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Modélisation Mathématique et Analyse Numérique

SOME SPECIAL SOLUTIONS OF SELF SIMILAR TYPE IN MHD,
OBTAINED BY A SEPARATION METHOD OF VARIABLES

MICHEL CESSENAT1 AND PHILIPPE GENTA1

Abstract. We use a method based on a séparation of variables for solving a first order partial differ-
ential équations System, using a very simple modelling of MHD. The method consists in introducing
three unknown variables </>i, <f>2, (j>3 in addition to the time variable t and then in searching a solution
which is separated with respect to (j>\ and t only. This is allowed by a very simple relation, called a
"metric séparation équation", which governs the type of solutions with respect to time. The families
of solutions for the System of équations thus obtained, correspond to a radial évolution of the fluid.
Solving the MHD équations is then reduced to find the transverse component HT, of the magnetic
field on the unit sphère E by solving a non linear partial équation on S. Thus, we generalize ideas of
Courant-Priedrichs [7] and of Sedov [11], on dimensional analysis and self-similar solutions.

Résumé . On développe une méthode de séparation de variables pour un système d'équations aux
dérivées partielles du premier ordre qui intervient en magnétohydrodynamique dans une modélisation
simplifiée. Cette méthode consiste à faire intervenir en plus du temps, de nouvelles variables a priori
inconnues 0i, </>2, 03, et à chercher à imposer à la solution du système une séparation des variables
vis-à-vis du temps et de <j>\ seulement. Ceci est rendu possible à l'aide d'une équation très simple, dite
équation de séparation métrique, qui gouverne le type des solutions. On dégage alors des familles de
solutions asymptotiques admissibles pour le système d'équations, et qui correspondent à une évolution
radiale du fluide. La résolution du système d'équations de la MHD est alors ramenée à déterminer la
composante transverse H% du champ magnétique sur la sphère unité E, par la résolution d'une équation
aux dérivées partielles non linéaire sur E. On généralise ainsi des idées de Courant et Priedrichs [7], et
de Sedov [11], reliées aux questions d'analyse dimensionnelle et d'autosimilitude.
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1. MODELLING IN MAGNETOHYDRODYNAMICS

We study the coupled évolution of a compressible fluid and electromagnetic field using a macroscopic mod-
elling and the following assumptions:

(a) The fluid is a perfect gas, homogeneous and not viscous. The fiuid is described by its spécifie mass p,
its velocity v and its pressure p. The fluid équations are obtained by the conservative laws of density,
momentum and energy. The fluid is also a perfect medium with respect to electromagnetic properties,
isotropic and homogeneous.

Keywords and phrases. Magnetohydrodynamic (MHD), séparation of variables, selfsimilar solutions, dimensional analysis.
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(b) The équations of évolution of the electromagnetic field are the Maxwell équations with constitutive
équations.

1.1. Electromagnetic modelling

1.1.1. Electromagnetic modelling for a medium at rest

The electromagnetic field is described by the magnetic field H, the electric field E, the magnetic and electric
inductions B and D, which satisfy the Maxwell équations (in the International System I.S. of units)1:

where j is the current density and pc the electric charge density.
In a perfect, isotropic, homogeneous steady medium without time-memory, the following constitutive laws

are used:

D = eE, B = tiH, j = oE, (2)

e, //, <T being the permittivity, the permeability and the conductivity of the medium.

1.1.2. Electromagnetic modelling for a moving medium

If the évolution of the medium is given by a transformation w i n t f x l , ^ : (x, t) e M 3 x R - ) u(x} t) e M3 x M,
we have to transform the electromagnetic field, Maxwell équations and constitutive relations by u. We dénote
by a prime the transforms of E, iJ, £?, D,j, pc. When u is a Lorentz transformation, it is well known (see [5,9])
that Maxwell équations are invariant, and constitutive relations are changed into (for a Lorentz transformation
with a constant velocity v of the Sf frame with respect to the référence frame S)

' (i) D1 + \v x H' - e(E' + vxBf) (ii) B9 ~ \v x Ef = fi(Hf - v x D')
c c /Q^

(iii) j ' - p'cv = V0(E' + VXB'- ^^V) , with 0 = (1 - (v2/c2))-1'2 .

In the case of Galilean transformation (x,t) —> (x + vt,t), the constitutive relations are:
'B' =n(H' -v xL>'),

D'=e(E'+vxB'), (4)

! f - & = *(& +VXB').

Finally, the simplified constitutive relations are:

D = eE, B = pH, j = a(E + v x S) + pcv, (5)

with e = eoî M = Mo» (£o5 Mo the permittivity and the permeability of the free space).
Then pcv and j are neglected and these formulas are assumed to be still locally true when v is not a constant.

1In the whole paper, we use the Prench notation rot for curl.
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1.1.3. Lorentz force density and energy balance law

(a) The action of the electromagnetic field on the fluid is assumed to be given by the Lorentz force density:

FL = PcE + jxB, (6)

thus, if the time derivative of the electric induction (or "displacement current" ) D is neglected in the Maxwell
équations, we have:

fFL = £0(divE)E + Mo(rot H) x H
H2 (7)

= £0(div E)E - Mo grad — + ^{H • V)iJ,

(b) The usual energy balance law with Joule effect is written in the "conservative form"

^ (8)

with S = E x H and tom = ^ (e0E
2 + ̂ H2) = \{D • E + B • H).

Zi Zi

1.1.4. Summary of the electromagnetic équations

Finally, under the previous assumptions, the Maxwell équations with the constitutive laws are:

(i) —

(ii) div3 = 0, divD = pc

with

(iii) B = fi0H, D = e0E, j « a(E + vxB).

Thus the electric field E is obtained through H by:

The équation for H is:

Ext -TotH-nov xH. (10)

ri ff 1
— AH - iot(v x H) « 0. (11)
ut afL

If we assume, at last, that the fluid conductivity is high so that its corresponding term in the previous équation
may be neglected, we obtain "with infinité conduction" :

E = —v x B = — JIQV x
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1.2. "Hydrodynamics" and fluid modelling

The fluid évolution in the space M = M3 is given as a function <p of a G M3 and time t, with regularity
properties for every t in the time interval (tOy t\)\ the map a e M3 —>• </>(a, t) 6 M3 must be invertible, continuons
and differentiable with its inverse, according to a particle interprétation of the fluid évolution: a = (a^),
i = 1,2,3, are the Lagrangian coordinates of a fluid particle at time t = 0 and x = (a?*) = xa,i(t) = 0i(a, t)}

i = 1, 2,3 are the Eulerian coordinates of the fluid particle at time t.
The field of velocity is obtained from <f) by:

v(x(t),t) = j j 0 ( M ) *.e. «(^(a,*),*) = ^^ (a , t ) . (13)

If ƒ is a regular (C1) function on JR3 x Rt, its particle derivative (or material time derivative) df/dt is the time
derivative of F(t) = f(xa(t),t)

- -± at (x(t),t).

The fluid équations (obtained from conservative laws) are2:

_i / 2 \

(iii) p— f e + — 1 ~ j • E + div(â * i>) — div g,
de \ 2 /

where â dénote the stress tensor, e the internai energy and q the heat flux.
We assume that:

(i) the stress tensor a is reduced to the pressure term o = —pi (I is the identity matrix),
(ii) the heat flux q is null,

(iii) the internai energy e satisfies the law of perfect gas (with 7 the adiabatic constant):

7 - 1 p

The équation (15iii) on internai energy is simplified to:

de
p— +pdïvv = Q. (17)

Thus with (15i), then with (16), we have:

de 1 dp dp .
— p-n -r- = 0, and ——\- ̂ pdwv = 0, (17 )

corresponding to the adiabatic law of évolution pp 7 = constant.

2See for example [8].
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1.3. Global System of équations

We simplify and summarize the coupled System of magnetohydrodynamics, as follows. We search for a vector
fonction U of x and t:

U{x,t) = [p(x,t), v(x,t), H(x,t), p(x,t)}

with 8 components Uj,j = 1, . . . , 8,

I/i = p , U1+j = Vj, j = 1,2,3, t/4+j =fl>, 3 - 1,2,3, l/s =P ,

satisfying the following équations:

•—• + div(pv) = 0,

xiï,

dH
— rot(u xH) = Q, with div Jï = 0,
CI/

dp
ivv = 0,

or
rdp

d^ + " d l V

df
p d t + g r a (

dp
[-+7pdi

v = 0,

Ip = Aio(rot

vu — 0.

jff) Xiï,

V)t? = 0, with

We can write these relations using matrix notations:

(18)

(18')

(19)

(19')

= 0. (20)
L/l/ ULü

Then, with Z = 1, . . . , 8 and with components I7m (m = 1, . . . , 8) of £7, if Â3
lm and A^m are the components of

A and A, we have:

oui v -
.7 = 1,2,3 m =

= o, or
dû".
—

. aum (21)
i=l,2,3 m=l

where

AU =

fO pdiv 0 0 \

0 0 -fjioa - V

0 6 0 0

\0 0 0

(22)
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and where
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aij = Hjdi - (H • V)(J0-, bij = H^ - (H •

3 x 3 matrix operators (23)

Using block matrix notations, the matrix operator A is A = ^2 Akdk1 k — 1, 2,3, with

/ 0

Ak =

\ 0 7p/fc O O /

w h e r e Ik i s a n 1 x 3 m a t r i x , Jk i s a 3 x 1 m a t r i x , a n d a k , b k a r e 3 x 3 m a t r i c e s g i v e n b y :

0 0 \

O O
. P' ' P

O bk O O
(24)

and (a*) .5. = {Hj5ik - fT^ - ) , (6fc) .. = (ff^^ - frfc<Jy), i j = 1, 2, 3, thus bk = *afc. (25)

The System of équations (19) is commonly used in MHD, see for example [1-4,10].

2. DlMENSIONAL ANALYSÏS

2.1. Dimensional équations

At first, we note all these statements are usual in fluid mechanics (Vaschy-Buckingham theorem). We refer
also to [11] and to the Russian School (e.g. [3,4], for many studies on Z-pinch).

The state of a physical System at a point (x,i) (x e M3) is given by physical quantities, which basically
depend on the chosen units and scale. In the physical Systems here considered, relative to mechanics, the basic
units are:

length (£), time (T), mass (M) and electrical charge (Q).

The physical quantities v, JY, p are taken in the international System (LS.)

\p] = L-*M, [v] = LT-\ [H] = L-'T-'Q, \p] = L^T^M.

Changing the fundamental units modifies the measured quantities:

L -> V = AiL, T-+T' = A2T, M-* M' = A3M, Q -> Q' = A4Q,

p' = A^3A3p, v' = AiA^1^, Hf = A^1AJ1A4JÏ, p' = X^X

More generally, a physical quantity A with dimensional équation: [A] =
into A' = A^A£2 . Thus the dimension of A is v = vA =

^^ with z/j G Z, is changed
2i 2/3,

The formula of A! gives a représentation kv of the IR̂_ group, product of homothetic transformations, in the
space

A = (Aa, A2, A3, A4) e RA = R i -> A^ = A" = A? (26)
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In a Cartesian frame ((a:*) G R3) , the unit change of variables is given by the transformation:

x' = \xx (Le. x'j = Xxxj} j = 1,2,3), t' = A2i, v{x?) = u(x) = (1,0,0,0), and u(t) = (0,1, 0, 0). (27)

The transform of the function (x, t) —» A(x, t ) G l associated with the physical quantity A is given by A'(x', t') =
A(x, £), with multi-index notations.

For A = (Ai,A2), let h\ dénote the map (x,t) —>• A(a;,t) = (Aia;, A2t) and A' the map (xf,t') —̂  A*{xl,tf) ; we
obtain:

A' ohx= K\A, or A' = A^A o ft"1. (28)

We have a new représentation of the group M^_ in a functional space, as:

with

h\h\, — J J ^ / , where A - A' = (AiAi, A2A2, A3A3, A4A4). (30)

This corresponds to the diagram:

(x, t) G M3 x M -» A -» A(^, t) e M

c',*') G E 3 x R -> Af - • A^x ' , ^ ) G R.

2.2. Self similar solutions

For A, we choose the components (Uj), j — 1, . . . , 8, of U = (p, v, H,p) solution of the previous équations of
magnetohydrodynamics.

Now we seek solutions of these équations which are invariant under the global change of units. Then we
obtain that the solutions (if they exist) have a special "asymptotic behavi.our" (with respect to x and t).

The solution is written as Uj(x, t, /i0), j = 1, . . . , 8, with /z0 the single dimensional constant ([/i0] = LMQ~2).
Changing all units, the solution becomes:

E/jVit'îMo) = A J I / ^ M Î M O ) ,
 w i t h AJ = A" ' ' vù = àh

U'j (Aix, A2t; AiA3A-2/xo) = A^^a;, t; Mo), j = 1, . . . , 8. (31)

(a) At first, we prove that there cannot exist a solution that would be invariant under this group of transfor-
mations.

If Uj = Uj, j = 1, . . . , 8, we write x — ra, r = \x\,a = x/r e S2 (a is dimensionless), and

,*; /^) . (32)

Then, taking Axr = 1, X2t = 1, AiA3A^2^0 = 1, and Çj = v\ + \v\jT\, we obtain

i-(l ,a, l ; l) . (33)

Finally, A3 can be arbitrary and U3; = 0 for j ' ^ 2, 3,4, because there is only one dimensional constant ^o in the
équations.
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(b) Now we seek solutions invariant under a subgroup ÎR̂ _, that is freezing a unit, for example the electrical
charge; we have:

Uj (Air, a, À2*ï AiA3jU0) = AjUj(r, a, t; //0). (34)

Let Air = 1, A2£ = 1, A1A3/Z0 = 1. We obtain, with ipj(a) = Z7j(l,a, 1; 1) a function of a only,

^(r.a,*;/*) = (A^ü-^l.a,!;!) = r^-^t^»^(a). (35)

PFe ftave a natural séparation of variables: in gênerai, such a séparation with respect to the "natural" variables
(x, t) or (r, a, i) is not possible. The idea is now to impose the séparation with respect to new unknown variables,
as Courant and Priedrichs [7] do it for two variables with two new parameters.

These ideas are similar to ideas of Sedov [11] on Il-theorem and self-similarity.

2.3. Generalized dimensional analysis

Now let Üj (01,02,^1,^2) be a solution of the MHD équations, with unknown variables 01,02,^1,^2- The
quantities 0i and 02 have dimensions and are positive, t\}\ and ̂ 2 are dimensionless, so that:

£/';(Ai/?i,A2/32,</>i,</>2) = A?'A£'£,•(/?!,02,^1^2), VAi,A2 e R + , (36)

with real constants Oj and Kj only depending on the dimensions viÜA = üj of Üj. Assuming that (Ûj) is

invariant under this change of units, we have:

Üj 031,02,^,^2) - fâffîUj (1, l , ^ i , ^ ) = fâffîXj (^1^2) » (37)

by taking Ai/3X = 1, A2/32 = 1.
Let us specify the dimensions v{(3\), ^(^2) of 01,02 with respect to the units L,T,M and with respect to

coefficients 0j and «j. Let u(0i) = i/z = (^1,2^2,^3), i = 1,2. Then we have:

O2 = Ö3 = Ö4, O5 = 96 = Ô7, and /c2 = K3 = «4j K5 = «6 = «7- (38)

Notice that Hfao/p)1/2 and v(pfp)1^2 are dimensionless and [ƒ/] = [p]1/2, thus:

Ö5 = ifls, y +Ö2 - y = 0, and * 5 = ̂ 8 , y + «2 " y = °- (39)

Let

/ — 1 ~ — 1 ~ ~ ~
L n " 1 ; "2 *^2, " 3 o 8 w iiiii t/2 1/3 "1

(40)

and also

= -«s

u = t /3, C/Q = i/i t n u S . C72 —17 — C/Qj

I\i 'T'3 î '«'0 '* ' ! L11U.O* 'i'Z '*' '"0 *
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Then the dimensional équations for p and p are:

JKP) = (-3,0,1) = 20! (v\,v\,vl) + 2«i [vl 1/2,1/2) ,
\i/(p) = ( - 1 , -2,1) = 2Ö3 {y\, V\,ul) + 2k3 (i/?, vl,v%) .

It is a System of 6 équations and 6 unknowns i/J (z = 1, 2; j = 1, . . . , 3), with 9j and £j as data. This System
has a unique solution if

A = fl!«3 - Ô3«i = e0K - 6K0 Ï 0, (43)

and this solution is:

v (/?i) = ^ ( ^ o - 3«, 2«o, « - «o), v (A) = ^ M o + 30, -200, - 0 + 0o). (44)

3. DlFFERENTIAL GEOMETRY ANALYSIS

3.1. The method

The basic idea is to seek a solution Um of the MHD équations, that is invariant with respect to unit changes
of quantities denoted by /?i,/3i and that would be a product of factors with respect to new unknown variables
T,</>I,02,</>3 as:

^m(r,0i,^,03)=i9? ra(r)i9rm(^i)W'm(02,03), m = l , . . . , 8 ; (45)

= 0m, *% (üm) = ^m are the two dimensions of Üm.

We also have to find the change of variables from the usual coordinates of time and space to (r, 4>).
In Eulerian coordinates, x and t are not independent variables, thus we have to introducé a new time variable,

denoted by t', and to obtain the transformation 9 : (£', x) —» (r, <f>) through its Jacobian matrix J.
We will choose r = tf (the change of notation is only a question of writing partial derivatives) and then

we choose 4>2 â-nd <j>s independent of tf. The main point is that the velocity of the fluid particle is part of the
unknowns (Î7m), and thus, must satisfy the séparation of variables, as is the formula (45):

Vi(T,4>) = ^ 1 + i(r)^r+ i(0i)Wi+i(02,03) , i = 1,2,3. (45')

Now the change of coordinates will be obtained through the differential forms:

àxi = Vidr + ^2 aijà<t>ji é = 1,2,3, àtf = dr, (46)
.7 = 1,2,3

with factors dij to be deflned later. In the whole space Rt xM^, we define the operator:

- — +9 (47)

also written I ) in the basis d/dxj,d/dt'. We calculate dfa/dt' when i — 1,2,3:

Ç + 0 (48)
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Moreover, we assume that:

w = w = 0- (49)

We have the basic formulas of transformation

The velocity of the fluid particle must be of the form, with separate variables:

v = _l^Votü, Le., Vi = —^NoWi) i = 1,2,3, with ~-Wi ~ Wi+i, a i constant, (51)

with

jV0(r, <f>i) = A ( T ) o i Â ( 0 i ) K i , with ê[ = ë2 = 0 - 0o, K!X = K2 = K- KO. (52)

Let

r = § , f = § , G=£, with #,#,Â^O. (53)
Pi Pj i

Then

, 1 ôiV0 1
olfiVo' ô^" = KlfiVo- ( 54 )

Relations (46) must correspond to closed difFerential forms, thus the Schwarz conditions -^- = | ^ , i, j = 1,2, 3,

must be satisfied, thus factors aij in (46) are so that

aa = —Gvi = ̂ -^Vi = GN0Wi, Î = 1,2,3,
ai ai r

ai<7- = —NoWij, i - 1,2,3, j = 2,3, w^ = -^~ • (55)

Then (46) can be written as:

+ GNoWidfa + ̂ riVo f l ^ d ^ + ̂ d f c ) , i - 1,2,3
« \d</)2 o4>% J (56)

Obviously, the differential forms dxi are closed forms if and only if:

?£ = ai-e[. (57)

This is called the Metric Séparation Equation (MSE). Thus we have the transformation formulas (r, <j>) -ï (£', x)

Xi = —rT(r)No(T,<t>i)wi(<f>2,<l>s), i = 1 , 2 , 3 and tf = r . (58)
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3.2. Path of the fluid particle

Now the path of the fluid particle which is at a point a G R3 at initial time £ = 0, is given by the function:

t G R -> Xa(t) = (£, xa{t)) e R x R3 with xa(0) = a.

Now, at point Xa(t), we have t = £' = r, xa,i(0 = ^( r , 0), i = 1, 2, 3. Thus

r,^)^^,^), * = 1,2,3. (59)

Therefore

*i (60)
F/3,1 ) constant.

/r=0

Let M(£) = r(£)/3^ ( ^ ^ ( 0 ) ^ ( 0 ) . Prom (60), the évolution is given by

^a,i(£) = M(t)üi i.e. xa(t) = M(t)a, (61)

and the velocity of the fluid particle is:

ff ï \ ai
/ei Wï 2' 3 (62)

Note that it is also the partial derivative of the position with respect to r:

Va(t) = ~Za(£) = V(<f>,r) - ^ ( 0 , r ) . (62')

Then (62) implies

i, z.e., v(xa(£),£) = ^ = ^TV^aW- (63)

Thus the flow of the fluid particle is radial Note that the field of velocity is curl free:

rotv = ~ - voix = 0. (64)
1 (t)

From these results and the relation

d(j>! __ ai ! __ a i f

we can prove (using the Euler équation of homogeneous functions) that /3i is

&(&) = Ci (P^r)1/K[ , or ^ ( 0 0 = C/3rair, Ci,C constant, Cf' = C, (66)
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and we get that (f>i(xa(t),t) only dépends on a = (ai,a,2,a$):

(fc (xa(t>), i')) = Ôpr1 (0)|a|, #'* (& (xo(<), f)) - ^ ^ (fc (*„(*'), *')) • (67)

Notice also, [from (59)], that the directions of x and w are identical, and more precisely, using (59, 60, 66), that
there exists a constant CQ (independent of (r, 0))

(68)

such that

—^ = CO^Î, thus |w| = —-, and -r— = w((j>2^3) = i— • (69)

Therefore (02)0a) ?72aî/ 6e chosen as spherical coordinates.

3.3. Some gênerai results

To solve the System of équations given by a particular modelling of MHD, we need the value of /?i, (3\ through
the MSE. We need also differential operators such as the partial derivatives d/dt, d/dxi, d2/d2X{, grad, div,
rot, v. grad, A. So we write down here the most useful formulas and we calculate also some interesting matrices
deduced from J.

3.3.1. Solutions of the "metric séparation équation" (MSE)

Through the MSE, we will get /?i(r). We recall [see (57)]

g = ai-*i, with r = ^ - (70)

We have two cases.

(i) a i — 0[ y£ 0: Then we can define Ai = (ai — O^1 and:

' with /30(0) = Ci > 0. (71)

The évolution operator of the fluid partiële is:

M(t) = (^L) . (72)

(ii) a i - 9[ = 0:

PI(T) = Ci exp(r/n) with Ci = ̂ (0) > 0, (73)

and then

M(t)=exp(9'1t/r1). (74)

Now, we have J3i from j3i [see (65, 66)].
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3.3.2. Formulation of the MHD équations using the variables (</>}r)

Let 0 be the change of coordinates (#,£') —> (4>,r) = (</>i, </>2, </>3,r). We define:

thus U(Xa(t)) =

Ü(<I>,T) = er (e -^r) ) , xa(t) = e(xa(t))>

= Ü (xa(t)Y Then we can prove that

_ du_
xa(t) dr

xa(t)

The MHD équations of Section 1.3 are transformed into

U = Fl(Xa(t)),

xa(t)

with

1 = 1

and thus, using (45, 53) with Nm = ^ m / 3 ^ m , the MHD équations are

(75)

(76)

(77)

(78)

(79)

3.3.3. Jacobian matrix and scale factors

Transformation in M4

The Jacobian matrix J of the change of variables 0 : (x, tf) —> (0, r) is given by the dyadic expression, with
</>o = r, XQ = t7:

J = (80)
2 = 0

The transform of the vector A = J^j=Oj_iS A^ is J(A) = J2i (j(A)) sf- w i t h :

(81)

Then the inverse of the Jacobian matrix J is given by:

3

(82)
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Let B dénote a tangent vector field in the 0 variables:

A a a A a

The transform A of B by the change of coordinates © l is

9
3i~*T--*—i t h u S

To change the components (Bi) to (A,), with (A) = J 1(B), use J x given by:

_ _

dx±

dtf \ / 1 O O
Ot\ 1
— NQWI GNQWI —

—i A^o^2 GN0W2 ~T

\

dx3

o \

ÔW2

GNow3 —
^2 902 «i

Transformation in M3

Let B = J2i=i Bi-^r and A be given by A = X)|=1 Aj-£- (thus with Bo =0,AQ= 0) with

A2 = Jnl \B2 ) = GNQw2 —

O(p2 &x

\
GN0W3 \

B2

Let 5 dénote the vector with components:

BX^GNOBU

Let J\ be this transformation from B to A:

^ 3 / VB3,
W2

903 /

B2

KB3,

(83)

(84)

(85)

(86)

(87)
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Now, if we define the scale factor matrix A by

/ 1

A =

GNo

O K'V

0

1
TNQ

O O

then the matrix Jo defined by (85) is given by

Let Jx dénote the dimensionless matrix:

J " 1 — I Si 62

0 \

953

(88)

(89)

(90)

Then the matrix Jo [the inverse of JQ1 given by (85)] is Jo = AJ-f1, and the coefficients of JQ are:

= 1,2,3.
dxj GN0 " '

The first order derivatives of Ui are:

Ui = *

nrw 0^'

d

dx2

d
\dx~3/

/ 9 \

d
d(j>2

d
d(f>2

\

V l t T - l

d(p2

Note that, from the "dimensional" point of view, to derivate is equivalent to multiplying by

Remark. Transforma of second order derivatives. Now (92) is also written as

= ^ ^ w l t h ^ i = ^ ' ^ +

Then the second order derivatives of Ui are:

d dUi _ rei

dx^~dx~ ~~ (TNQ)2

re1'

+ J + «i
d<j>

+

1 i^-«' l ) ï? fcv I l i + « ' 1 [ « f c ^ + - 0 ^

(91)

(92)

\ - l

(93)

(94)

This dérivation is equivalent to a multiplication by (TNQ) 2 (again from the "dimensional" point of view), and
thus the used transformation does not allows us to treat équations with second order terms (with the Laplacian
for example) with constant coefficients.
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Remarks.

We recall that one of the main properties of the change of variables is to change the partiële derivative into
the partial derivative.

This method is a gênerai method of variables séparation in a System of équations with first order partial
derivatives quasi-linear and non homogeneous.

In some sense the new variables are similar to Lagrangian coordinates, so that the MHD équations transformed
by J may be considered as an other version of the MHD équations in Lagrangian coordinates.

3.4. Solution of the simplifiée! MHD équations

3.4.1. Some remarks about the self similar solutions

The dimensions of (p,v}Hyp) with respect to /?i,/3i are, with 6[ = 6 — ôo, K[ = K — KQ

= 0, u01(p)= 20,

This corresponds to

l-H" = PÏftH, p = /3?%«p,

with

fi = Wx, ïj = W1+jt Éj = Wi+j, j = 1,2,3, P = W8. (96')

Let us calculate 0o, Ö. First note the very simple value of divu [using (63)]:

dïvv = Y divx = 3TT ' (97)

From the conservative mass (Eq. (15i)), we get: 6 + 2ai = 0. From the adiabatic évolution (Eq. (17')):
0 — 70o = 0- From the évolution équation of H (if H is not identically 0): 20Q + 3ai = 0.

Thus, we obtain 7, 9 and 6$ as

7 = | , eo = - | a 1 > Ô = -2a i . (98)

The metric séparation équation gives the functions /3i and M

The solution must satisfy the Euler équation and divif = 0. Using (96) in the Euler équation, we verify that
we obtain an équation with the only variables <fe and 03 (according to the method of séparations of variables).
For the équation diviJ = 0, we obtain:

K = / . de dË\ n . x

~ 7 ? * j f f + ^ - ^ r + £ * ^ r = a 10°
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3.4.2. Solution of the whole MHD system

We can entirely solve the System using spherical coordinates on the unit sphère S, with the usual notations
02 = 0, 03 = 4>-

Use of the matrix Ji and its inverse J-j"1. Solution of div H = 0

The Jacobian matrix is [see (87)]:

dw dw\ f da da

with a = er = (sin#cos0, sin0sin0, cosö). Thus the transposed matrix of the inverse of J\ is [see (89)]

, e*, ̂ ^ ) • (102)

Therefore, with H = Hrer -f i?£ = i? re r + Heeg -f iiT ê̂  we have

H • 7)\w\ = Hr, H- ô\w\ =He, H- e\w\ = ^—QH<1>' (103)

Then the équation divJÏ = 0, (100), gives with the spherical surface divergence div^

v0Hr + divs J ï s = 0, with u0 = -^- + 2. (104)

We obtain (104) also by using the div in spherical coordinates

and the transformation due to (50)

and with J (r-^-) H = ^-H,

Solution of Euler équation

We take

df
p— + gradp = FL = /x0 rot H x H, (106)

and we project on the plane tangent to the unit sphère. The équation

gradsp = U^FL = fi0U^(iotH x H) (107)

gives p through H up to a constant. We get p through H and p by a projection of the Euler équation on the
radial vector.
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Then we take the surface curl, z.e., (rots) of this équation and we obtain the équation on H only

rot s n s (rot H x H) = 0. (108)

We couple this équation with &\v H — 0 in order to obtain H.

Solution of the System of équations

We can write équation (108) in the form:

rots n s ( ro t i ï x H) = a- rot(rot# x H), with a = er. (109)

Using differential geometry (see [5,6]), we obtain:

# s - (grads rots # s + A rôts divs i?s) = 0, with A = - ^ - , (110)

or also:

(er x JÏE) • (rôts rots # s - Agrads divs # s ) = 0. (111)

Instead of the vector unknown HJ: , let f\, ƒ2 be two scalar unknowns with

divs # s = fu rots H* = / 2 , and / x = - ^2 + -j^\ Hr, {divH = 0). (112)

Now, we can get H*£ through ƒ1, ƒ2. Using the Hodge décomposition (see [5]) of iJs into:

# s = grads Ci + rots C2, with Q G i ï^E) , Î = i, 2, (113)

is the Sobolev space on the sphère) we obtain: fi = AsCî» * = 1) 2, thus:

i l s = grads G/i + ^otE G/2î and er x i îE = fôts G h ~ g^ads G/2) (114)

where G is the inverse of the Laplace-Beltrami operator on the sphère in the space LQ(E) (orthogonal to the
constant functions), given by

Gf(a)=Jg(a,0)f((3)dX/3 with g(a,/3) = ̂  log 1 ~ ^ '^ • (115)

s

Equation (110) is thus reduced to:

Gf2) • (-Agrads /i + rôts /2) = 0, Le.,

(fois G/i - grads Gf2) • er x (A fots /i + grads f2) - 0. (116)

Then, from the magnetic field H, we get the other unknowns, the pressure p and the density p. We get p
through (107):

— gradsP = n s ( rotH x H) = Hr I ( 1 + 4 ) ^ s - gradE Ifr ) + (rotE H^)er x jffE,
Mo \ \ «1/ y

(117)
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and then p through the projection of (106) on the unit radial vector:

+ jf = M o a F' w i t h a'F = a' (rotfl" x H). (118)

Using (105), we have

— = -^Vr, vr = —r thus —- = — — and J —- )p = — • -p. (119)
dt T T dt ai r \drJ K[ r v

Therefore (118) gives

Xop^+p = \1ra-F = Xlx-F, with Ao - - ^ ̂ - , Ai = ^ & • (120)

We also have with (104) and À given by (110):

a - F - -(er x i ï ) . ( r o t J Ï ) s = - ( e r x ff) • ( ( 1 + ^ - ) er x i î - irôls i î r J

F r - - f 2 + 4 ) ^ s * (A^s + grads divE i J s ) . (121)H*\2 + ^ • grads

We get particular solutions of (116) with a given polarization using (real) spherical harmonies. Let Kn be a
real spherical harmonie of order n (n integer, n ̂  0)

then we have:

TE polarization, thus (/1} f2) = (Kn,0)

Hr = Knj Hz gradsifn on E, (122)
t^o n[n + 1)

TMpolarization, thus (A,/2) = (0, üfn)

^ 2 T^—T fots ÜTn, ^ r - 0. (123)

n(n + lj

(i) In the case of TE polarization^ we get:

nE(rot H xH) = (VQ - l)HrHj; - Hr grads Hr - % gradE |Kn|2,

with Ân = ^2 f^^0"^ - O ' ô g i v e n by (104)- (124)

Thus from (117)

grad sp = Moygrad s {\Kn\
2) , (125)
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therefore

p | s = fJ,o^\Kn\
2 = / iO^>o|2 | i?r |2 , with i/o = 2 + 4 * (126)

2 2 KX

We also have

a - F = — (UQ — l) | iJs |2 -f HJ: • grads Hr = Z/Q h n(n + 1) |i?s|2 (127)

thus, with (122):

Therefore (120) is

4 = Ta •F - Yp = -^ •F + 2("° " 2)p = « [-2^TTÏT ̂ ^ - ̂  + ̂ 1 !̂ !2- (128)

2 AQ AO L n n + IJ 0̂ ^ J
The function p is positive if and only if Xn > 0, Le., n(n + 1) < ^0(^0 —1) that is n — 1 < i/o or also —n — 2 > z/o
[with z/o given by (104)].

Then from (128), we see that when — n — 2 > z/0, p is positive; but p is négative if Ï/Q is positive; thus we
obtain that when VQ is négative, with — n — 2 > Z/Q, n a (non zero) positive integer, p and p are positive as
wanted for pressure and spécifie mass. Moreover, with given négative z/0, we have an upper bound for n: only
a finite number of spherical Harmonies are acceptable in TE-polarization.

(ii) In the case of TM polarization, we get:

P E = 0̂—7 rv —~—, (129)

and

Thus

2 -1

pV— = ~fioa • F + 2(z/0 - 2)p = fxo— — (2z/0 - 3) | irn l2 . (131)

We see that p is always positive; p is positive if va > 3/2. Thus when Z/Q > 3/2, we obtain that p and p are
positive as wanted for pressure and spécifie mass. There is no bound on n in TM-polarization: ail spherical
Harmonies with n ^ O are acceptable in TM-polarization.

Regularity of the magnetic field at 0.

Note that the behavior of H in a neighborhood of 0 is of type r*^1 , thus H is finite at 0 if K/K^ > 0, thus if
z/0 > 2. Using the formula

Hj = 0lfâWA+j, with fa - Ci ( ^-^- ) , j9f = C/3ïaiK/KtlrK/K'\ (132)
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we have

TQ

In TM-polarization, the magnetic field is regular at 0 if KJK\ > 0, i.e., if VQ > 2.
In the case of TE polarization, the magnetic field H is:

(133)

n(n + 1 j

Thus (for example) the radial component is

grads Kn, Hr = —-^a^rK/<Kn. (134)

Hrfat) - -—CiaiUo (Z±JA 3 °r«/«iüfn, r = |x|. (135)
^o V ro /

We see that when i/0 is négative the magnetic field in TE-polarization is singular at 0.

3.4.3. Conclusion
We summarize the particular solution obtained with a variable séparation method for this simplified MHD

problem. We write the unknowns, the data and the constants.
Let /3i be

/?I(T) = Cifcir), with d - /?!(()), and /3i(0) = 1. (136)

Then (45) [or (96')] is

Üm(T,<j>) = ^ ( r ) ^ ( 0 1 ) W m ( 0 2 ^ 3 ) , with WrnifoAz) = ^ ^ ( ^ ^ 3 ) , (137)

and Pi is such that

^ ( M ) ) a i , (138)

[see (65, 66)}. Thus (66) is: (3$ {faixj)) = / i /3f a i ( t> .

If we take |w| = 1, then C • F(0)/31
1 a i / / î i = 1 [see (67)]. If we take w dimensionless, the dimensions of the

constants C, fi are

v(C) = (O! - ei)i/(A) + (0, -1,0), i/Oi) = K[V ( ^ I ) + (-1,0,0) with i/(T) = (0,1,0).

Then the unknowns are given by:

Uxa(t),t) = Cp\a\2Ko/<Pi°o(t)'p(cc), v(xa(t),t) = CMfàim*),
, p(xa(t),t) = Cp\a\2«/<fâe(t)p(a),

with a = a/|a|, and with the constants:

Cp = C?°^K, Cv = (#n (thus Cv = Cp-'C = ̂ ) ,

k CH = ClnKK, Cp = Cf° fj,2K'<.
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Then the unknowns are obtained through initial conditions (t = 0) on the unit sphère S (|o| = 1)

f ~ ~ OL'K

po(a) = Cpp(a), vo(a) = Cvv(a) = (141)
a ) = C H H ( a ) , p o ( a ) = C p § ( a ) , a e X = S2.

These quantities must satisfy very simple équations, and we have given explicit formulas in Section 3.4.2.
The method with separate variables applied to the MHD problem allows us to exhibit a family of explicit

self similar solutions.
These solutions are radial with respect to the motion of the fiuid partiale, but are not invariant with respect

to rotations] We have exhibited completely explicit solutions with spherical harmonies for the magnetic field,
corresponding to particular polarizations (TE or TM) of the field.

The case without magnetic field. Self similar solutions of the compressible fluid équations

Let H = 0. Only the Euler équation remains:

dt)
p— +gradp = 0. (142)

The conservative law of mass gives

2<90 + 3ai =0 , (143)

and the relation pp"1 constant (for any given 7 > 1) leads to

0 - 7<90 = 0. (144)

We project the Euler équation on v and we obtain:

i^ i S L ^ i , (145)

(146)

(thus À < 0, so that K and K\ must have the same sign). From the relation

r2

dv/dt is along the radial vector, and so is gradp. Therefore grad sp = 0 and p is a constant quantity on the
sphère. Consequently, with the notations (139), p(a) is a constant, independent of a. By the formula (145), so
is p(a).

Thus, our particular (self similar) solutions of the compressible fiuid équations are:

{p{xa{t),t) - poM 2 1 6 0 ' *^ 0 «, v(xa{t),t) = vo\a\$(t)a voa${t)

W 4?ö(*)J (H = 0),

-Povl + Xpo = 0. (148)

with positive constants (po,vo,Po) satisfying
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The exponents of Pi(t) are such that

20o -h 3ai = 0, 6- 70O = 0, 6[ = 6 - 0Q = (7 - 1)0O, and ai - 0[ = - f 7 - ^ ) 0O / 0.

Now /3i is given by /?i = ( ̂ p " ) w ^ n ro a positive constant, and

- 1

(149)

Therefore, the time évolutions of (p,p, v) are respectively given through the terms:

" 1 3 - (150)

This proves that all the quantities p, \v\,p are decreasing functions of time. (But M(t) = yS^1 (t) = ( ^ ^ j =

[ ''^^ ' U l -te /7<
ĝ an {ncreasing function).

Also, we have: «̂  = K — «o and Ai must be négative, so that K and K[ have the same sign. The exponent
2/c/tti is positive, thus p is an increasing function of \a\.

Let x = xa(t) = M(t)a. Now with usual Euler coordinates, we can give relations (147) in a simpler and
"classicaF form (similar to "usual" self similar solution, see for example [11]): the velocity is v(x,t) =
thus the radial component is vr — ^o^~^ 5

 r = \x\ ctnd we have:

with new constants fc, s, k + 1 = —2K/K[ = —2VQ + 4, s — 3 _̂1 (3 + 2(KO/^I)) thus we have:

2A;
/e = - 2 Ï / 0 - 3, s = -

Recall also (148) with A given by (145), that is A = (k + l)/3(7 - 1).
We emphasize that we did not assume a priori that the évolution was radial! Again the solution is non

singular at 0.

The case with magnetic field. Self similar solutions of the simplified MHD équations

Our self similar solution of the MHD équations is given by (139), with

3?(t) =) , A (0 ( ) . = ^ »

Ail quantities p, |u|, |iï|,p) are decreasing functions of time, except for M(t).

(a) Let C/°(a) = U(a,t)\t=0, U°(a) = (po(a),vo(a),Ho(a),p°(a)).
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These are the initial conditions. Then U(t) can be written:

U{t) = Z(t)U°, t > 0,

with

with the identity matrix / . Note that Z(t)\t>0 is not a semi-group since

Z(ti) • Z(t2) + Z(h + t2), Z(h) • Z(t2) ̂  Z(h • ta).

(b) Let (using polar coordinates):

U°(a) = U°(\a\,a), a = — e £ = S2,
CL

and let (as initial conditions on the unit sphère):

Ü°(a)=U0(l,a) = U0(a)\aeS.

Then the initial conditions U°(a) can be expressed with U°(a) and A (|a|):

Ù°(a) = U° (\a\,a) = A(\a\)Ü°(a),

(152)

(153)

(154)

(155)

(156)

with KQ/KI = (K — K/) / K I
 = ft/tti — 1 so that taking VQ = K>/&I + 2, and VQ > 2 we have

A(|a | )=

(157)

(158)

Note that A (\a\) is a multiplicative group, which is a représentation of the multiplicative group R+

(159)

(c) Finally U°(a) is obtained by solving the équations (107, 111, 117), so that our solution of the MHD équations
is given by:

U(t, \a\,a) = Z(t)A (\a\) Ù°(a). (160)

Note that this solution is regular with time, for ail t > 0, and even for t > — To, with a singularity at t — — TQ.
We emphasize that the solution is not singular at t ~ 0, contrarily to usual self similar solutions.

Now using the Euler variable x for xa(t) we obtain a simpler form to (139) [like (147')], the velocity is
v(x,t) = VQJ^-X, thus the radial component is vr — v^j^-r, r = \x\ and we have:

( t \ s 1

H(x,t) = H0(a
to \ ( s + 2 ) / 2 1

t

X
(161)

r(fc+l)/2'
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with new constants k} s, k + 1 = —2K/K[ — —2u0 + 4, s = (2/(87 — 1))(3 4- 2KQ/K'1) thus:

2fc 2fc
*; = -2^o + 3, s = -

3 7 - l

Recall that Ho — (Hr, #2) is given in the TE (resp. TM) polarization by (122) [resp. (123)], with the conditions
on (z^o,n): I/Q < —n — 2, n > 0, n < —Î/Q — 2, for TE polarization, VQ > 3/2 for TM polarization.

Then (po,Po) are given by (126, 128) in the TE polarization, by (129, 131) in the TM polarization [with v$
ÎOTV2 in (128, 131)].
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