More pressure in the finite element discretization of the Stokes problem
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 5, pp. 953-980.
@article{M2AN_2000__34_5_953_0,
     author = {Bernardi, Christine and Hecht, Fr\'ed\'eric},
     title = {More pressure in the finite element discretization of the {Stokes} problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     pages = {953--980},
     publisher = {Dunod},
     address = {Paris},
     volume = {34},
     number = {5},
     year = {2000},
     zbl = {0992.76051},
     mrnumber = {1837763},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_5_953_0/}
}
TY  - JOUR
AU  - Bernardi, Christine
AU  - Hecht, Frédéric
TI  - More pressure in the finite element discretization of the Stokes problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY  - 2000
DA  - 2000///
SP  - 953
EP  - 980
VL  - 34
IS  - 5
PB  - Dunod
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_2000__34_5_953_0/
UR  - https://zbmath.org/?q=an%3A0992.76051
UR  - https://www.ams.org/mathscinet-getitem?mr=1837763
LA  - en
ID  - M2AN_2000__34_5_953_0
ER  - 
%0 Journal Article
%A Bernardi, Christine
%A Hecht, Frédéric
%T More pressure in the finite element discretization of the Stokes problem
%J ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
%D 2000
%P 953-980
%V 34
%N 5
%I Dunod
%C Paris
%G en
%F M2AN_2000__34_5_953_0
Bernardi, Christine; Hecht, Frédéric. More pressure in the finite element discretization of the Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 5, pp. 953-980. http://www.numdam.org/item/M2AN_2000__34_5_953_0/

[1] K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming. Stanford University Press, Stanford (1958). | MR | Zbl

[2] I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. | MR | Zbl

[3] C. Bergé, Théorie des graphes. Dunod, Paris (1970). | Zbl

[4] J. Boland and R. Nicolaides, Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20(1983) 722-731. | MR | Zbl

[5] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO - Anal. Numér. 8 R2 (1974) 129-151. | Numdam | MR | Zbl

[6] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in the Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17-351. | MR | Zbl

[7] P. Clément, Développement et applications de méthodes numériques volumes finis pour la description d'écoulements océaniques. Thesis, Université Joseph Fourier, Grenoble (1996).

[8] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO - Anal. Numér. 7 R3 (1973) 33-76. | Numdam | MR | Zbl

[9] P. Emonot, Méthodes de volumes éléments finis : application aux équations de Navier-Stokes et résultats de convergence. Thesis, Université Claude Bernard, Lyon (1992).

[10] M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO - Anal. Numér. 11 R3 (1977) 341-354. | Numdam | MR | Zbl

[11] V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin (1986). | MR | Zbl

[12] F. Hecht, Construction d'une base d'un élément fini P1 non conforme à divergence nulle dans ℝ3. Thesis, Université Pierre et Marie Curie, Paris (1980).

[13] F. Hecht, Construction d'une base de fonctions P1 non conforme à divergence nulle dans ℝ3. RAIRO - Anal. Numér. 15 (1981) 119-150. | Numdam | MR | Zbl

[14] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO - Anal. Numér. 18 (1984) 175-182. | Numdam | MR | Zbl