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ON THE DOMAIN GEOMETRY DEPENDENCE OF THE LBB CONDITION *:**

EVGENII V CHIZHONKOV! AND MAXIM A OLSHANSKII?

Abstract. The LBB condition 1s well-known to guarantee the stability of a finite element (FE)
velocity pressure pair in incompressible flow calculations To ensure the condition to be satisfied a
certain constant should be positive and mesh-independent The paper studies the dependence of the
LBB condition on the domain geometry For model domains such as strips and rings the substantial
dependence of this constant on geometry aspect ratios 1s observed In domains with highly anisotropic
substructures this may require special care with numerics to avoid failures similar to those when the
LBB condition 1s violated In the core of the paper we prove that for any FE velocity pressure pair
satisfymng usual approximation hypotheses the mesh-independent limit in the LBB condition 1s not
greater than 1ts continuous counterpart, the constant from the NeCas inequality For the latter the
exphat and asymptotically accurate estimates are proved The analytic results are illustrated by
several numerical experiments
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INTRODUCTION

Consider the Stokes problem n a bounded domain € R™®, n=2,3

—Au+Vp=f~f m €,
divu=0 m (1)
u=20 on 0N

Equations (1) describe the slow motion of a viscous mcompressible fluid driven by external forces f(x) The
unknowns are the vector function u(x) (velocity) and the scalar function p(x) (pressure) subject to the integral
condition [, p(x)dx = 0 Problem (1) serves also as a model or auxihary problem i many CFD applications
Let Uy and P, be some FE approximations of the velocity space

U= H(l,(ﬂ)” with  |ully = [[Vul|g, @)~
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and the pressure space
P={p:pe LQ). (p,1) =0} with ||pllo = [|p|/L,(0)-

Assume for a moment Uy C U and P, C P. The discrete counterpart of (1) reads: find {up,pr} from {Up, Py}
such that for any {vp,gn} from {Up, Py}

(Vuha VVh) - Eﬁfll‘a,(il:‘;zg Z (()fy Vh)a (2)

It is well-known that for the well-posedness of (2) and stability of {up,pr} the following inequality should be
valid (see [2,7]):

|(Qh: div Vh)l A

inf  su > v(2) >0 (3)

m€PL v,eU, thHlliQhHO B

with some positive constant v(Q2) independent of the mesh parameter h. Throughout the paper, we assume
that sup, and inf; are taken for x # 0 if ||x|| appears in the denominator.

Condition (3) is commonly referred as LBB (Ladyzhenskaya - Babuska - Brezzi) or inf-sup condition and is
not satisfied by an arbitrary pair of FE spaces U, and P,. One example when (3) fails are piecewise-linear
continuous elements (Pj* x P, pair), if the same triangulation is used for both pressure and velocity grids.
For discussions and historical remarks see, e.g., [14]. Condition (3) is also crucial in proving estimates and
convergence for discrete solution. It is classic (see, e.g., [8]) to have

Il < 205 fllon, el < 16112 with |-y = sup S ()

and
— -— _1 M — 3 —_—
llup —ulls + |pr = pllo <31+, 1) <v;g{1h llu—valli + q:gﬁ,ﬂ llp Qh||0> .

As shown in [3], condition (3), together with the so called ellipticity in the kernel, is also a necessary condition
for (4). Moreover, the convergence rate of many iterative methods to solve (2) depends essentially on 7, (see,
e.g., [6,9,17,23]). For example the Uzawa - CG algorithm for (2), which is generally believed to be one of the
most efficient, has the asymptotic convergence rate

_1-m,

= 5
g 1+ (5)

Therefore for small «;, one may expect poor algebraic properties of (2).

There are a lot of papers (see the overview in [14]), in which the LBB condition is checked for particular
FE pairs. The main address of these papers is commonly the mesh dependence of vy, rather than the domain
dependence. On the other hand, the degradation of (3) for some configurations, e.g. for flows in channels, is a
phenomena well known for practitioners. In this paper it is proved that at least for a certain type of domains,
such as strips and rings, v(€2) tends to zero if the domain becomes in some sense anisotropic. Moreover, estimates
involving a measure of anisotropy are given. This a priori information can be quite important for the prediction
of a numerical solution quality and the solvers behaviour in domains with anisotropic substructures and for
domain-decomposition methods.

The remainder of the paper is organised as follows. In Section 1 the theorem is proved that for any FE pair,
which possesses usual approximation properties, one has

Y(82) < u(92),
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where () is the optimal constant from the Neéas inequality:
w()lpllo < IVpll-1  Vpe P. (6)

In Section 2 constant () is linked with the minimal eigenvalue of a certain operator associated with the Stokes
problem (1). This enables us to show that in

Q={(z1,22): 0 <z, < Ly, i=1,2}, €=max(Ly/Ls,La/Ly)
the following estimates hold:

1
215

< p(Q) < ﬁe—l. (7)

In Section 3, we show for the ring

Q={x=(z1,22) : 0< Ry < |x| <Rz}, R2/R1i=1+6,6>0

that for 6 € (0, 1]

w(@) < /22 (®)

62
These results imply that for thin strips, long channels, or rings the constant v(£2) from the LBB condition tends
to zero at least with the linear dependence on the domain anisotropy parameter (¢~ or §). In Section 4, results
of numerical experiments with two conforming and one non-conforming FE pair are presented. They support
the theory and indicate that this dependence is indeed linear.
Finally, we recall the result from [15], which states that for bounded simply-connected 2D domains the

following relation between p(§2) and the optimal constant from the 2nd Korn’s inequality, defined below by
n(€2), holds:

n(Q) =2p(2)7" 9)

Therefore, as a by-product of our analysis new estimates in rectangular domains for 7(2) are obtained, which
could be useful in elasticity. See also Remark 3.5 in Section 3 for the case of a ring.

1. LBB CONDITION AND NECAS INEQUALITY

Further we consider both conforming and non-conforming finite elements for velocity. First assume that FE
subspaces Uy, and P, are such that U, € U and P, C P for each A > 0. In this case the only assumption we
need is the following standard approximation hypothesis for Py, :

e Al. For each ¢ € PN H(Q) there exists a function g, € P, such that

llg = gnllo < Chllgllar () (10)

with C independent of g and h.

In the non-conforming case (Up ¢ U) assume uy to be a polynomial on every element 7 of the subdivision
T of Q. Then it is standard to define (Vup,Vvy) = ETeT(Vuh,Vvh).r. Naturally ||un|ly = (Vuh,Vuh)% is
the mesh-depended norm, scalar product (pp,divug) is defined similarly. In the non-conforming case we need
additionally two assumptions. These are the full elliptic regularity for the solution to the Poisson problem and
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the convergence assumption for a discrete solution of the Poisson problem:
e A2. For any f € L2(Q)™ and the solution ¢ to

Apg=f inQ, ¢$¢=0 on 90 (11)

one gets ¢ eUn HQ(Q)n and ”¢HH2(Q)" < CI|fHL2(Q)n.
e A3. Let ¢ € UNH?(Q) be a solution to (11) with f = —Vgq and ¢, € Uy, is a solution to the problem

(V¢h,Vvh) = (q, div Vh), Y vy € Uh,

then

16 — plls < w(B)l|@lluz(e) (12)

with w(h) — 0, if h — 0.
The former assumption imposes some restriction on  (c¢f. [13]). As an example it is valid for bounded domains
with a piecewise-smooth boundary with no entering corners. The second assumption is usually the consequence
of approximation and consistency properties due to Stang’s lemma [25]. The consistency follows from by the
standard arguments (see, e.g. [5]) if the functions from Uy, has continuous fluxes on the edges of elements, since

in this case
Z Z (vh-n)gds =0
TET e€dT " ¢
for any vy € Uy and ¢ € HY(Q), which implies (g,divvy) = —(Vq,vs). Examples are the Crouzeix-Raviart
element [8] or (Q2)" x Q° quadrilateral elements from [22].
Consider () from (6). By definition one has

: ,divv
IVpll-1 = sup 23V,
veu  Ivlh
And it is clear that we can set
. (g, divv)|
w(2) = inf sup -———- 13
(0= 1L 528 Vil Tilo 1
Lemma 1.1. For u(2) from (13) one has
w() = inf u g, divv)]
qePOHY(Q) veu |[|Vil1 [lg]lo
Proof. The inequality
) I(q,divv)|
Q) < inf up 14
a )‘quﬂH‘(ﬂ) veu [[v]l1lgllo (14
is evident since P N H*(Q2) C P.
On the other hand
: (g, div v)|
Q) > inf sup ———, 15
He) 2 qePnH Q) veu ||V]|1llgllo (15)

easily follows from the density of P N H(Q) in P [16). O
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Now we are in a position to prove the following theorem.

Theorem 1.2. Under the above assumptions on Uy and P, we have

() < u(Q). (16)

Proof. Thanks to Lemma 1.1 it suffices to check that

: (g, div V)|
Q) < inf - 17
TS i S8 VI Tllo o
Consider arbitrary ¢ € PN H(Q) and € € (0, 1). For sufficiently small h we have
max(C h, w(h))llqllm (o) < ¢llallo (18)

with constant C' from (10) and w(h) from (12). Hence, owing to approximation hypothesis A1l we can choose
qn € Py such that

llg = grllo < €llgllo-

Thus we have

Q) < sup |(gn, div vp)| < s (g, divvi)l l(gr — g, divva))
vieUs [IVall1llgallo vieUn [IVellillanllo  vieu, vl llanllo (19)
1 |(g,div vp)| 5
(I =€) vieu, [lvnrllillgllo  1—¢
In the case of conforming FE, thanks to Uy C U and the arbitrary choice of € € (0,1) we get from (19)
di
4(Q) < sup (g, divv)|
veu [vll1llallo
which leads to (17).
In the case of non-conforming velocity elements we get from (19)
’Y(Q) < sup |(q,d1vvh)| + € (20)

(I1=€)vheu, lvallillgllo  1—e¢

It is straightforward to check (cf. (23)—(26) below) that for a given g the supremum in (20) is attained for the
vy, which solves the problem

(VVh,Vvy) = (g,divvy), V vy € Up.

Together with @, consider G from U, which solves
(V¥,Vv) = (¢,divv), VvelU.
Assumption A2 implies ¥ € U N H?(2)". Therefore, thanks to (12), (18), (6), and (26) we get

19 =Vl < w(B)|Vllrz(e)e < cw(B)|IVallLa@n < cellallo < cu(@) el Vall-1 = crel[¥]l1.
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Now the following estimates hold:

,di | € 1 iv v
"/(Q) < 1 sup l(q,dlv Vf:) _ ](?? div Vh)l + €
(=€) vicu, llvallillgllo " 1—e  (1—¢)|Wallrllgllo  1-¢
1 |(g,div V)| 1 (g div(va = V)| €
< ~ = (21)
Q=) (A —ca)l¥lhliglo (1 —&) (1 -ce)ll¥llllgllo  1-e
1 .
su [(g,divv)| @e €
(I-e)I-ag)veu |IVilillgllo  1-ce 1-¢
Since the choice of ¢ € PN H'(Q) and e was arbitrary, we have proved (17). O

Remark 1.3. It is well known that 42 equals the minimal eigenvalue of a certain eigenvalue problem associated
with the discrete system (2) (c¢f. Sect. 4). Hence, from the observation of the next section, where p() is linked
with the minimal eigenvalue of a certain continuous operator, and approximation properties one could conclude
that

Lim . = p(€2). (22)

However, as shown in [3], besides the approximation properties the necessary condition for the convergence of
eigenvalues of mixed problems is the existence of a certain projection operator from U to U,. The existence
of such an operator does not follow from the LBB and ellipticity conditions (see also [4]). So to establish (22)
one has to check the existence of such an operator for every particular FE pair of interest, the latter is a
non-standard task.

2. ESTIMATES FOR A STRIP

One can rewrite the Stokes problem (1) as follows:

Aop = divAg'f,
u = A;Y(Vp-—f)

with
Ap = divAj'V,

where Ay ! is the solution operator for the vector Poisson problem: Given a functional g on U find v € U such
that Av =g.

The operator Ap : P -» P is a Schur complement for problem (1). From the papers [18] and [10] it follows
that in this continuous setting the operator Ay is self-adjoint, positive definite, has a discrete spectrum, and
possesses a complete orthonormal system of eigenfunctions in P.

Below we give a link between the minimal eigenvalue of Ap and the constant p(£2) from (13). To this end
consider the following equalities for arbitrary function g € HY(Q) N P:

(Aog,q) = (divAg'Vg,q) =~(Ag'Ve, V) (23)
= —(A5'Vq, AA;Vg) = (—Aw,w)| A5'Vq (24)

—A 2 2 . 2
— HWH% = sup ( W,V) _ p (anv) = sup (q,leV) . (25)

veu HV”% QveU ”VH% veu HVH%
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Once again we use the fact that H'(£2) N P is dense in P and pass to the limit in the equalities

(g,divv)? .

Gk (26)

(Aog, @) = [Iwl[} = sup
veU

Thus relations (26) are valid for arbitrary ¢ € P and w = Aj*Vq € U. In particular from (13) and (26) follows

A
)\mln(Ao) = inf (—M = inf sup

acP lgllf o veu [IVIIF 14l

ivv)?
@Y _ ey,

where Amin(Ap) is a minimal eigenvalue of the operator Ap.
We also define operators A, and A,,. Similar to Ay these operators are Schur complements for the Stokes
problem, however they involve another boundary condition for the velocity. We assume that

Q= {(z1,22)|0 <z, < L,, 1 =1,2}. (27)
By A, denote the operator A, * P — P defined as
Ay =divAStVY,
here A7 is the solution operator to the problem:
Au=g in Q,

du-7)
on

u-n=20,

=0 on 989,

where n and 7 are the normal and tangent vectors to 9. In [19] it was shown that A, is the identity operator
on P.
In the same fashion we define the operator 4,, : P — P as
Ay =divA VY,
where A1 is the solution operator to the problem:

Au=g in Q

with boundary conditions

811-2
Uy = O, ‘871 =0 for T = O, Ll, (28)
U =0, uy=0 for x3 =0, L.
The weak solution of this problem belongs to
1 2
U,, = {ue (H' ()" : uy =0 and (0,u2) -n=0on BQ}.
For arbitrary ¢ € P we have
,divv)?
(Ang,q) = sup LAV (29)

veu,, IVIR
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The estimates (7) follow from the estimates for the minimal eigenvalues of the operators 4, (+ = 0,p,m). We
state them below with £ as defined in the introduction:

(V)

11
60 £2

3

)\mm(Ap) S Amm(lqo) .<. )\mm(Am) S

H
[\]
N

(30)

Recall that all A(4,) =1 and p(2)? = Amin(4o).
The upper estimate from (30) is proved in Appendix A. The prove of the lower bound 1s rather technical and
can be found in [20]. The inequality

Amm(AO) S )\mm(Am)
follows from the embedding U C U, and thanks to (26), (29) and Rayleigh’s rule:

: (g,divv)? . (gq,div v)?
Amin(40) = inf sup ———5, Amin(Ap) = inf sup ———75-
(Ao) = Job, 90 VBTl (Am) = lnf sup | TEIE

3. ESTIMATE FOR A RING
In this section we assume that 2 is the ring
Q={x=(z1,22): 0<R1 < |x| <Rz}, Ra/Ri=14+6, 6>0.

Since the relation p(Q)? = Apn(A4o) obtained from (26) is still true, we consider the eigenvalue problem
Agp = Ap. The following theorem is valid.

Theorem 3.1. Define s = Ry/R1 > 1, and let (r,¢) be the polar coordinates on R%, then all the eigenvalues
of the problem Agp = Ap belong to

{1} U £y U Ly,
where
1 2_1 1 1 m+1l _ om—1 2_1
=3t (14 52 AL, (s s™HVm ’
2 s2+11lns 2 /(s2(m+1) — 1)(s2(m=1) — 1)
1 2_1 1 1 m+1 _ m—1 2_1
= (1o 52 R RCYVEY P (s s™Hvm
2 s?+1lns 2 \/(52(m+1) _ 1)(52(m—1) -1)
form =2,3,.... The eigenvalue A = 1 1s of wnfinite multiplicity and some corresponding eigenfunctions are

rkr r— Ry 1 . r—R;
— h—— = —_—+C, k=1,2,. .
pi(T, ) T R cos T T R rsm 7rkR2 R Cy, 1,2,. .,

each eigenvalue \ # 1 15 of double multiplicity and all corresponding ewgenfunctions are

p1<r,<p)=r<w[%r fhjsl)al«o),

R 2m -1 2(m+1) _ 1
p(re) =1 | 1F [_1} Sm_l\/m ; am(p), m=2,3,...

7 m+1 g¥m-1) -1

with am(p) = cos(mep) or am(p) = sin(myp).
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Proof. The proof is based on the presentation
[, uz,p] = |6l (1), ud (), 97 ()] exp{isip}
J

and the possibility to decouple App = A\p into separate differential problems for u{(r), ug(r), and p’(r), which
are solved explicitly. Details can be found in Appendix B. O

1
Remark 3.2. If Ry is fixed and R; — 0 (i.e. s — oo ) we have A — 3 for all A # 1. Hence the result of

Crouzeix [10] for a circle is recovered.

Corollary 3.3. With the above assumptions on Q we have for u(Y) from (13)

Q) < \/gg 5€(0,1]

and

Proof. Consider the eigenvalue

-1 s2—-1 1
A==(1-
2 VSQ—i—llns

Substituting s = 1 + 6, we get for § € (0, 1]

s2—-1 1 26 + &2 1 2446 7 5
— - > = 1 — 6%
s2+1lns 2—6—25—%—525 1) +<53 2+ 0+ §62 12

Therefore we have

< 1 7 1 7 7
2)? = Ain <A< =(1- _ L2 Sl1—-1="Ls) = 2.
w7 = Amin(Ao) S A< 5 (1 V1- 339 ) e (1 (1-13590 )) 220

Thus the estimate for u(2) is proved.
To verify the asymptotic for x(€2), when § — 0 we substitute s = 1+ and calculate Taylor expansions w.r.t.
0 for the functions from the definition of the eigenvalues. It is straightforward to obtain

26 + 62 1 1

342618 m(14d) L 30
and for m = 2,3, ...
(A+6)™ 1 —(1+8)™12m?—-1)  4+4(2m—1)6+ (8m® —12m+5)6% + ...
(1 4 6)2m+1) — 1)((1 +4)2(m—1) —1) 4t dm— 1)+ 28m? — 36m + 15 N

3
2
m
= 11— —8%+....
3 +
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FiGure 1. (P} /2)2 x P velocity-pressure FE.

Using this expansions, we get for Apin
1 1 1 1 5?2
Amin(Ag)~ = [1=4/1 =262 ~ = [1—-(1==6%)) = — .
min(4o) 2( Vi-3 ) 2( a 66)) L, 80

Remark 3.4. From the above expansions it is clearly seen that the asymptotic behaviour A ~ c¢é2 holds for
all eigenvalues from the set £o defined in Theorem 3.1.

a

Remark 3.5. The value of u(2) compared with the value of Korns’ constant for a ring [11], shows that (9) is
not valid now. Thus the assumption on 2 to be simply-connected is necessary for (9).

4. NUMERICAL EXAMPLES

First we consider two examples of conforming FE pairs, which are known (e.g., [14]) to satisfy the LBB
condition. These are piecewise linear or bilinear velocity functions w.r.t. a subdivision of  into triangles or
rectangles, respectively. In both cases the discrete velocity is continuous over , and the discrete pressure is
piecewise constant over 2. We assume

Q=1(0,¢) x (0,1).

Scheme I. Consider the regular (“north-east”) triangulation 7; of the domain Q into triangles. Divide each
macro-triangle in 75 into four mini-triangles by joining the mid-sides. This defines a finer triangulation 7}, /5.
Define

Uy

{vlv € PI(A)Q,A €Ty VE Co(ﬁ); v=0 on 39},

Py, {Q!qepo(A),AE’&; /qu:O}A
Q

I

Here P"(A) denotes the space of polynomials of degree not greater then r on an element of the triangulation
A C R?. We illustrate Scheme I in Figure 1.

Scheme II. We start with subdivision Qj of the domain € into rectangles. Subsequently we divide each
rectangle into four smaller rectangles by joining the opposite mid-sides. This defines another subdivision Q2
of Q.
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FIGURE 2. (Q},,)® x Q° velocity-pressure FE.

The FE velocity field consists of the piecewise bilinear functions w.r.t. the subdivision @/, which are
continuous over  and vanish on 99, w.e.

Uh:{VIVEQl(D)z,DG Qh/2; vel®’@); v=0 on N} .

The pressure FE space consists of piecewise constants w.r.t. the macro subdivision Qp with zero mean
over ), re.

Py, = {qlq € Q%(0),0 € QOp; / qdQ = o} .
Q

See Figure 2.
For nodal functions associated with the FE functions we can define in the standard way the nodal Laplacian
operator A, div-operator B, and pressure mass matrix M,. Then, similar to the continuous case (cf. Sect. 2)

the constant 7, from (3) equals {/A! . where A\ is the minimal eigenvalue of the eigenvalue problem
BA'BTp = M M,p, pc P,

where P, is the space of the nodal functions associated with the pressure FE functions.

The minimal eigenvalue was determined by the subspace iteration algorithm (see [21] ). The subroutine EA12
from the HARWELL Numerical Analysis Library was used. The process was considered as converged when the
residual, normalised by the eigenvector, was less than 1071 in the discrete Lo norm.

In Table 1 we present the values of v,(Q2) for different ¢ with hy = hy = 1/64 and both I'E schemes. In the
bottom row the value of the upper bound .

. ~1
is given for reference.

The data from Table 1 confirms the asymptotic behaviour

Y(Q) = O™t with £-— oo,

that was predicted by the analysis of the paper.

Table 2 shows the calculated values of -y, for different £ with hy = £ ha, hy = 1/256.

Compared with Table 1 numerical results from Table 2 show that the dependence of 7, on the mesh aspect
ratio hy/hs is very weak. This agrees with the numerical experience in [26] for non-conforming velocity FE
space.
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TABLE 1. The dependence of 45, on the domain aspect ratio.

V4
FE scheme 1 2 4 8
I 0.447424 0.387510 0.218469 0.112338
11 0.479624 0.388664 0.211852 0.112345
a(€2) 0.9069 0.45345 0.226725 0.113363

TABLE 2. The dependence of v, on the domain aspect ratio and the mesh aspect ratio.

b4
FE scheme 1 2 4 8
I 0.440679 0.387417 0.218494 0.112432
11 0.460223 0.387812 0.218534 0.124900

TABLE 3. The dependence of 7, on the mesh size.

mesh size
FE
scheme 1/8 1/16 1/32 1/64 1/128 1/256
I 0.474990 0.461353 0.452987 0.447424 0.443527 0.440679
1I 0.560231 0.521009 0.496087 0.479624 0.468308 0.460222

In Table 3 we present the values of v, with different h; = ho = h for the unit square. These results illustrate
that in general the LBB condition (3) holds for both FE pairs, 2.e. the mesh-independent limit v(Q2) exists for
both FE schemes.

In the next example we use non-conforming quadrilateral elements ( ) 2)2 x QY from [22], 2.e. on every element
the velocities are spanned by (z? —y2,z,y,1) and the pressure is constant. The domain and a coarse mesh are
shown on Figure 3. The length of the channel equals 2.5 m and the hight 0.41 m, a cylinder of diameter 0.1 m
is placed at 0.45 m from the inlet. For unsteady incompressible flows this is a benchmarking configuration (see
details in [24]). Here the steady Stokes flow around cylinder was calculated. The Featflow software [27] was
used.

The average convergence factors after 50 iterations of the Uzawa algorithm are presented in Table 4. The
second line of the results shows the factors for the same configuration but with the outlet placed closer to the
cylinder (1.5 m). We recall that the convergence of the Uzawa algorithm is ruled by -y, (see (5)). The level
number in Table 4 indicates the number of refining steps applied to the coarse mesh. At every step each element
is divided to four finer elements by joining midpoints on opposite edges. As was expected the convergence is
mesh-independed, however decreases while the channel becomes longer.

APPENDIX A

In this part of the appendix we prove the upper bound in (30) Assuming that Q is defined as in (27),
consider the eigenvalue problem A,,p = Ap. Introducing the auxiliary function u = A;,'Vp, we reformulate






