Optimal snapshot location for computing POD basis functions
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 44 (2010) no. 3, p. 509-529

The construction of reduced order models for dynamical systems using proper orthogonal decomposition (POD) is based on the information contained in so-called snapshots. These provide the spatial distribution of the dynamical system at discrete time instances. This work is devoted to optimizing the choice of these time instances in such a manner that the error between the POD-solution and the trajectory of the dynamical system is minimized. First and second order optimality systems are given. Numerical examples illustrate that the proposed criterion is sensitive with respect to the choice of the time instances and further they demonstrate the feasibility of the method in determining optimal snapshot locations for concrete diffusion equations.

DOI : https://doi.org/10.1051/m2an/2010011
Classification:  49J20,  49K20,  49M15,  90C53
Keywords: proper orthogonal decomposition, optimal snapshot locations, first and second order optimality conditions
     author = {Kunisch, Karl and Volkwein, Stefan},
     title = {Optimal snapshot location for computing POD basis functions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {3},
     year = {2010},
     pages = {509-529},
     doi = {10.1051/m2an/2010011},
     zbl = {1193.65113},
     mrnumber = {2666653},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2010__44_3_509_0}
Kunisch, Karl; Volkwein, Stefan. Optimal snapshot location for computing POD basis functions. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 44 (2010) no. 3, pp. 509-529. doi : 10.1051/m2an/2010011. http://www.numdam.org/item/M2AN_2010__44_3_509_0/

[1] G. Berkooz, P. Holmes and J.L. Lumley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry - Cambridge Monographes in Mechanics. Cambridge Universtity Press, UK (1996). | Zbl 0923.76002

[2] T. Bui-Thanh, Model-constrained optimization methods for reduction of parameterized systems. Ph.D. Thesis, MIT, USA (2007).

[3] T. Bui-Thanh, M. Damodoran and K. Willcox, Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA Journal 42 (2004) 1505-1516.

[4] T. Bui-Thanh, K. Willcox, O. Ghattas and B. Van Bloemen Wanders, Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comput Phys. 224 (2007) 880-896. | Zbl 1123.65081

[5] R. Everson and L. Sirovich, The Karhunen-Loeve procedure for gappy data. J. Opt. Soc. Am. 12 (1995) 1657-1664.

[6] K. Fukunaga, Introduction to Statistical Recognition. Academic Press, New York, USA (1990).

[7] M.A. Grepl, Y. Maday, N.C. Nguyen and A.T. Patera, Efficient reduced-basis treatment of affine and nonlinear partial differential equations. ESAIM: M2AN 41 (2007) 575-605. | Zbl 1142.65078

[8] M. Heinkenschloss, Formulation and Analysis of a Sequential Quadratic Programming Method for the Optimal Dirichlet Boundary Control of Navier Stokes Flow - Optimal Control: Theory, Methods and Applications. Kluwer Academic Publisher, B.V. (1998) 178-203. | Zbl 0924.76021

[9] M. Hinze and K. Kunisch, Second order methods for optimal control of time - Dependent fluid flow. SIAM J. Contr. Optim. 40 (2001) 925-946. | Zbl 1012.49026

[10] K. Ito and S.S. Ravindran, A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143 (1998) 403-425. | Zbl 0936.76031

[11] T. Kato, Perturbation Theory for Linear Operators. Springer Verlag, Germany (1980). | Zbl 0435.47001

[12] K. Kunisch and S. Volkwein, Control of Burgers' equation by reduced order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102 (1999) 345-371. | Zbl 0949.93039

[13] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117-148. | Zbl 1005.65112

[14] S. Lall, J.E. Marsden and S. Glavaski, Empirical model reduction of controlled nonlinear systems, in Proceedings of the IFAC Congress, Vol. F (1999) 473-478.

[15] H.V. Ly and H.T. Tran, Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Quarterly Appl. Math. 60 (2002) 631-656. | Zbl 1146.76631

[16] J. Nocedal and S.J. Wright, Numerical Optimization, Springer Series in Operation Research. Second Edition, Springer Verlag, New York, USA (2006). | Zbl 1104.65059

[17] M. Rathinam and L.R. Petzold, A new look at proper orthogonal decomposition. SIAM J. Numer. Anal. 41 (2003) 1893-1925. | Zbl 1053.65106

[18] S.S. Ravindran, Adaptive reduced-order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J. Sci. Comput. 23 (2002) 1924-1942. | Zbl 1026.76015

[19] C.W. Rowley, Model reduction for fluids using balanced proper orthogonal decomposition. Int. J. Bifur. Chaos 15 (2005) 997-1013. | Zbl 1140.76443

[20] G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics. Arch. Comput. Method. E. 15 (2008) 229-275. | Zbl pre05344486

[21] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Second edition, Springer, Berlin, Germany (1997). | Zbl 0662.35001

[22] K. Willcox, O. Ghattas, B. Von Bloemen Wanders and W. Bader, An optimization framework for goal-oriented, model-based reduction of large-scale systems, in 44th IEEE Conference on Decision and Control, Sevilla, Spain (2005).