20] T. Lassila and G. Rozza, Parametric free-form shape design with PDE models and reduced basis method. Comput. Methods Appl. Mech. Eng. 199 (2010) 1583-1592. | MR 2630164 | Zbl 1231.76245

[21] T. Lassila and G. Rozza, Model reduction of semiaffinely parametrized partial differential equations by two-level affine approximation. C. R. Math. Acad. Sci. Paris, Ser. I 349 (2011) 61-66. | MR 2755698 | Zbl 1211.35019

[22] T. Lassila, A. Quarteroni and G. Rozza, A reduced basis model with parametric coupling for fluid-structure interaction problems. SIAM J. Sci. Comput. 34 (2012) A1187-A1213. | MR 2914321

[23] Y. Maday, N.C. Nguyen, A.T. Patera and G.S.H. Pau, A general multipurpose interpolation procedure : the magic points. Commun. Pure Appl. Anal. 8 (2009) 383-404. | MR 2449115 | Zbl 1184.65020

[24] A. Manzoni, A. Quarteroni and G. Rozza, Model reduction techniques for fast blood flow simulation in parametrized geometries. Int. J. Numer. Methods Biomed. Eng. (2011). In press, DOI: 10.1002/cnm.1465. | MR 2946552

[25] A. Manzoni, A. Quarteroni and G. Rozza, Shape optimization of cardiovascular geometries by reduced basis methods and free-form deformation techniques. Int. J. Numer. Methods Fluids (2011). In press, DOI: 10.1002/fld.2712.

[26] L.M. Milne-Thomson, Theoretical aerodynamics. Dover (1973). | Zbl 0029.28204

[27] B. Mohammadi and O. Pironneau, Applied shape optimization for fluids. Oxford University Press (2001). | MR 1835648 | Zbl 1179.65002

[28] N.C. Nguyen, A posteriori error estimation and basis adaptivity for reduced-basis approximation of nonaffine-parametrized linear elliptic partial differential equations. J. Comput. Phys. 227 (2007) 983-1006. | MR 2442384 | Zbl 1140.65077

[29] N.C. Nguyen, G. Rozza and A.T. Patera, Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers equation. Calcolo 46 (2009) 157-185. | MR 2533748 | Zbl 1178.65109

[30] A.T. Patera and G. Rozza, Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equation. Version 1.0, Copyright MIT (2006), to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering (2009).

[31] C. Prud'Homme, D.V. Rovas, K. Veroy and A.T. Patera, A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. ESAIM : M2AN 36 (2002) 747-771. | Numdam | Zbl 1024.65104

[32] A. Quarteroni, G. Rozza and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations in industrial applications. J. Math. Ind. 1 (2011). | MR 2824231 | Zbl 1273.65148

[33] G. Rozza, Reduced basis approximation and error bounds for potential flows in parametrized geometries. Commun. Comput. Phys. 9 (2011) 1-48. | MR 2678209 | Zbl 1284.76295

[34] G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2008) 229-275. | MR 2430350

[35] G. Rozza, D.B.P. Huynh and A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries : roles of the inf-sup stability constants. Technical Report 22.2010, MATHICSE (2010). Online version available at : http://cmcs.epfl.ch/people/manzoni.

[36] G. Rozza, T. Lassila and A. Manzoni, Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map, in Spectral and High Order Methods for Partial Differential Equations. Selected papers from the ICOSAHOM'09 Conference, Trondheim, Norway, edited by J.S. Hesthaven and E.M. Rønquist. Lect. Notes Comput. Sci. Eng. 76 (2011) 307-315. | MR 3204827

[37] S. Sen, K. Veroy, P. Huynh, S. Deparis, N.C. Nguyen and A.T. Patera, “Natural norm” a posteriori error estimators for reduced basis approximations. J. Comput. Phys. 217 (2006) 37-62. | MR 2250524 | Zbl 1100.65094

[38] S. Vallaghe, A. Le-Hyaric, M. Fouquemberg and C. Prud'Homme, A successive constraint method with minimal offline constraints for lower bounds of parametric coercivity constant. C. R. Acad. Sci. Paris, Sér. I Math. (2011). Submitted.

[39] J. Xu and L. Zikatanov, Some observation on Babuška and Brezzi theories. Numer. Math. 94 (2003) 195-202. | MR 1971217 | Zbl 1028.65115

[40] S. Zhang, Efficient greedy algorithms for successive constraints methods with high-dimensional parameters. C. R. Acad. Sci. Paris, Sér. I Math. (2011). Submitted.