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Mathematical Modelling and Numerical Analysis M2AN, Vol. 33, N° 5, 1999, p. 879=893
Modélisation Mathématique et Analyse Numérique

A GENERAL QUADRATURE FORMULA USING ZEROS OF SPHERICAL
BESSEL FUNCTIONS AS NODES*

RIADH BEN GHANEM1 AND CLÉMENT FRAPPIER1

Abstract. We obtain, for entire functions of exponential type satisfying certain integrability condi-
tions, a quadrature formula using the zéros of spherical Bessel functions as nodes. We deduce from
this quadrature formula a resuit of Olivier and Rahman, which refines itself a formula of Boas.

Résumé . Nous obtenons, pour les fonctions entières de type exponentiel satisfaisant certaines con-
ditions d'intégrabilité, une formule de quadrature utilisant les zéros des fonctions de Bessel sphériques
comme nœuds. Nous déduisons de cette formule un résultat de Olivier et Rahman, lequel est lui-même
un raffinement d'une formule préalablement obtenue par Boas.
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1. INTRODUCTION

If ƒ is an entire function of exponential type 2n belonging to L1(—oo, oo) then it was proved by Boas [3]
that

= jr /(*).
k=-oo

This formula was improved by Olivier and Rahman [8] as follows (see also [5] and [7])

Theorem A. Let m be a non-négative integer. For every entire function ƒ of exponential type a < 2 (m + 1)TT
such that f(x) is integrable in the sensé of Cauchy on (—oo, oo), we have

/

—>oo rn °°

f(x)dx = X>->^ E /(2M

* - ° ° /x=0 fc=oo

/x=0 fc=-oo
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where co,o = 1 and the constants cmj2M are given, for ra > 1 and 0 < \i < ra, by

It may be recalled that

is said to exist in the sense of Cauchy on (0 , oo) if ƒ is integrable on (0 , X) for every X and limx-^oo f0 ƒ (x)dx
exists. Similarly, we define the integrability in the sense of Cauchy on (—oo, 0) . We say that ƒ is integrable in
the sense of Cauchy on (—oo, oo) whenever it is integrable in the sense of Cauchy on both intervals (0 , oo) ,
(—oo, 0) and we dénote the intégral by

L f(x) dx.

If ƒ is Lebesgue integrable on (—oo, oo) then it is integrable in the sense of Cauchy on (—oo, oo) and

/ ƒ(*) dx = / f(x) dx.

Let Ja(z) be the Bessel function of the first kind of order a. The function

(~i (v\
 Ja\z) _

fc=O

is entire and of exponential type 1. We dénote by jk = jk{&) the zéros of Ga{z)> which are simple whenever a
is not a négative integer, ordered such that 0 < \ji | < \J2 \ < ... and j_fc = —jk for k = 1, 2,...

Since the nodes used in the quadrature formula of Theorem A are the point zero and the roots of the function

2 sin z

it is natural to wonder if there exists a generalization of Theorem A using the zéros of Bessel functions of order
n+1 /2 for every integer n . The Bessel functions of order ra+1/2 , n — 0, ±1, ±2,... , are known as the spherical
Bessel functions.

Prom now on we will often write a instead of n + 1/2 , n — 0, ±1, ±2,... , and jk = jk(n + 1/2) dénote the
zéros of Ga(z).

2. STATEMENT OF THE RESULTS

Our main resuit is a généralisation of (2).

Theorem 1. Let m be a non-negative integer and let n and p be two integers such that

> f(2n+l)(2m + l) if n > 0
12n +1 if n < 0. ^ '
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For every entire function zpf(z) of exponential type a < 2{rn + l ) r such that xpf(x) is integrable in the sensé
of Cauchy on (—00, 00) , we have

f " *> f(x) dx - (-l)B*(2m + l)l V V V (" ) (2 ; ) a ü„) ƒ M (*A (4)

where

Hère a is of the form n + 1/2 and the numbers jk are zéros of the Bessel function of order a arrangea as
described above.

Remark. In order to formulate more explicitly the quantities a^^(jk) , we apply two times the Leibniz's
theorem to obtain

(r-s) / / / • X ( 2 )

Next we define, for every integer n and for each non-negative integer m , the functions

(2m+1)! ^ / m \ (-1)"

If the integer p does not satisfy the condition (3) then we need to take into account a residue at zero.

Theorem 1'. Let m be a non-negative integer and let n andp be two integers. For every entire function zpf(z)
of exponential type a < 2(m + l)r such that xpf(x) is integrable in the sensé of Cauchy on (—oo, oo), we have

xpf(x) dx = - 7riRes(zPi;ai7n{z)f(z)] z = 0 )

lüi— a
1)! T " M>!

We will see in Section 3 how Theorem A may be deduced from Theorem 1'.

Theorem 2. Let m be a non-negative integer and let n and p be two integers satisfying (3). Then Formula (4)
holds for every entire function zpf(z) of exponential type 2(m + l ) r such that xpf(x) is Lebesgue integrable
on (—Co, oo).

Theorem 2'. Let m be a non-negative integer and let n and p be two integers. Then Formula (9) holds for
every entire function zpf(z) of exponential type 2(m+ l ) r such that xpf(x) is Lebesgue integrable on (—oo, oo).
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3. COROLLARIES

From Theorem 1', we deduce the following

Corollary 1. The particular case n = 0 , p = 0 and r = TT of Theorem 1' gives Theorem A.

Proof. For n = 0 and p = 0 , we have a = 1/2,

« ' a ^ y — J ^\Z) — A/ öli l Zj — — AC, /€ — =tJ- ) = t ^ j ••• ,

2 y TJ-̂  r r

J_ a (z ) = J_l(j2f) = J COSZ,

so that <pa(z) — zcot(7rz) and

So, ipi m(z) corresponds exactly to the function — 2Km(z) defined in Formula (3.1) of [9].
On the other hand, applying Theorem 1' and the forthcoming Lemma 3, we have

/ x?f{x) dx = -Tri Yl R e s (zPf(z) ^l,mW; * = ~

where Res(/(z) ipi^z); z = 0) is included in the sum for k = 0.
Finally, according to Lemma 2 of [9] we have

ju=O

and the resuit follows. •

Applying Theorem 2 to a function of the form f ) ƒ (z), we obtain the following

Corollary 2. Let f be a function of exponential type 2r. For all non-negative integer m and p satisfying (3),
we have,

if the intégral on the left-hand side of (10) converges.

4. LEMMAS

Let Ha (z) and H& (z) be the Bessel functions of the third kind and of order a, defined by

= J a ( z ) - i ( - l ) V . a ( z ) , (11)

= Ja(z) + i(-l)nJ_a(z). (12)
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We consider the following auxiliary functions

883

and

We set also

9a {Z) - JJa(rz) '

Pm(x) :=
(2

CR := {z : \z\ - J?}, C+ :=

Ja(rz)

2m+l

- u)m du =
u=m+l

- iî, Q(^) => 0},

C~ := = iî, < 0} and R = RN(a) ~ - (NTT + a | + -

where A?" is a positive integer. We are now ready to state the following results.

Lemma 1. Let n be an integer, m a positive integer and j3 a real number. If ƒ is an entire function of
exponential type a < 2(m+ 1) such that x@f(x) is integrable in the sense of Cauchy on (—00, oo); then, with
ga and ga Q>$ in (13), we have

(15)

and

Proof. Note that, by a simple adaptation of the proof, Lemma 5 of [2] is obviously valid without the restriction
on the parity of ƒ (z) whenever x@ f (x) is integrable in the sense of Cauchy on (—00, 00). So, using this Lemma 5,
we obtain

y dz = 0

for v > m + 1. Thus

which prove (15). Similarly, using again the same lemma, we get

lim

and Formula (16) follows. D
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Lemma 2. Let n be an integer and m a non-negative integer. We have

Replacing 0a(z) by the right-hand side of Formula (20), we obtain

/ (l-t2)mdt = / ( l -£ 2 )md£
*/o «/o

(2m+i)! Jo

x

(18)

Proof. Note that, using (11, 12),

0a(z) = 1-<£>(*) (20)

= -l+g<?Hz). (21)

By applying the binomial theorem and integrating term by term, we get

So, in view of Formula (22), we get (18). Similarly, using (21), we obtain (19). •

Lemma 3. Let m be a non-negative integer and let n be an integer. If f is an entire function then we have

2 m + l ) ! ^ ^ Q {^) ( • \ tM (^

!)2 rP+1 E E ( 2 / + 1 ) ! r , a»M f{ ] [jk m . m W ; * - = 22m(m!)2 rP+1 E E ( 2 / + 1 )

Proof. We have

)• z - ^ -

), z - T j - ^ W 2 2 m ( m , ) 2 L

which is equivalentie (23). •

In the next lemma we consider, as above, the CL^u{jk) defined by (5).
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Lemma 4. Let p, m be non-negative integers. If \x and v are non-negative integers such that 0 < v < 2/J,,
0 < fji < m then there exists a constant M, independent ofk7 such that

\a^(jk)\ < M\jk\
p for fc = ±l ,±2, . . .

Proof. We note that

J«\jk) = O(l/\jk\
1'2), 1 = 1,2,...

This is indeed true for l = 1 using the asymptotic relations (see p. 506 in [10])

(24)

(25)

and the formula

For l > 2 , we use use the principle of mathematical induction and the differential équation

z) + (21 -

which is obtained by repeated differentiation of

z2 J^(z) + zfa(z) + (z2-a2)Ja(z) = 0.

The same idea leads us to

J{-i(h) = O ( l / b f e | 1 / 2 ) , 1 = 1,2,...

Now, using Cauchy's intégral formula, we may write

(26)

(27)

(28)

u)\ r (29)

where £ is a small positive number. We have, using (28),

(30)
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Also, using (24) and the inequality \fa(jk)\ > Ci/|jfc|1/2,

é° to J'M
oo

1=1

>
! ) !

= 1 - c-
e£ - e - 1

where c is independent of £ . We infer that

Ja(jk+eée)

e e" \jk\1'2 where d is independent of e.

The conclusion of Lemma 4 follows from (29, 30, 31).

(31)

D

Lemma 5. Let m be a non-negative integer and let {A^}, fc = ±1,±2,... be an increasing séquence of real
numbers such that \k+i — A& > S > 0. If f is entire and of exponential type such that

r uw**
J — OO

< oo,

then

Proof. Applying Theorem 11.3.3 of [4] to the functions f(z) and ƒ (—z), w e Ee^

/»oo /»oo

/ \fM(x)\ dx < oo and / \f(l/)(-x)\ dx < oo.
«/o «/o

Let 0 < /x < ?n a n d 0 < v < 2/x. Using L e m m a 1 of [6] wi th t he function f^u\z) and the séquence {Afc}^=1, we
obtain

oo

(Afc)l < oo. (32)

Similarly, using Lemma 1 of [6] with the function f^(—z) and the séquence {—X-^^IJ we obtain

- 1

fc= — o o fc—1

Since (32, 33) are valid for all 0 < JJL < m and 0 < v < 2/x , we conclude that the lemma holds.

(33)

D
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We will use, in the proofs of Theorems 2 and 2\ the following

L e m m a 6. Ifp = 0}0<fx<m70<v<2fi and ƒ is an entire function of exponential type such that

then

£ < OO. (34)

Proof Applying Lemma 4, we get

< M \f^(jk/r)\. (35)

Recall that there is only a finite number of non-real zéros of Ja(z) (see Eq. (15.27) of [10]). So, in view of (25),
there exists K\ > 0 such that, for k > K\,

jk+i-jk > 1/2 for ail k>K1.

Hence, (34) follows using (35) and Lemma 5.

5. PROOFS OF THE THEOREMS

Proof of Theorems 1 and 1 \ Observe that

(36)

•

G-a(rz)\
Ga(rz) J

for fi = 0,1,..., m . So we can write, in view of Formula (8),

;) Ga(rz)

We infer that zp î/ja,m(z)f(z) is meromorphic on C with a possible pôle at the point zero and poles at the points
j f c/r, fc = ±l,±2, . . !

On the other hand, Formula (25) implies that |jjv| = \Nn + a f — f | + O(jj) . So, after a few calculations,
we obtain

R2-

JiV+l

3N

Hence, there exists No > 0 such that

3N

T
"^ i x , •"-C

JjV+1
T

2r

2r2' + V 2r

for N > No.

0(1),

2

(37)
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Applying the residue theorem we fmd, for N > iV0,

f zp1>aim(z)f(z)dz = 2m J2 Res^a,rn^)/W^=-)+27riRes(^^>m(z)/(^;z = 0). (38)
J C R U\<R ^ T '\Jk\<R

(See the beginning of Section 4 for the définition of CR.)
We divide the intégral on the left-hand side of Formula (38) into two intégrais, where the domain of intégration

of the first is on C^ and the second is on C^ . Then, using (18) in the first intégral and (19) in the second, we
find

f z*f(z) dz - 2 f zpf(z)Prn f ̂ L J £ ) ) dz - f z*f(z) dz + 2 f zpf(z)Prn I ̂ - ^ ) dz =
JC+ JC+ V / ^CR ^CR \ /

N / ' \
Res ( zp ipa,m(z) f(z)'i z=—\ -f 2yri Res(^p ^ , m ( z ) /(z); z = 0). (39)

Since the function zpf(z) is entire we have, by Cauchy's theorem,

ƒ zpf(z)dz = - f xpf(x)dx (40)
*/c+ J-R

and

/ z*f(z)dz = f xpf(x)dx. (41)
JCR J- R

Thus Formula (39) is equivalent to

pf(X)dx+Jc+zpf(z)Pm(^M\ dz-^_zPf{z)Pm(^M\ dz =

- Tri J2 R e s ( z P V'a.m(^) /(z); z = ̂  J - Tri Res(zP ^a,m(2r) /(z); z = 0). (42)

Taking the limit as N —> co in (42) and using (15, 16), we deduce that

oo OQ / • \

^ / (x) dx - -7TZ ^ Res ( zp ipaim{z) f(z)i z=J-t)-7ri Res(zp $atm(z) f(z); z - 0). (43)

k=_o

Hence, Theorem 1' holds.
On the other hand, since

Res(zp ^m(z) f(z); z = 0) = 0

whenever

p ~ (2n + l)(2/z + 1) > 0 for all 0 < fj, < m,
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we conclude that Theorem 1 holds also. •

Proof of Theorem 2 and 2\ Suppose first that r = 1 and p = 0. For 0 < fi < m and 0 < v < 2JJL , let

and

T| / - \ {*{ U\ l *J fà \ P 7 n -—g | r\

r(jk) := cM)I/ ƒ
w I — 1 for fc = ± l ± 2 , „ .

According to the hypothesis, the function f(z) satisfies the conditions of Theorem 1' with r — 1 + e , where e
is a given positive number. We therefore have

\ oo m 2/z

M f/VV 7 - 0 1 4 - V ^ V ^ ' S ^ T i i ^0, ̂  (AA}

fe/0

Further, we show that for Ö > 0 we can choose i^o such that

m 2/i, / —KQ

( E l E \Ti+eUk)\) < 5 (45)

i f e e [ 0 , 1/2].
By virtue of (25), we have for k > K2 and e G (0, 1/2],

~jk) > -• (46)

Let

and let ^ (^ = ±lj i2,...) be a number in /^ such that

OI= max|/0r)|.

The points £& G [k — 1/2 , /c) form a subsequence {£k} and those in [k , A; + 1/2] form another subsequence
{£fc}. Note that ^ + 1 — £k > 1/2 and that the same inequality is also valid if we replace Çk by Çk. So, by
Lemma 5, we have

m 2fj, 00 m 2/x oo

W V l/(l/)(4)l <oo and
M=0l/=0fc=-cx)

whence

m 2/i 00
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On the other hand, using Lemma 6, we have

m 2/x oc

EEE
/X=0 V—0 fe=-oo

Therefore, there exists KQ > Ki such that

/
m 2\i !

EEl E i\

oo

E 6M2
(47)

and

' -KQ

u=Q v=0 \k= — oo k=K0

(48)

Using Lemma 4 with p = 0 , we see that there exists a constant M± such that |aM)ï,(jfc)| < Mi for all & —
±1, zb2j... , 0 < fi < m and 0 < v < 2/j, . So, there exists a positive constant M^ such that |cM)1/(j/c)| < M^ .
Therefore, we have

rn 2jj,

L.Z.I iE Jfe (49)

Since, by (46), the intervals of the form Ik contain at most two points of the séquence {jk/O-
2Ï ±(^2 + 1),... , we have, in view of (49),

m 2/x< E (")
1 + e E

E E |/M(&

which proves (45).
It is clear that, as e —> 0 , the function f^(z/(l + 5)) converges uniformly on all compact subset of C to

f^(z) ( 0 < ju < m and 0 < ^ < 2̂ x ) . Therefore, there exists an eo > 0 such that for 6 £ [0 , £o]3

m 2/i

EE
/i—0 f=0

KQ-1

r 1 + e ( j f c ) -
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Thus, for e e [0 , EQ] , we have by virtue of (45) and the inequality (48),

EE
M=0 i/=0

- m 2fj, / -KQ

fi=O i/=0 \fe=—oo

m 2fi / -Ko

(

Hence,

oo

E
fc=-oo u=0 v—0

oo m 2fj,

E

By letting £ tend to zero in (44), we obtain

ƒ f{x)dx - - 7nResh/>a>m(z)/(z); z = OJ

(-l)n7r(2m+l)!

Remark that Formula (51) is equivalent to

f(x) dx = (
V

which follows using the formula

^ ^ 5 ( 2 ^ + 1)!
<»» (A) = g J 2 _ R,,g

891

E
k=K0

oo

E

(53)

with p = 0. Note that Formula (53) is obtained using Lemma 3 and is valid for arbitrary p and for r = 1.
Replacing f(z) by the function zpf(z) in Formula (52), we obtain

f xpf(x)dx = - 7riRes(zPijai7n(z)f(z)] z = o
J-oo \

— oo /X—0
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Now, applying (53), we infer that (54) is equivalent to (9). So, Theorem 2? holds.
Since

Res(zp ^a,m(z) ƒ(z); z = 0) = 0

whenever n and p satisfy (3), we conclude that Theorem 2 holds also. D

6. CONCLUDING REMARKS

Using Formula (6), we get

In order to obtain the above formulae, we use

Ja(z) J 2 j k J'a(jk)

which we obtain after a few calculations. We use also the relation

which follows from the équation (3.12) of [10]

J'a(z)J-«(z) - J*{z)J_a{z) = 2 S1

7TZ

2 , o , 2
J» (2(.+J.) + (2c+ 1) ( f + j(» +») f

In gênerai, in order to compute more explicitly a^^jfc), we have to evaluate jLa(jk), J-a(jk), ••• It is possible
to evaluate J_a(jfc) in terms of Ja(jk)' We use the formula

J'-aÜk) = -J-a+lÜ'fc) - — J-a{jk)
Jk



A GENERAL QUADRATURE FORMULA 893

and we apply Lemma 1 of [1] with p — 2n — 1 and p = 2n to obtain the expression respectively of J-a+i (jk) and
of J-a(jk) in terms of j'a(jk) for n > 0. If n is négative then we use Lemma 2 of [1] by taking p = —2n — 1
and p = —2n — 2 to get the expression respectively of J_a+i(jfc) and of J-a(jk) in terms of fa(jk)- The neat
resuit is:

1 , 1W 2 2X (55)

r A - n - 1 | J ( i ) i f n < 0 .
O-2n-2r-l „—2n-2r-l

r=0 Z •'fc

The expressions for J_Q(jfe), J-a{jk), ••• in terms of Ja(jk) follow from the differential équation (27) where we
take - a instead of a. Formulae (14, 19) of [1] give (j'a(jk))2 as a rational fonction of jk, which is useful to
compute the a^v(
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