In this article, we provide a priori error estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the electronic density, and allows for a comprehensive analysis. This is not the case for the Kohn-Sham LDA model, for which the uniqueness of the ground state electronic density is not guaranteed. We prove that, for any local minimizer of the Kohn-Sham LDA model, and under a coercivity assumption ensuring the local uniqueness of this minimizer up to unitary transform, the discretized Kohn-Sham LDA problem has a minimizer in the vicinity of for large enough energy cut-offs, and that this minimizer is unique up to unitary transform. We then derive optimal a priori error estimates for the spectral discretization method.
Keywords: electronic structure calculation, density functional theory, Thomas-Fermi-von Weizsäcker model, Kohn-Sham model, nonlinear eigenvalue problem, spectral methods
@article{M2AN_2012__46_2_341_0, author = {Canc\`es, Eric and Chakir, Rachida and Maday, Yvon}, title = {Numerical analysis of the planewave discretization of some orbital-free and {Kohn-Sham} models}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {341--388}, publisher = {EDP-Sciences}, volume = {46}, number = {2}, year = {2012}, doi = {10.1051/m2an/2011038}, mrnumber = {2855646}, zbl = {1278.82003}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2011038/} }
TY - JOUR AU - Cancès, Eric AU - Chakir, Rachida AU - Maday, Yvon TI - Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 341 EP - 388 VL - 46 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2011038/ DO - 10.1051/m2an/2011038 LA - en ID - M2AN_2012__46_2_341_0 ER -
%0 Journal Article %A Cancès, Eric %A Chakir, Rachida %A Maday, Yvon %T Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 341-388 %V 46 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2011038/ %R 10.1051/m2an/2011038 %G en %F M2AN_2012__46_2_341_0
Cancès, Eric; Chakir, Rachida; Maday, Yvon. Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 46 (2012) no. 2, pp. 341-388. doi : 10.1051/m2an/2011038. http://www.numdam.org/articles/10.1051/m2an/2011038/
[1] Existence of minimizers for Kohn-Sham models in quantum chemistry. Ann. Inst. Henri Poincaré 26 (2009) 2425-2455. | Numdam | MR | Zbl
and ,[2] The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Comm. Math. Phys. 79 (1981) 167-180. | MR | Zbl
, and ,[3] Nonlinear instability of density-independent orbital-free kinetic energy functionals. J. Chem. Phys. 122 (2005) 214-106.
and ,[4] Zur quantentheorie der molekeln. Ann. Phys. 84 (1927) 457-484. | JFM
and ,[5] Regularity of the symbolic calculus in Besov algebras. Stud. Math. 184 (2008) 271-298. | MR | Zbl
and ,[6] Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45 (2010) 90-117. | MR | Zbl
, and ,[7] E. Cancès, R. Chakir, V. Ehrlacher and Y. Maday, in preparation.
[8] Computational quantum chemistry: a primer, in Handbook of numerical analysis X. North-Holland, Amsterdam (2003) 3-270. | MR | Zbl
, , , and ,[9] Méthodes mathématiques en chimie quantique. Springer (2006). | MR
, and ,[10] Local exchange potentials for electronic structure calculations. MathematicS In Action 2 (2009) 1-42. | MR | Zbl
, , , and ,[11] Spectral methods: fundamentals in single domains. Springer (2006). | MR | Zbl
, , and ,[12] Mathematical theory of thermodynamic limits: Thomas-Fermi type models. Oxford University Press (1998). | MR | Zbl
, and ,[13] Convergence of adaptive finite element approximations for nonlinear eigenvalue problems. arXiv preprint, http://arxiv.org/pdf/1001.2344.
, , and ,[14] Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model. Math. Methods Appl. Sci. 33 (2010) 1723-1742. | MR | Zbl
, and ,[15] Density functional theory. Springer (1990). | Zbl
and ,[16] The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998) 303-353. | MR | Zbl
, and ,[17] Non-periodic finite-element formulation of orbital-free density functional theory. J. Mech. Phys. Solids 55 (2007) 669-696. | MR | Zbl
, , and ,[18] Elliptic partial differential equations of second order, 3rd edition. Springer (1998). | Zbl
and ,[19] ABINIT: first-principles approach to material and nanosystem properties. Computer Phys. Comm. 180 (2009) 2582-2615.
et al.,[20] Inhomogeneous electron gas. Phys. Rev. 136 (1964) B864-B871. | MR
and ,[21] Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965) A1133-A1138. | MR
and ,[22] Existence and convergence results for the Galerkin approximation of an electronic density functional. Math. Mod. Methods Appl. Sci. 20 (2010) 2237-2265. | MR | Zbl
, and ,[23] Ph.D. thesis, École Polytechnique (1993).
,[24] W.A. Lester Jr. Ed., Recent advances in Quantum Monte Carlo methods. World Sientific (1997). | Zbl
[25] Recent advances in Quantum Monte Carlo methods, Part II, World Sientific (2002).
, and Eds.,[26] Universal variational functionals of electron densities, first order density matrices, and natural spin-orbitals and solution of the V-representability problem. Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 6062-6065. | MR
,[27] Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53 (1981) 603-641. | MR | Zbl
,[28] Density Functional for Coulomb systems. Int. J. Quant. Chem. 24 (1983) 243-277.
,[29] Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations. Numer. Math. 94 (2003) 739-770. | MR | Zbl
and ,[30] Superposition of functions in Sobolev spaces of fractional order. A survey. Banach Center Publ. 27 (1992) 481-497. | MR | Zbl
,[31] Non-periodic finite-element formulation of Kohn-Sham density functional theory. J. Mech. Phys. Solids 58 (2010) 256-280. | MR | Zbl
, , , and ,[32] A straightforward method for generating soft transferable pseudopotentials. Solid State Commun. 74 (1990) 613-616.
and ,[33] Consequences of extending 1matrix energy functionals from purestate representable to all ensemble representable 1 matrices. J. Chem. Phys. 73 (1980) 1344-1349. | MR
,[34] Orbital-free kinetic energy density functional theory, in Theoretical methods in condensed phase chemistry, Progress in theoretical chemistry and physics 5. Kluwer (2000) 117-184.
and ,[35] Finite dimensional approximations for the electronic ground state solution of a molecular system. Math. Methods Appl. Sci. 30 (2007) 429-447. | MR | Zbl
,Cited by Sources: