Vertical compaction in a faulted sedimentary basin
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 37 (2003) no. 2, p. 373-388

In this paper, we consider a 2D mathematical modelling of the vertical compaction effect in a water saturated sedimentary basin. This model is described by the usual conservation laws, Darcy's law, the porosity as a function of the vertical component of the effective stress and the Kozeny-Carman tensor, taking into account fracturation effects. This model leads to study the time discretization of a nonlinear system of partial differential equations. The existence is obtained by a fixed-point argument. The uniqueness proof, by Holmgren's method, leads to work out a linear, strongly coupled, system of partial differential equations and boundary conditions.

DOI : https://doi.org/10.1051/m2an:2003032
Classification:  35Q35,  76S05,  35J65
Keywords: porous media, vertical compaction, sedimentary basins, fault lines modelling
@article{M2AN_2003__37_2_373_0,
     author = {Gagneux, G\'erard and Masson, Roland and Plouvier-Debaigt, Anne and Vallet, Guy and Wolf, Sylvie},
     title = {Vertical compaction in a faulted sedimentary basin},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {2},
     year = {2003},
     pages = {373-388},
     doi = {10.1051/m2an:2003032},
     zbl = {1048.35080},
     mrnumber = {1991207},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2003__37_2_373_0}
}
Gagneux, Gérard; Masson, Roland; Plouvier-Debaigt, Anne; Vallet, Guy; Wolf, Sylvie. Vertical compaction in a faulted sedimentary basin. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 37 (2003) no. 2, pp. 373-388. doi : 10.1051/m2an:2003032. http://www.numdam.org/item/M2AN_2003__37_2_373_0/

[1] S.N. Antontsev and A.V. Domansky, Uniqueness generalizated solutions of degenerate problem in two-phase filtration. Numerical methods mechanics in continuum medium. Collection Sciences Research, Sbornik, t. 15, No. 6 (1984) 15-28 (in Russian). | Zbl 0585.76143

[2] L. Badea, Adaptive mesh finite element method for the sedimentary basin problem. In honour of Academician Nicolae Dan Cristescu on his 70th birthday, Rev. Roumaine Math. Pures Appl. 45 (2000), No. 2 (2001) 171-181. | Zbl 1020.76031

[3] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles partielles du premier ordre à coefficients réels. Ann. Sci. École Norm. Sup. 3 (1970) 185-233. | Numdam | Zbl 0202.36903

[4] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-holland, Amsterdam (1978). | MR 503330 | Zbl 0404.35001

[5] P.A. Bourque, http://www.ggl.ulaval.ca/personnel/bourque/intro.pt/science.terre.html.

[6] H. Brezis, Analyse fonctionnelle - Théorie et applications. Masson, Paris (1983). | MR 697382 | Zbl 0511.46001

[7] P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis. Vol. II, Finite Element Methods (Part 1). North Holland (1991). | MR 1115235

[8] A.C. Fowler and X. Yang, Fast and slow compaction in sedimentary basins. SIAM J. Appl. Math. 59 (1999) 365-385. | Zbl 0923.35124

[9] G. Gagneux, Sur l'analyse de modèles de la filtration diphasique en milieu poreux, in Équations aux dérivées partielles et applications : Articles dédiés à J.L. Lions. Gauthier-Villars, Elsevier (1998) 527-540. | Zbl 0914.35067

[10] G. Gagneux and M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière, Mathématiques & Applications No. 22. Springer-Verlag (1996). | Zbl 0842.35126

[11] G. Gagneux, A. Plouvier-Debaigt and G. Vallet, Modélisation et analyse mathématique d'un écoulement 2D monophasique dans un bassin sédimentaire faillé sous l'effet de la compaction verticale, Publication Interne du Laboratoire de Mathématiques Appliquées CNRS-ERS 2055, No. 2000-31 (2000).

[12] D. Gilbart and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1977). | MR 473443 | Zbl 0361.35003

[13] G. Gödert and K. Hutter, Induced anisotropy in large ice shields: theory and its homogenization. Contin. Mech. Thermodyn. 10 (1998) 293-318. | Zbl 0934.74018

[14] A.T. Ismail-Zade, A.I. Korotkii, B.M. Naimark and I.A. Tsepelev, Implementation of a three-dimensional hydrodynamic model for evolution of sedimentary basins. Comput. Math. Math. Phys. 38 (1998) 1138-1151. | Zbl 0960.86001

[15] E. Ledoux, http://www.emse.fr/environnement/fiches/1_2_2.html.

[16] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR 259693 | Zbl 0189.40603

[17] X. Luo, G. Vasseur, A. Pouya, V. Lamoureux-Var and A. Poliakov, Elastoplastic deformation of porous media applied to the modelling of compaction at basin scale. Marine and Petroleum Geology 15 (1998) 145-162.

[18] N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sci. Norm. Sup. Pisa Cl. Sci. 17 (1963) 189-206. | Numdam | Zbl 0127.31904

[19] J. Nečas, Écoulements de fluide, Compacité par entropie, Collection Recherche et Mathématiques Appliquées, No. 10. Masson (1989). | MR 1269784 | Zbl 0717.76002

[20] H. Obelembia Adande, Contribution à l'étude de l'unicité pour des systèmes d'équations de conservation. Cas des écoulements diphasiques incompressibles en milieu poreux, Thèse de l'Université de Pau (1996).

[21] O.A. Oleĭnik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation. Uspekhi Mat. Nauk 14 (1959) 165-170. | Zbl 0132.33303

[22] L. Perez, Modélisation de la compaction dans les bassins sédimentaires : Influence d'un comportement mécanique tensoriel, Thèse de l'ENSAM (1998).

[23] F. Schneider and S. Wolf, Quantitative HC potential evaluation using 3D basin modelling application to Franklin structure, central Graben, North Sea. UK Marine and Petroleum Geology 17 (2000) 841-856.

[24] F. Schneider, S. Wolf, I. Faille and D. Pot, A 3D basin model for hydrocarbon potential evaluation: Application to Congo offshore. Oil and Gas Science and Technology 55 (2000) 3-12.

[25] G. Sciarra, F. Dell'Isola and K. Hutter, A solid-fluid mixture model allowing for solid dilatation under external pressure. Contin. Mech. Thermodyn. 13 (2001) 287-306. | Zbl 1134.74365

[26] M. Wangen, Two-phase oil migration in compacting sedimentary basins modelled by the finite element method. Int. J. Numer. Anal. Methods Geomech. 21 (1997) 91-120. | Zbl 0904.76087

[27] M. Wangen, B. Antonsen, B. Fossum and L.K. Alm, A model for compaction of sedimentary basins. Appl. Math. Modelling 14 (1990) 506-517. | Zbl 0709.76140

[28] Z. Wu and J. Yin, Some properties of functions in BV x and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations. Northeast. Math. J. 5 (1989) 395-422. | Zbl 0726.35071

[29] E. Zakarian and R. Glowinski, Domain decomposition methods applied to sedimentary basin modeling. Math. Comput. Modelling 30 (1999) 153-178. | Zbl 1042.65543