A unified convergence analysis for local projection stabilisations applied to the Oseen problem
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 41 (2007) no. 4, p. 713-742

The discretisation of the Oseen problem by finite element methods may suffer in general from two shortcomings. First, the discrete inf-sup (Babuška-Brezzi) condition can be violated. Second, spurious oscillations occur due to the dominating convection. One way to overcome both difficulties is the use of local projection techniques. Studying the local projection method in an abstract setting, we show that the fulfilment of a local inf-sup condition between approximation and projection spaces allows to construct an interpolation with additional orthogonality properties. Based on this special interpolation, optimal a-priori error estimates are shown with error constants independent of the Reynolds number. Applying the general theory, we extend the results of Braack and Burman for the standard two-level version of the local projection stabilisation to discretisations of arbitrary order on simplices, quadrilaterals, and hexahedra. Moreover, our general theory allows to derive a novel class of local projection stabilisation by enrichment of the approximation spaces. This class of stabilised schemes uses approximation and projection spaces defined on the same mesh and leads to much more compact stencils than in the two-level approach. Finally, on simplices, the spectral equivalence of the stabilising terms of the local projection method and the subgrid modelling introduced by Guermond is shown. This clarifies the relation of the local projection stabilisation to the variational multiscale approach.

DOI : https://doi.org/10.1051/m2an:2007038
Classification:  65N12,  65N30,  76D05
Keywords: stabilised finite elements, Navier-Stokes equations, equal-order interpolation
@article{M2AN_2007__41_4_713_0,
     author = {Matthies, Gunar and Skrzypacz, Piotr and Tobiska, Lutz},
     title = {A unified convergence analysis for local projection stabilisations applied to the Oseen problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {4},
     year = {2007},
     pages = {713-742},
     doi = {10.1051/m2an:2007038},
     zbl = {pre05289494},
     mrnumber = {2362912},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2007__41_4_713_0}
}
Matthies, Gunar; Skrzypacz, Piotr; Tobiska, Lutz. A unified convergence analysis for local projection stabilisations applied to the Oseen problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 41 (2007) no. 4, pp. 713-742. doi : 10.1051/m2an:2007038. http://www.numdam.org/item/M2AN_2007__41_4_713_0/

[1] L. Alaoul and A. Ern, Nonconforming finite element methods with subgrid viscosity applied to advection-diffusion-reaction equations. Numer. Meth. Part. Diff. Equat. 22 (2006) 1106-1126. | Zbl 1104.65110

[2] T. Apel, Anisotropic finite elements. Local estimates and applications. Advances in Numerical Mathematics. Teubner, Leipzig (1999). | MR 1716824 | Zbl 0934.65121

[3] D.N. Arnold, D. Boffi and R.S. Falk, Approximation by quadrilateral finite elements. Math. Comput. 71 (2002) 909-922. | Zbl 0993.65125

[4] R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001) 173-199. | Zbl 1008.76036

[5] R. Becker and M. Braack, A two-level stabilization scheme for the Navier-Stokes equations, in Numerical mathematics and advanced applications, M. Feistauer et al. Eds., Berlin, Springer-Verlag (2004) 123-130. | Zbl pre02110685

[6] R. Becker and B. Vexler, Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106 (2007) 349-367. | Zbl 1133.65037

[7] M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43 (2006) 2544-2566. | Zbl 1109.35086

[8] M. Braack and T. Richter, Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements. Comput. Fluids 35 (2006) 372-392. | Zbl pre05066014

[9] M. Braack and T. Richter, Stabilized finite elements for 3D reactive flows. Int. J. Numer. Methods Fluids 51 (2006) 981-999. | Zbl pre05050683

[10] M. Braack and T. Richter, Solving multidimensional reactive flow problems with adaptive finite elements, in Reactive Flows, Diffusion and Transport, W. Jäger, R. Rannacher and J. Warnatz Eds., Springer-Verlag (2007) 93-112.

[11] M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853-866. | Zbl 1120.76322

[12] A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1982) 199-259. | Zbl 0497.76041

[13] P.G. Ciarlet, The finite element method for elliptic problems. SIAM (2002). | MR 1930132

[14] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl 0368.65008

[15] A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer-Verlag, New York (2004). | MR 2050138 | Zbl 1059.65103

[16] L.P. Franca and S.L. Frey, Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99 (1992) 209-233. | Zbl 0765.76048

[17] T. Gelhard, G. Lube, M.A. Olshanskii and J.-H. Starcke, Stabilized finite element schemes with LBB-stable elements for incompressible flows. J. Comput. Appl. Math. 177 (2005) 243-267. | Zbl 1063.76054

[18] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equation, SCM 5. Springer-Verlag, Berlin (1986). | MR 851383 | Zbl 0585.65077

[19] J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modelling. ESAIM: M2AN 33 (1999) 1293-1316. | Numdam | Zbl 0946.65112

[20] J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear contraction semi-groups of class C 0 . Comput. Visual. Sci. 2 (1999) 131-138. | Zbl 1043.76034

[21] J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear contraction semi-groups of class C 0 in Hilbert spaces. Numer. Meth. Part. Diff. Equat. 17 (2001) 1-25. | Zbl 0967.65067

[22] J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear monotone operators. IMA J. Numer. Anal. 21 (2001) 165-197. | Zbl 0974.65059

[23] J.-L. Guermond, A. Marra and L. Quartapelle, Subgrid stabilized projection method for 2d unsteady flows at high Reynolds numbers. Comput. Methods Appl. Mech. Engrg. 195 (2006) 5857-5876. | Zbl 1121.76036

[24] T.J.R. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg. 127 (1995) 387-401. | Zbl 0866.76044

[25] T.J.R. Hughes and G. Sangalli, Variational multiscale analysis: Projection, optimization, the fine-scale Greens' function, and stabilized methods. USNCCM8, Austin (2005) 27-29. | Zbl pre05265779

[26] T.J.R. Hughes and G. Sangalli, Variational multiscale analysis: The fine-scale Green's function, projection, optimization, localization, and stabilized methods. SIAM J. Numer. Anal. 45 (2007) 539-367. | Zbl pre05265779

[27] T.J.R. Hughes, L.P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics. V: Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg. 59 (1986) 85-99. | Zbl 0622.76077

[28] V. John, On large eddy simulation and variational multiscale methods in the numerical simulation of turbulent flows. Appl. Math. 51 (2006) 321-353.

[29] V. John and S. Kaya, A finite element variational multiscale method for the Navier-Stokes equations. SIAM J. Sci. Comput. 26 (2006) 1485-1503. | Zbl 1073.76054

[30] V. John, S. Kaya and W.J. Layton, A two-level variational multiscale method for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Engrg. 195 (2006) 4594-4603. | Zbl 1124.76028

[31] S. Kaya and B. Rivière, A two-grid stabilization method for solving the steady-state Navier-Stokes equations. Numer. Meth. Part. Diff. Equat. 22 (2005) 728-743. | Zbl 1089.76034

[32] G. Lube, Stabilized FEM for incompressible flow. Critical review and new trends, in European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006, P. Wesseling, E. Onate and J. Périaux Eds., The Netherlands (2006) 1-20 TU Delft.

[33] G. Lube and G. Rapin, Residual-based stabilized higher-order FEM for a generalized Oseen problem. Math. Models Methods Appl. Sci. 16 (2006) 949-966. | Zbl 1095.76032

[34] G. Matthies, Mapped finite elements on hexahedra. Necessary and sufficient conditions for optimal interpolation errors. Numer. Algorithms 27 (2001) 317-327. | Zbl 0998.65117

[35] G. Matthies and G. Lube, On streamline-diffusion methods of inf-sup stable discretisations of the generalised Oseen problem. Preprint 2007-02, Institut für Numerische und Angewandte Mathematik, Georg-August-Universiät Göttingen (2007).

[36] G. Matthies and L. Tobiska, The inf-sup condition for the mapped Q k -P k-1 disc element in arbitrary space dimension. Computing 69 (2002) 119-139. | Zbl 1016.65073

[37] H.-G. Roos, M. Stynes and L. Tobiska, Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems, SCM 24. Springer-Verlag, Berlin (1996). | MR 1477665 | Zbl pre05303645

[38] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483-493. | Zbl 0696.65007

[39] R. Stenberg, Analysis of mixed finite element methods for the Stokes problem: A unified approach. Math. Comput. 42 (1999) 9-23. | Zbl 0535.76037

[40] L. Tobiska, Analysis of a new stabilized higher order finite element method for advection-diffusion equations. Comput. Methods Appl. Mech. Engrg. 196 (2006) 538-550. | Zbl 1120.76336

[41] L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equation. SIAM J. Numer. Anal. 33 (1996) 107-127. | Zbl 0843.76052