Numerical boundary layers for hyperbolic systems in 1-D
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 35 (2001) no. 1, p. 91-106

The aim of this paper is to investigate the stability of boundary layers which appear in numerical solutions of hyperbolic systems of conservation laws in one space dimension on regular meshes. We prove stability under a size condition for Lax Friedrichs type schemes and inconditionnal stability in the scalar case. Examples of unstable boundary layers are also given.

Classification:  65M,  35L
Keywords: boundary layers stability
@article{M2AN_2001__35_1_91_0,
     author = {Chainais-Hillairet, Claire and Grenier, Emmanuel},
     title = {Numerical boundary layers for hyperbolic systems in 1-D},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {1},
     year = {2001},
     pages = {91-106},
     zbl = {0980.65093},
     mrnumber = {1811982},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2001__35_1_91_0}
}
Numerical boundary layers for hyperbolic systems in 1-D. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 35 (2001) no. 1, pp. 91-106. http://www.numdam.org/item/M2AN_2001__35_1_91_0/

[1] C. Bardos, A.-Y. Leroux and J.-C. Nédélec, First order quasilinear equations with boundary conditions. Partial Differential Equations 4 (1979) 1017-1034. | Zbl 0418.35024

[2] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence of a finite-volume time-explicit scheme for symmetric linear hyperbolic systems on bounded domains. C. R. Acad. Sci. Paris, Sér. I Math. 331 (2000) 95-100. | Zbl 0960.65095

[3] F. Dubois and P. Lefloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations 71 (1988) 93-122. | Zbl 0649.35057

[4] M. Gisclon, Étude des conditions aux limites pour un système strictement hyperbolique, via l'approximation parabolique. J. Math. Pures Appl. 75 (1996) 485-508. | Zbl 0869.35061

[5] M. Gisclon and D. Serre, Étude des conditions aux limites pour un système strictement hyberbolique via l'approximation parabolique. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 377-382. | Zbl 0808.35075

[6] M. Gisclon and D. Serre, Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. RAIRO-Modél. Math. Anal. Numér. 31 (1997) 359-380. | Numdam | Zbl 0873.65087

[7] J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95 (1986) 325-344. | Zbl 0631.35058

[8] E. Grenier and O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differential Equations 143 (1998) 110-146. | Zbl 0896.35078

[9] K.T. Joseph and P.G. Lefloch, Boundary layers in weak solutions of hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147 (1999) 47-88. | Zbl 0959.35119

[10] T.T. Li and W.C. Yu, Boundary value problems for quasilinear hyperbolic systems. Math. series V. Duke Univ., Durham (1985). | Zbl 0627.35001

[11] T.P. Liu, Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc. 56 (1985) 108 p. | MR 791863 | Zbl 0617.35058

[12] J.B. Rauch and F.J. Massey, Iii, Differentiability of solutions to hyperbolic initial boundary value problems. Trans. Amer. Math. Soc. 189 (1974) 303-318. | Zbl 0282.35014

[13] D. Serre, Sur la stabilité des couches limites de viscosité, preprint. | Numdam | MR 1821071

[14] M. Shub, A. Fathi and R. Langevin, Global stability of dynamical systems. Springer-Verlag, New-York, Berlin, 1987. | MR 869255