Un schéma d’interpolation rationnel sur un quadrilatère de classe C 2
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 5, pp. 913-922.
@article{M2AN_2000__34_5_913_0,
     author = {Laghchim-Lahlou, Mohammed},
     title = {Un sch\'ema d{\textquoteright}interpolation rationnel sur un quadrilat\`ere de classe $C^2$},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     pages = {913--922},
     publisher = {Dunod},
     address = {Paris},
     volume = {34},
     number = {5},
     year = {2000},
     zbl = {0974.65013},
     mrnumber = {1837760},
     language = {fr},
     url = {http://www.numdam.org/item/M2AN_2000__34_5_913_0/}
}
TY  - JOUR
AU  - Laghchim-Lahlou, Mohammed
TI  - Un schéma d’interpolation rationnel sur un quadrilatère de classe $C^2$
JO  - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY  - 2000
DA  - 2000///
SP  - 913
EP  - 922
VL  - 34
IS  - 5
PB  - Dunod
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_2000__34_5_913_0/
UR  - https://zbmath.org/?q=an%3A0974.65013
UR  - https://www.ams.org/mathscinet-getitem?mr=1837760
LA  - fr
ID  - M2AN_2000__34_5_913_0
ER  - 
%0 Journal Article
%A Laghchim-Lahlou, Mohammed
%T Un schéma d’interpolation rationnel sur un quadrilatère de classe $C^2$
%J ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
%D 2000
%P 913-922
%V 34
%N 5
%I Dunod
%C Paris
%G fr
%F M2AN_2000__34_5_913_0
Laghchim-Lahlou, Mohammed. Un schéma d’interpolation rationnel sur un quadrilatère de classe $C^2$. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 5, pp. 913-922. http://www.numdam.org/item/M2AN_2000__34_5_913_0/

[1] K.N. Agbeve, Eléments finis triangulaires rationnels de classe Ck. Thèse de Doctorat, Université de Nantes (1993).

[2] P. Alfeld, A bivariate C2 Clough-Tocher scheme. Comput. Aided Geom. Design 1 (1984) 257-267. | Zbl

[3] J.H. Argyris, I. Fried et D.W. Scharpf, The TUBA family of plate elements for the matrix displacement method. The Aeronautical Journal of the Royal Aeronautical Society 72 (1968) 701-709.

[4] G. Farin, Triangular Bernstein-Bézier patches. Comput. Aided Geom. Design 2 (1986) 83-127. | MR

[5] G. Fraeijs De Veubeke, Bending and Stretching of plates, in Conference on matrix methods in structural mechanics, Wright Patterson A.F.B., Ohio (1965).

[6] G. Herron, A characterisation of C1 discrete triangular interpolants. SIAM. J. Numer. Anal. 22 (1985) 811-819. | MR | Zbl

[7] M.J. Lai, On dual functionals of polynomials in B-form. J. Approx. Theory 67 (1991) 19-37. | MR | Zbl

[8] M. Laghchim-Lahlou et P. Sablonnière, Triangular finite elements of HCT type and class Cp. Adv. Comput. Math. 2 (1994) 101-122. | MR | Zbl

[9] M. Laghchim-Lahlou et P. Sablonnière, Cr-finite elements of Powell-Sabin type on the three direction mesh. Adv. Comput. Math. 6 (1996) 191-206. | MR | Zbl

[10] A. Le Méhauté, Interpolation et approximation par des fonctions polynômiales par morceaux dans ℝn. Thèse de Doctorat ès Sciences, Université de Rennes (1984).

[11] M. Laghchim-Lahlou et P. Sablonnière, Quadrilateral finite elements of FVS type and class Cp. Numer. Math. 70 (1995)229-243. | MR | Zbl

[12] M.J. Lai et L.L. Schumaker, Scattered data interpolation using C2 Supersplines of degree six. SIAM. J. Numer. Anal. 34 (1997) 905-921. | MR | Zbl

[13] L.L. Schumaker, On the dimension of spaces of piecewise polynomials in two variables, in Multivariate Approximation Theory, W. Schempp et K. Zeller Eds., Birkhäuser Verlag, ISNM 51 (1979) 396-412. | MR | Zbl

[14] T. Wang, A C2 quintic spline interpolation scheme on triangulation. Comput. Aided Geom. Design 9 (1992) 379-386. | MR | Zbl

[15] A. Ženišek, A general theorem on triangular finite Cm-elements. RAIRO Anal. Numér. 8 (1974) 119-127. | Numdam | MR | Zbl

[16] O.C. Zienkiewicz, The finite element method in structural continum mechanics. Mc Graw Hill, London (1967). | Zbl