A posteriori error analysis for parabolic variational inequalities
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) no. 3, p. 485-511
Motivated by the pricing of American options for baskets we consider a parabolic variational inequality in a bounded polyhedral domain Ω d with a continuous piecewise smooth obstacle. We formulate a fully discrete method by using piecewise linear finite elements in space and the backward Euler method in time. We define an a posteriori error estimator and show that it gives an upper bound for the error in L 2 (0,T;H 1 (Ω)). The error estimator is localized in the sense that the size of the elliptic residual is only relevant in the approximate non-contact region, and the approximability of the obstacle is only relevant in the approximate contact region. We also obtain lower bound results for the space error indicators in the non-contact region, and for the time error estimator. Numerical results for d=1,2 show that the error estimator decays with the same rate as the actual error when the space meshsize h and the time step τ tend to zero. Also, the error indicators capture the correct behavior of the errors in both the contact and the non-contact regions.
@article{M2AN_2007__41_3_485_0,
     author = {Moon, Kyoung-Sook and Nochetto, Ricardo H. and Petersdorff, Tobias Von and Zhang, Chen-Song},
     title = {A posteriori error analysis for parabolic variational inequalities},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {3},
     year = {2007},
     pages = {485-511},
     doi = {10.1051/m2an:2007029},
     zbl = {pre05289382},
     mrnumber = {2355709},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2007__41_3_485_0}
}
Moon, Kyoung-Sook; Nochetto, Ricardo H.; Petersdorff, Tobias Von; Zhang, Chen-Song. A posteriori error analysis for parabolic variational inequalities. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) no. 3, pp. 485-511. doi : 10.1051/m2an:2007029. http://www.numdam.org/item/M2AN_2007__41_3_485_0/

[1] W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2003). | MR 1960405 | Zbl 1020.65058

[2] A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2005) 1117-1138 (electronic). | Zbl 1072.65124

[3] F. Black and M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973) 637-659. | Zbl 1092.91524

[4] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert. North Holland (1973). | MR 348562 | Zbl 0252.47055

[5] H. Brézis and F.E. Browder, Nonlinear integral equations and systems of Hammerstein type. Adv. Math. 18 (1975) 115-147. | Zbl 0318.45011

[6] M. Broadie and J. Detemple, Recent advances in numerical methods for pricing derivative securities, in Numerical Methods in Finance, L.C.G. Rogers and D. Talay Eds., Cambridge University Press (1997) 43-66. | Zbl 0898.90029

[7] L.A. Caffarelli, The regularity of monotone maps of finite compression. Comm. Pure Appl. Math. 50 (1997) 563-591. | Zbl 0901.46034

[8] Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. | Zbl 0943.65075

[9] C.W. Cryer, Successive overrelaxation methods for solving linear complementarity problems arising from free boundary problems, Free boundary problems I, Ist. Naz. Alta Mat. Francesco Severi (1980) 109-131. | Zbl 0454.65050

[10] A. Fetter, L -error estimate for an approximation of a parabolic variational inequality. Numer. Math. 50 (1987) 57-565. | Zbl 0617.65064

[11] F. Fierro and A. Veeser, A posteriori error estimators for regularized total variation of characteristic functions. SIAM J. Numer. Anal. 41 (2003) 2032-2055. | Zbl 1058.65066

[12] R. Glowinski, Numerical methods for nonlinear variational problems. Springer series in computational physics, Springer-Verlag (1984). | MR 737005 | Zbl 0536.65054

[13] P. Jaillet, D. Lamberton and B. Lapeyre, Variational inequalities and the pricing of American options. Acta Appl. Math. 21 (1990) 263-289. | Zbl 0714.90004

[14] C. Johnson, Convergence estimate for an approximation of a parabolic variational inequatlity. SIAM J. Numer. Anal. 13 (1976) 599-606. | Zbl 0337.65055

[15] D. Lamberton and B. Lapeyre, Introduction to stochastic calculus applied to finance. Springer (1996). | MR 1422250 | Zbl 0949.60005

[16] R.H. Nochetto and C.-S. Zhang, Adaptive mesh refinement for evolution obstacle problems (in preparation).

[17] R.H. Nochetto, G. Savaré and C. Verdi, Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris Ser. I 326 (1998) 1437-1442. | Zbl 0944.65077

[18] R.H. Nochetto, G. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 525-589. | Zbl 1021.65047

[19] R.H. Nochetto, K.G. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003) 163-195. | Zbl 1027.65089

[20] R.H. Nochetto, K.G. Siebert and A. Veeser, Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42 (2005) 2118-2135. | Zbl 1095.65099

[21] M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237. | Zbl 0935.65105

[22] A. Schmidt and K.G. Siebert, Design of adaptive finite element software: the finite element toolbox ALBERTA. Lecture Notes in Computational Science and Engineering, Springer (2005). | MR 2127659 | Zbl 1068.65138

[23] A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39 (2001) 146-167. | Zbl 0992.65073

[24] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley Teubner (1996). | Zbl 0853.65108

[25] R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195-212. | Zbl pre02216993

[26] T. Von Petersdorff and C. Schwab, Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN 38 (2004) 93-127. | Numdam | Zbl 1083.65095

[27] C. Vuik, An L 2 -error estimate for an approximation of the solution of a parabolic variational inequality. Numer. Math. 57 (1990) 453-471. | Zbl 0696.65069

[28] P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford, UK (1993). | Zbl 0844.90011