Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 38 (2004) no. 4, p. 691-706

In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.

DOI : https://doi.org/10.1051/m2an:2004029
Classification:  65N30
Keywords: thermoviscoelasticity, dynamic contact problem, finite element approximation, numerical simulations
@article{M2AN_2004__38_4_691_0,
     author = {Copetti, Maria I. M.},
     title = {Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {4},
     year = {2004},
     pages = {691-706},
     doi = {10.1051/m2an:2004029},
     zbl = {1080.74036},
     mrnumber = {2087730},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2004__38_4_691_0}
}
Copetti, Maria I. M. Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 38 (2004) no. 4, pp. 691-706. doi : 10.1051/m2an:2004029. http://www.numdam.org/item/M2AN_2004__38_4_691_0/

[1] D.E. Carlson, Linear thermoelasticity, in Handbuch der physik, C. Truesdell Ed., VIa/2 (1972) 297-345.

[2] M.I.M. Copetti, A one-dimensional thermoelastic problem with unilateral constraint. Math. Comp. Simul. 59 (2002) 361-376. | Zbl 1011.74013

[3] M.I.M. Copetti and D.A. French, Numerical solution of a thermoviscoelastic contact problem by a penalty method. SIAM J. Numer. Anal. 41 (2003) 1487-1504. | Zbl 1130.74489

[4] W.A. Day, Heat conduction with linear thermoelasticity. Springer, New York (1985). | MR 804043 | Zbl 0577.73009

[5] C. Eck, Existence of solutions to a thermo-viscoelastic contact problem with Coulomb friction. Math. Mod. Meth. Appl. Sci. 12 (2002) 1491-1511. | Zbl pre01882853

[6] C. Eck and J. Jaruček, The solvability of a coupled thermoviscoelastic contact problem with small Coulomb friction and linearized growth of frictional heat. Math. Meth. Appl. Sci. 22 (1999) 1221-1234. | Zbl 0949.74047

[7] C.M. Elliott and T. Qi, A dynamic contact problem in thermoelasticity. Nonlinear Anal. 23 (1994) 883-898. | Zbl 0818.73061

[8] S. Jiang and R. Racke, Evolution equations in thermoelasticity. Chapman & Hall/ CRC (2000). | MR 1774100 | Zbl 0968.35003

[9] J.U. Kim, A one-dimensional dynamic contact problem in linear viscoelasticity. Math. Meth. Appl. Sci. 13 (1990) 55-79. | Zbl 0703.73072

[10] K.L. Kuttler and M. Shillor, A dynamic contact problem in one-dimensional thermoviscoelasticity. Nonlinear World 2 (1995) 355-385. | Zbl 0831.73054

[11] M. Schatzman and M. Bercovier, Numerical approximation of a wave equation with unilateral constraints. Math. Comp. 53 (1989) 55-79. | Zbl 0683.65088