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ON THE DOMAIN GEOMETRY DEPENDENCE OF THE LBB CONDITION

EVGENII V CmZHONKOV1 AND MAXIM A O L S H A N S K I I 2

Abstract. The LBB condition is well-known to guarantee the stabihty of a finite element (FE)
velocity pressure pair m incompressible flow calculations To ensure the condition to be satisfied a
certain constant should be positive and mesh-mdependent The paper studies the dependence of the
LBB condition on the domain geometry For model domams such as strips and rmgs the substantial
dependence of this constant on geometry aspect ratios is observed In domams with highly anisotropic
substructures this may require special care wit h numerics to avoid failures similar to those when the
LBB condition is violâted In the core of the paper we prove that for any FE velocity pressure pair
satisfymg usual approximation hypotheses the mesh-mdependent limit m the LBB condition is not
greater than lts contmuous counterpart, the constant from the Necas mequahty For the latter the
exphcit and asymptotically accurate estimâtes are proved The analytic results are ïllustrated by
se ver al numerical expenments
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INTRODUCTION

Consider the Stokes problem m a bounded domain £1 c Rn^ n = 2, 3

-Au-f Vp = f in Ü,
divu = 0 in fi, (1)

u — 0 on d£l

Equations (1) describe the slow motion of a viscous incompressible fluid dnven by external forces f (x) The
unknowns are the vector function u(x) (velocity) and the scalar function p(x) (pressure) subject to the intégral
condition /Qp(x)dx = 0 Problem (1) serves also as a model or auxihary problem m many CFD applications
Let Uft, and P^ be some FE approximations of the velocity space

U = Hj(ü)n with ||u||i = ||V
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and the pressure space

Assume for a moment
such that for any

E.V. CHIZHONKOV AND M.A. OLSHANSKII

P = {p : P e L2(fi), (p, 1) = 0} with = ||p||
L2(n).

C U and Ph C P. The discrete counterpart of (1) reads: find {\ih,Ph} from
from {TJh,Ph}

= 0.

It is well-known that for the well-posedness of (2) and stability of
valid (see [2,7]):

inf
qhePh

sup

the following inequality should be

(3)

with some positive constant j(ft) independent of the mesh parameter h. Throughout the paper, we assume
that sup^ and infx are taken for x ^ 0 if \\x\\ appears in the denominator.

Condition (3) is commonly referred as LBB (Ladyzhenskaya - Babuska - Brezzi) or inf-sup condition and is
not satisfied by an arbitrary pair of FE spaces U^ and Ph- One example when (3) fails are piecewise-linear
continuons éléments (Pp x P1 pair), if the same triangulation is used for both pressure and velocity grids.
For discussions and historical remarks see, e.gn [14]. Condition (3) is also crucial in proving estimâtes and
convergence for discrete solution. It is classic (see, e.g., [8]) to have

|-i with
v G U

(4)

and

- u | | i 4- \\Ph-p\\o < | u - v / l | | 1 + mï \\p - qh\\0
eP

As shown in [3], condition (3), together with the so called ellipticity in the kernel, is also a necessary condition
for (4). Moreover, the convergence rate of many itérative methods to solve (2) dépends essentially on 7^ (see,
e.g-i [6,9,17,23]). For example the Uzawa - CG algorithm for (2), which is generally believed to be one of the
most efficient, has the asymptotic convergence rate

(5)

Therefore for small 7^ one may expect poor algebraic properties of (2).
There are a lot of papers (see the overview in [14]), in which the LBB condition is checked for particular

FE pairs. The main address of these papers is commonly the mesh dependence of 7^, rather than the domain
dependence. On the other hand, the dégradation of (3) for some configurations, e.g. for flows in channels, is a
phenomena well known for practitioners. In this paper it is proved that at least for a certain type of domains,
such as strips and rings, j(£l) tends to zero if the domain becomes in some sensé anisotropic. Moreover, estimâtes
involving a measure of anisotropy are given. This a priori information can be quite important for the prédiction
of a numerical solution quality and the solvers behaviour in domains with anisotropic substructures and for
domain-decomposition methods.

The remainder of the paper is organised as follows. In Section 1 the theorem is proved that for any FE pair,
which possesses usual approximation properties, one has
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where ^(0) is the optimal constant from the Necas inequality:

i VpeP . (6)

In Section 2 constant fj,(Q.) is linked with the minimal eigenvaiue of a certain operator associated with the Stokes
problem (1). This enables us to show that in

Ü = {(xi,X2) : 0 < x% < Lt, % = 1,2}, £ = max(Li/L2, L2/L1)

the following estimâtes hold:

In Section 3, we show for the ring

fi = {x = (xi,x2): 0 < ^ ! < |x| <R2}: R2/Ri = l + 5, ô>0

that for S € (0,1]

ilô

These results imply that for thin strips, long channels, or rings the constant 7 (fi) from the LBB condition tends
to zero at least with the linear dependence on the domain anisotropy parameter (£~x or 5). In Section 4, results
of numerical experiments with two conforming and one non-conforming FE pair are presented. They support
the theory and indicate that this dependence is indeed linear.

Finally, we recall the resuit from [15], which states that for bounded simply-connected 2D domains the
following relation between //(fi) and the optimal constant from the 2nd Korn's inequality, deflned below by

holds:

î7(n) = 2 M (nr 1 . (9)

Therefore, as a by-product of our analysis new estimâtes in rectangular domains for 77(fi) are obtained, which
could be useful in elasticity. See also Remark 3.5 in Section 3 for the case of a ring.

1. L B B CONDITION AND NECAS INEQUALITY

Further we consider both conforming and non-conforming finite éléments for velocity. First assume that FE
subspaces U^ and Ph are such that U^ C U and Ph C P for each h > 0. In this case the only assumption we
need is the following standard approximation hypothesis for Ph :

• Al. For each q E P H H1 (fi) there exists a function qh G Ph such that

\\q-qh\\o<Ch\\q\\Him (10)

with C independent of q and h.

In the non-conforming case (U^ <£_ U) assume u^ to be a polynomial on every element r of the subdivision
T of fi. Then it is standard to define (Vuh,Vvh) = £ r 6 T ( V u h , V v h ) T . Naturally \\nh\\i = (Vuh ,Vuh)^ is
the mesh-depended norm, scalar product (p^,divu^) is deflned similarly. In the non-conforming case we need
additionally two assumptions. These are the full elliptic regularity for the solution to the Poisson problem and
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the convergence assumption for a discrete solution of the Poisson problem:
• A2. For any f G L2(Q>)n and the solution <j> to

= f 'm Ü, <£ = 0 on dÜ (11)

one gets <f> G UnH 2 (Q) n and |M|H*(fi)« < c||f|Ua(n)».
A3. Let 0 GUflH2(Q) be a solution to (11) with f = — Vq and </>h G U^ is a solution to the problem

then

(12)

with u)(h) —> O, if h —> 0.
The former assumption imposes some restriction onfi (cf. [13]). As an example it is valid for bounded domains
with a piecewise-smooth boundary with no entering corners. The second assumption is usually the conséquence
of approximation and consistency properties due to Stang's lemma [25]. The consistency follows from by the
standard arguments (see, e.g. [5]) if the functions from U^ has continuons fiuxes on the edges of éléments, since
in this case

TT
for any v^ G U^ and q G H1 (O), which implies (g,divv^) = —(Vq,Vh). Examples are the Crouzeix-Raviart
element [8] or (<§2)n x Q° quadrilatéral éléments from [22].

Consider /x(fi) from (6). By définition one has

l(Pjdivv)|
Vp||_i = sup Jl'

vGU llvllx

And it is clear that we can set

Lemma 1.1. For JJ,(Q) from (13) one has

/i(Q) = inf

Proof. The inequality

/ r t ' " sup

is evident since P n H 1 ($7) C P.
On the other hand

llo

easily follows from the density of P Pi B.l(ft) in P [16]. D

> inf sup K ? ^ , (15)
- € P n H i ( n ) u | | v | | " -" •
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Now we are in a position to prove the following theorem.

Theorem 1.2. Under the above assumptions on U^ and Ph we have

7(Î2) < /i(îl). (16)

Proof. Thanks to Lemma 1.1 it suffices to check that

7(11) < inf sup lp^f • (17)
~ gePnHi(n) v Gu IMIilMlo

Consider arbitrary q G P n H1 (fi) and e € (0,1), For sumciently small h we have

(18)

with constant C from (10) and u;(/i) from (12). Hence, owing to approximation hypothesis Al we can choose
Qh £ Ph such that

Thus we have

7(n)<
llvMii ll^llo

s u p I fadiwQ] | g ( j

l | v | | | k l | 1 e

In the case of conforming FE, thanks to U^ C U and the arbitrary choice of £ G (0,1) we get from (19)

7(n) <

which leads to (17).
In the case of non-conforming velocity éléments we get from (19)

I
It is straightforward to check (cf. (23)-(26) below) that for a given q the supremum in (20) is attained for the
Vh which solves the problem

Together with û^ consider û from U, which solves

(Vv,Vv) = (çsdivv), V v e U .

Assumption A2 implies v G UnH2(Q)n . Therefore, thanks to (12), (18), (6), and (26) we get

)» < ce\\q\\o <
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Now the following estimâtes hold:

1 l(g,divv)| 1 |(q,div(vh-v))| e
- (1 e) (1 d^HvlU ||9|| "•• (i e) (i d^lMl ||9|| "̂  1 e l ;

— /1 \/1 "\ ^'^'•ir Tj fi fi M ~T~ ~^t "T"( l - e ) ( l - c i e ) v e & IMIxHglIo 1 - c i e ' l - Ê

Since the choice of g G P D H1(il) and e was arbitrary, we have proved (17). D

Remark 1.3. It is well known that 7^ equals the minimal eigenvalue of a certain eigenvalue problem associated
with the discrete system (2) (cf. Sect. 4). Hence, from the observation of the next section, where fi(iï) is linked
wit h the minimal eigenvalue of a certain continuous operator, and approximation properties one could conclude
that

7 / l / ( ) (22)
h—ï-0

However, as shown in [3], besides the approximation properties the necessary condition for the convergence of
eigenvalues of mixed problems is the existence of a certain projection operator from U to U^. The existence
of such an operator does not follow from the LBB and ellipticity conditions (see also [4]). So to establish (22)
one has to check the existence of such an operator for every particular FE pair of interest, the latter is a
non-standard task.

2. ESTIMATES FOR A STRIP

One can rewrite the Stokes problem (1) as follows:

Aop = divA^f,

u =

with

where A^1 is the solution operator for the vector Poisson problem: Given a functional g on U find v G U such
that Av = g.

The operator AQ : P —• P is a Schur complement for problem (1). From the papers [18] and [10] it follows
that in this continuons setting the operator AQ is self-adjoint, positive definite, has a discrete spectrum, and
possesses a complete orthonormal System of eigenfunctions in P.

Below we give a link between the minimal eigenvalue of AQ and the constant /z(fî) from (13). To this end
consider the following equalities for arbitrary function q E H1 (Q) Pi P:

(Aoq,q) = (div A^lVq,q) — ~(A0~
1Vq, V<?) (23)

~~ \ o & o Q) — \ w ' w ^ w = Aô1Vg ^ }

.. 2 (-Aw,v)2 (Vg,v)2 (ç,divv)2

= w ï = sup 2 = sup / = sup ,. , ' • (25)
vGU V? V € U V V 6 U V ?
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Once again we use the fact that H1 (ü) O P is dense in P and pass to the limit in the equalities

(26)

Thus relations (26) are valid for arbitrary q £ P and w = Ao
 lVq G U. In particular from (13) and (26) follows

/ A \ r (AOQIQ) r (<?,divv)2

Amin(-Ao) — mi ..o— = mi sup T̂ —r
qSP \\q\\n QeP v6U ||v||

where Amm(^4o) is a minimal eigenvalue of the operator AQ.
We also define operators Ap and Am. Similar to A$ these operators are Schur compléments for the Stokes

problem, however they involve another boundary condition for the velocity. We assume that

Sl={(xux2)\0<xl <Lu 2 = 1,2}. (27)

By Ap dénote the operator Ap • P —> P defined as

hère A"1 is the solution operator to the problem:

Au = g in i7,

u • n = 0, ®±^_ll = o on ôfi,
an

where n and r are the normal and tangent vectors to d£l. In [19] it was shown that Av is the identity operator
on P.

In the same fashion we define the operator Am : P —> P as

where A^1 is the solution operator to the problem:

Au — g in ft

with boundary conditions

| 0 fOT ^ = 0 ' ^ ' (28)
u\ = 0, U2 — 0 for x2 = 0, L2.

The weak solution of this problem belongs to

U m = j u G (H1 (fi))2 : ux = 0 and (0,u2) • n = 0 on

For arbitrary q G P we have

(Amq,q)= sup i q ^ ) • (29)
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The estimâtes (7) follow from the estimâtes for the minimal eigenvalues of the operators A% {% = 0,p, m). We
state them below with £ as defined in the introduction:

Amin(Ap) < Amin(A0) < Amin(Am) < ^ — (30)

Recall that all X(AP) = 1 and /x(fi)2 = Amin(A0).
The upper estimate from (30) is proved in Appendix A. The prove of the lower bound is rather technical and

can be found in [20]. The inequality

Amm(^4o) f? XTrnn(Arn)

follows from the embedding U C U m and thanks to (26), (29) and Rayleigh's rule:

x f A \ • c (<?,divv)2 (<?,divv)2

Amin(Ao) = mf sup j l - r e i , Amm(j4m) = mf ^

3. ESTIMATE FOR A RING

In this section we assume that £1 is the ring

Cl = {x = (3:1,0:2) : 0 < Ri < |x| < .Rs} , ^2/^1 = 1 + (5, * > 0*

Since the relation /x(H)2 = Amin(-Ao) obtained from (26) is still true, we consider the eigenvalue problem
— Xp. The following theorem is valid.

Theorem 3.1. Define s = R2/R1 > 1, and let (r, y?) 6e tfie po^ar coordmates on R2, then all the eigenvalues
of the problem Aop = Xp belong to

{i

where

1 / / s * - l 1 \ l 11
2 1 + V ? T ï h l U 2

/or m = 2, 3, T/ie eigenvalue X = 1 is of infinité multiplicity and some correspondmg eigenfunctions are

f \ 7 r ^ r
 7 r - i ï 1 1 . r ~ Ri

{) k f c ^ C ^ A = 1 , 2 , . -,H2 ~rii 1Î2 — -til T ï\2 — ti\

each eigenvalue X ^ 1 is of double multiplicity and all correspondmg eigenfunctions are

__ . .... - - 1

with am (y) = cos(m,(p) or am(<p) = sin(mtp).
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Proof. The proof is based on the présentation

[ui,u2,p] =

943

and the possibility to découplé Aop = Xp into separate differential problems for u\{r), u3
2{r)^ and ^ ( r ) , which

are solved explicitly. Details can be found in Appendix B. D

Remark 3.2. If R2 is fixed and Ri —» 0 ( Le. s —» 00 ) we have A —» - for ail À / 1. Hence the resuit of
Crouzeix [10] for a circle is recovered.

Corollary 3.3. With the above assumptions on £7 we have for /x(fi) from (13)

Proo/. Consider the eigenvalue

Substituting s = 1 + ô, we get for ô e (0,1]

s2 + 1 In s

s 2 - l 1 2Ö + 62

=

s2 + 1 In s ~ 2 + 25 + ö2 ö2 Ó

2 + g _ _7_ 2

2 + ô+U2 - 12 "

Therefore we have

= Amin(A0) < A < - I 1 -

Thus the estimate for /i(fi) is proved.
To verify the asymptotic for fJ.(Cl), when ô —> 0 we substitute s = 1 + <5 and calculate Taylor expansions w.r.t.

5 for the functions from the définition of the eigenvalues. It is straightforward to obtain

26+ 52

2 + 25

and for m = 2,3, . . .

((1 + ô)m+1 - (1 + - 1) _ 4 + 4(2m- l)ô + (8m2 - 12m + 5)ô2 +

^ 1 ) 5 |
28m 2 -36m +

|
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p

FIGURE 1. {Ph2)
2 x P° velocity-pressure FE.

Using this expansions, we get for Àmin

1

Remark 3.4. From the above expansions it is clearly seen that the asymptotic behaviour À
all eigenvalues from the set C2 defined in Theorem 3.1.

D

cô2 holds for

Remark 3.5. The value of fj,(ft) compared with the value of Korns' constant for a ring [11], shows that (9) is
not valid now. Thus the assumption on ft to be simply-connected is necessary for (9).

4. NUMERICAL EXAMPLES

First we consider two examples of conforming FE pairs, which are known (e.£., [14]) to satisfy the LBB
condition. These are piecewise linear or bilinear velocity functions w.r.t. a subdivision of ft into triangles or
rectangles, respectively. In bot h cases the discrete velocity is continuous over ft, and the discrete pressure is
piecewise constant over ft. We assume

Scheme I. Consider the regular ( "north-east") triangulation Th of the domain ft into triangles. Divide each
macro-triangle in Th into four mini-triangles by joining the mid-sides. This defines a finer triangulation Th/2.

Define

Uh = {v\v€P1{A)2,AeTh/2\ veC°(fi); v = 0 on

Ph =

Here F r(A) dénotes the space of polynomials of degree not greater then r on an element of the triangulation
A C R2. We illustrate Scheme I in Figure 1.

Scheme II. We start with subdivision Qh of the domain ft into rectangles. Subsequently we divide each
rectangle into four smaller rectangles by joining the opposite mid-sides. This defines another subdivision Qh/2
ofH.
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u

p

FIGURE 2. (QL2)2 x Q° velocity-pressure FE.

The FE velocity field consists of the piecewise bilinear functions w.r.t. the subdivision Qh/2, which are
continuous over ft and vanish on dft, i. e.

Uh = {v|v G Q1(n)2
iDE Qh/2\ v G C°(ty; v = 0 on dtt} .

The pressure FE space consists of piecewise constants w.r.t. the macro subdivision Qh with zero mean
over Çl, z. e.

See Figure 2.
For nodal functions associated with the FE functions we can define in the standard way the nodal Laplacian

operator A, div-operator B, and pressure mass matrix Mp. Then, similar to the continuous case (cf. Sect. 2)

the constant 7^ from (3) equals w À ^ , where A^m is the minimal eigenvalue of the eigenvalue problem

BA~1BTp = XhMpPi pePh,

where Ph is the space of the nodal functions associated with the pressure FE functions.
The minimal eigenvalue was determined by the subspace itération algorithm (see [21] ). The subroutine EA12

from the HARWELL Numerical Analysis Library was used. The process was considered as converged when the
residual, normalised by the eigenvector, was less than 1CT10 in the discrete L2 norm.

In Table 1 we present the values of 7 (̂12) for different £ with h± = h2 = 1/64 and both FE schemes. In the
bottom row the value of the upper bound

^ 2V3
is given for référence.

The data from Table 1 confirais the asymptotic behaviour

L) with £ —> oo,

that was predicted by the analysis of the paper.
Table 2 shows the calculated values of jh for different £ with hi ~ £h2y h2 = 1/256.
Compared with Table 1 numerical results from Table 2 show that the dependence of jh on the mesh aspect

ratio hi/h,2 is very weak. This agrées with the numerical expérience in [26] for non-conforroing velocity FE
space.
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TABLE 1. The dependence of 7^ on the domain aspect ratio.

; 2. The

FE
scheme

I
II

FE scheme

I
II

1

0.447424
0.479624
0.9069

£

2

0.387510
0.388664
0.45345

4

0.218469
0.211852
0.226725

dependence of 7^ on the domain aspect ratio

FE scheme

I
II

TABLE 3.

1/8

1

0.440679
0.460223

£

2

0.387417
0.387812

The dependence of 7^

1/16

0.474990 0.461353
0.560231 0.521009

4

0.218494
0.218534

8

0.112338
0.112345
0.113363

and the mesh aspect

8

0.112432
0.124900

on the mesh size.

mesh size

1/32

0.452987 0
0.496087 0

1/64

.447424

.479624

1/128

0.443527 0,
0.468308 0.

1/256

.440679

.460222

In Table 3 we present the values of 7^ with different hi = h2 = h for the unit square. These results illustrate
that in gênerai the LBB condition (3) holds for both FE pairs, z.e. the mesh-independent limit j(£l) exists for
bot h FE schemes.

In the next example we use non-conforming quadrilatéral éléments (Q\)2 x Q° from [22], i.e. on every element
the velocities are spanned by {x2 — y2, x, y, 1) and the pressure is constant. The domain and a coarse mesh are
shown on Figure 3. The lengt h of the channel equals 2.5 m and the hight 0.41 m, a cylinder of diameter 0.1 m
is placed at 0.45 m from the inlet. For unsteady incompressible flows this is a benchmarking configuration (see
details in [24]). Here the steady Stokes flow around cylinder was calculated. The Featflow software [27] was
used.

The average convergence factors affcer 50 itérations of the Uzawa algorithm are presented in Table 4. The
second line of the results shows the factors for the same configuration but with the outlet placed closer to the
cylinder (1.5 m). We recall that the convergence of the Uzawa algorithm is ruled by 7^ (see (5)). The level
number in Table 4 indicates the number of refining steps applied to the coarse mesh. At every step each element
is divided to four finer éléments by joining midpoints on opposite edges. As was expected the convergence is
mesh-independed, however decreases while the channel becomes longer.

APPENDIX A

In this part of the appendix we prove the upper bound in (30) Assuming that
consider the eigenvalue problem Amp = Xp. Introducing the auxiliary function u =

is defined as in (27),
we reformulate
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FIGURE 3. Coarse grid partition for non-conforming FE.

TABLE 4. The convergence rates of Uzawa aigorithm.

Length

2.5
1.5

0
0

3

.88

.76

mesh

4

0.86
0.75

levels

5

0.85
0.74

6

0.85
0.74

the problem: Find eigenvalues À and eigenfunctions p € P which satisfy

f - A u + Vp = 0,
1 div u = Xp

(31)

with some function u G Um subject to the boundary conditions (28).
Ail solutions to (31), (28) can be found by the method of splitting the variables (cf. [1]). Hère it suffices to

note that the operator Am has the eigenvalue

2 smh
With t - T À

L

Indeed, consider the domain Q = (0, L{) x (-by b) with b = Li/2. This shift of the original rectangle does not
change the eigenvalues but simplifies the analysis. Further, setting r = TT/LI, by a straightforward substitution
we check that the functions

sinhrfr
—-—-
coshr6

, coshr6 ,
b—-—- smhrx2 —sinhro

p = cos TX\ cosh rx2

satisfy (31), (28) together with the eigenvalue \(Am).
In Section 2 it was shown that Amin(ylo) < Amin(^4m). Thus one immediately gets

< X(Am) = - ( 1 - — —


