The Mortar method in the wavelet context
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 35 (2001) no. 4, p. 647-673

This paper deals with the use of wavelets in the framework of the Mortar method. We first review in an abstract framework the theory of the mortar method for non conforming domain decomposition, and point out some basic assumptions under which stability and convergence of such method can be proven. We study the application of the mortar method in the biorthogonal wavelet framework. In particular we define suitable multiplier spaces for imposing weak continuity. Unlike in the classical mortar method, such multiplier spaces are not a subset of the space of traces of interior functions, but rather of their duals. For the resulting method, we provide with an error estimate, which is optimal in the geometrically conforming case.

Classification:  65N55,  42C40,  65N30,  65N15
Keywords: domain decomposition, mortar method, wavelet approximation
     author = {Bertoluzza, Silvia and Perrier, Val\'erie},
     title = {The Mortar method in the wavelet context},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {4},
     year = {2001},
     pages = {647-673},
     zbl = {0995.65131},
     mrnumber = {1862873},
     language = {en},
     url = {}
Bertoluzza, Silvia; Perrier, Valérie. The Mortar method in the wavelet context. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 35 (2001) no. 4, pp. 647-673.

[1] Y. Achdou, G. Abdoulaev, Y. Kutznetsov and C. Prud'Homme, On the parallel inplementation of the mortar element method. ESAIM: M2AN 33 (1999) 245-259. | Numdam | Zbl 0946.65111

[2] L. Anderson, N. Hall, B. Jawerth and G. Peters, Wavelets on closed subsets on the real line, in Topics in the theory and applications of wavelets, L.L. Schumaker and G. Webb, Eds., Academic Press, Boston (1993) 1-61. | Zbl 0808.42019

[3] F. Ben Belgacem, The mortar finite element method with Lagrange multiplier. Numer. Math. 84 (1999) 173-197. | Zbl 0944.65114

[4] F. Ben Belgacem, A. Buffa and Y. Maday, The mortar element method for 3D Maxwell's equations. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 903-908. | Zbl 0941.65118

[5] F. Ben Belgacem and Y. Maday, Non conforming spectral method for second order elliptic problems in 3D. East-West J. Numer. Math. 4 (1994) 235-251. | Zbl 0835.65129

[6] C. Bernardi, Y. Maday, C. Mavripilis and A.T. Patera, The mortar element method applied to spectral discretizations, in Finite element analysis in fluids. Proc. of the seventh international conference on finite element methods in flow problems, T. Chung and G. Karr, Eds., UAH Press (1989). | Zbl 0704.65077

[7] C. Bernardi, Y. Maday and A.T. Patera, Domain decomposition by the mortar element method, in Asymptotic and numerical methods for partial differential equations with critical parameters, H.G. Kaper and M. Garbey, Eds., N.A.T.O. ASI Ser. C 384 . | Zbl 0799.65124

[8] C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications, Collège de France Seminar XI, H. Brezis and J.L.Lions, Eds. (1994) 13-51. | Zbl 0797.65094

[9] S. Bertoluzza, An adaptive wavelet collocation method based on interpolating wavelets, in Multiscale wavelet methods for partial differential equations. W. Dahmen, A.J. Kurdila and P. Oswald, Eds., Academic Press 6 (1997) 109-135.

[10] S. Bertoluzza and V. Perrier, The mortar method in the wavelet context. Technical Report 99-17, LAGA, Université Paris 13 (1999).

[11] S. Bertoluzza and P. Pietra, Space frequency adaptive approximation for quantum hydrodynamic models. Transport Theory Statist. Phys. 28 (2000) 375-395. | Zbl 0971.76105

[12] D. Braess and W. Dahmen, Stability estimate of the mortar finite element method for 3-dimensional problems. East-West J. Numer. Math. 6 (1998) 249-264. | Zbl 0922.65072

[13] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002

[14] C. Canuto and A. Tabacco, Multilevel decomposition of functional spaces. J. Fourier Anal. Appl. 3 (1997) 715-742. | Zbl 0896.42023

[15] C. Canuto, A. Tabacco and K. Urban, The wavelet element method. Part I: Construction and analysis. Appl. Comput. Harmon. Anal. ACHA 6 (1999) 1-52. | Zbl 0949.42024

[16] L. Cazabeau, C. Lacour and Y. Maday, Numerical quadratures and mortar methods1997) 119-128. | Zbl 0911.65117

[17] P. Charton and V. Perrier, A pseudo-wavelet scheme for the two-dimensional Navier-Stokes equation. Comput. Appl. Math. 15 (1996) 139-160. | Zbl 0868.76064

[18] G. Chiavassa and J. Liandrat, On the effective construction of compactly supported wavelets satisfying homogeneous boundary conditions on the interval. Appl. Comput. Harmon. Anal. ACHA 4 (1997) 62-73. | Zbl 0868.42014

[19] A. Cohen, I. Daubechies and P. Vial, Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. ACHA 1 (1993) 54-81. | Zbl 0795.42018

[20] A. Cohen and R. Masson, Wavelet methods for second order elliptic problems, preconditioning and adaptivity. SIAM J. Sci. Comput. 21 (1999) 1006-1026. | Zbl 0981.65132

[21] A. Cohen and R. Masson, Wavelet adaptive method for second order elliptic problems. boundary conditions and domain decomposition. Numer. Math. 86 (1999) 193-238. | Zbl 0961.65106

[22] S. Dahlke, W. Dahmen ans R. Hochmut and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23 (1997) 21-48. | Zbl 0872.65098

[23] W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl. 2 (1996) 341-361. | Zbl 0919.46006

[24] W. Dahmen and A. Kunoth, Multilevel preconditioning. Numer. Math. 63 (1992) 315-344. | Zbl 0757.65031

[25] W. Dahmen, A. Kunoth and K. Urban, Biorthogonal spline-wavelets on the interval - stability and moment condition. Appl. Comput. Harmon. Anal. ACHA 6 (1999) 132-196. | Zbl 0922.42021

[26] W. Dahmen and R. Schneider, Composite wavelet bases for operator equations. Math. Comp. 68 (1999) 1533-1567. | Zbl 0932.65148

[27] I. Daubechies, Ten lectures on wavelets, in CBMS-NSF Regional Conference Series in Applied Mathematics 61. SIAM, Philadelphia (1992). | MR 1162107 | Zbl 0776.42018

[28] S. Jaffard, Wavelet methods for fast resolution of elliptic problems. SIAM J. Numer. Anal. 29 (1992) 965-986. | Zbl 0761.65083

[29] Y. Maday, V. Perrier and J.C. Ravel, Adaptivité dynamique sur bases d'ondelettes pour l'approximation d'équations aux dérivées partielles. C. R. Acad. Sci. Paris Sér. I Math. 312 (1991) 405-410. | Zbl 0709.65099

[30] R. Masson, Biorthogonal spline wavelets on the interval for the resolution of boundary problems 6 (1996) 749-791. | Zbl 0924.65100

[31] Y. Meyer, Ondelettes et opérateurs. Hermann, Paris (1990). | MR 1085487 | Zbl 0694.41037

[32] P. Monasse and V. Perrier, Orthonormal wavelet bases adapted for partial differential equations with boundary conditions. SIAM J. Math. Anal. 29 (1998) 1040-1065. | Zbl 0921.35036

[33] C. Prud'Homme, A strategy for the resolution of the tridimensional incompressible Navier-Stokes equations, in Méthodes itératives de décomposition de domaines et communications en calcul parallèle. Calcul. Parallèles Réseaux Syst. Répartis 10 Hermès (1998) 371-380.

[34] S. Grivet Talocia and A. Tabacco, Wavelets on the interval with optimal localization 10 (2000) 441-462. | Zbl 1012.42026

[35] H. Triebel, Interpolation theory, function spaces, differential operators. North Holland-Elsevier Science Publishers, Amsterdam (1978). | MR 503903 | Zbl 0387.46032

[36] B. Wohlmut, A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989-1012. | Zbl 0974.65105