Small-stencil 3D schemes for diffusive flows in porous media
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) no. 2, p. 265-290
In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.
@article{M2AN_2012__46_2_265_0,
     author = {Eymard, Robert and Guichard, Cindy and Herbin, Rapha\`ele},
     title = {Small-stencil 3D schemes for diffusive flows in porous media},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {2},
     year = {2012},
     pages = {265-290},
     doi = {10.1051/m2an/2011040},
     zbl = {1271.76324},
     mrnumber = {2855643},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2012__46_2_265_0}
}
Eymard, Robert; Guichard, Cindy; Herbin, Raphaèle. Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) no. 2, pp. 265-290. doi : 10.1051/m2an/2011040. http://www.numdam.org/item/M2AN_2012__46_2_265_0/

[1] I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6 (2002) 405-432. Locally conservative numerical methods for flow in porous media. | MR 1956024 | Zbl 1094.76550

[2] I. Aavatsmark and R. Klausen, Well index in reservoir simulation for slanted and slightly curved wells in 3D grids. SPE J. 8 (2003) 41-48.

[3] I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127 (1996) 2-14. | Zbl 0859.76048

[4] I. Aavatsmark, G. Eigestad, B. Heimsund, B. Mallison, J. Nordbotten and E. Oian, A new finite-volume approach to efficient discretization on challenging grids. SPE J. 15 (2010) 658-669.

[5] L. Agelas, D.A. Di Pietro and R. Masson, A symmetric and coercive finite volume scheme for multiphase porous media flow problems with applications in the oil industry, in Finite volumes for complex applications V. ISTE, London (2008) 35-51. | MR 2441445

[6] L. Agelas, R. Eymard and R. Herbin, A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media. C. R. Math. Acad. Sci. Paris 347 (2009) 673-676. | MR 2537448 | Zbl 1166.65051

[7] B. Andreianov, M. Bendahmane and K. Karlsen, A gradient reconstruction formula for finite-volume schemes and discrete duality, in Finite volumes for complex applications V. ISTE, London (2008) 161-168. | MR 2451403

[8] B. Andreianov, M. Bendahmane, K.H. Karlsen and C. Pierre, Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Netw. Heterog. Media 6 (2011) 195-240. | MR 2806073 | Zbl pre06147593

[9] F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46 (2008) 3032-3070. | MR 2439501 | Zbl 1180.35533

[10] F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2008) 277-295. | Numdam | MR 2512497 | Zbl 1177.65164

[11] Y. Coudière and F. Hubert, A 3D discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comput. 33 (2011) 1739. | MR 2831032 | Zbl 1243.35061

[12] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493-516. | Numdam | MR 1713235 | Zbl 0937.65116

[13] Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, 2D/3D discrete duality finite volume scheme (DDFV) applied to ECG simulation. A DDFV scheme for anisotropic and heterogeneous elliptic equations, application to a bio-mathematics problem: electrocardiogram simulation, in Finite volumes for complex applications V. ISTE, London (2008) 313-320. | MR 2451422

[14] Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, A 2D/3D discrete duality finite volume scheme. Application to ECG simulation. Int. J. Finite 6 (2009) 24. | MR 2500950

[15] K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203-1249. | Numdam | MR 2195910 | Zbl 1086.65108

[16] J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265-295. | MR 2649153 | Zbl 1191.65142

[17] A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer-Verlag, New York (2004). | MR 2050138 | Zbl 1059.65103

[18] R. Eymard, T. Gallouët and P. Joly, Hybrid finite element techniques for oil recovery simulation. Comput. Methods Appl. Mech. Eng. 74 (1989) 83-98. | MR 1017750 | Zbl 0687.76101

[19] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Handb. Numer. Anal. VII. North-Holland, Amsterdam (2000) 713-1020. | MR 1804748 | Zbl 0981.65095

[20] R. Eymard, T. Gallouët and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007) 403-406. | MR 2310678 | Zbl 1112.65120

[21] R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes, SUSHI: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009-1043. see also http://hal.archives-ouvertes.fr/. | MR 2727814 | Zbl 1202.65144

[22] R. Eymard, C. Guichard, R. Herbin and R. Masson, Multiphase flow in porous media using the VAG scheme, in Finite Volumes for Complex Applications VI - Problems and Persepectives, edited by J. Fort, J. Furst, J. Halama, R. Herbin and F. Hubert. Springer Proceedings in Mathematics (2011) 409-417. | MR 2882317 | Zbl pre06115955

[23] R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Kloefkorn and G. Manzini, 3D benchmark on discretization schemes for anisotropic diffusion problem on general grids, in Finite Volumes for Complex Applications VI - Problems and Persepectives, edited by J. Fort, J. Furst, J. Halama, R. Herbin and F. Hubert. Springer Proceedings in Mathematics (2011) 95-130. | Zbl pre06116001

[24] I. Faille, A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Eng. 100 (1992) 275-290. | MR 1187634 | Zbl 0761.76068

[25] R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids for anisotropic heterogeneous diffusion problems, in Finite Volumes for Complex Applications V, edited by R. Eymard and J.-M. Hérard. Wiley (2008) 659-692. | MR 2451465 | Zbl 1246.76053

[26] F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192 (2003) 1939-1959. | MR 1980752 | Zbl 1037.65118

[27] F. Hermeline, Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes. Comput. Methods Appl. Mech. Eng. 196 (2007) 2497-2526. | MR 2319051 | Zbl 1173.76362

[28] F. Hermeline, A finite volume method for approximating 3D diffusion operators on general meshes. J. Comput. Phys. 228 (2009) 5763-5786. | MR 2542915 | Zbl 1168.76340

[29] G. Strang, Variational crimes in the finite element method, in The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md. 1972). Academic Press, New York (1972) 689-710. | MR 413554 | Zbl 0264.65068