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HOMOGENIZATION OF A MONOTONE PROBLEM
IN A DOMAIN WITH OSCILLATING BOUNDARY

DOMINIQUE BLANCHARD1, LUCIANO CARBONE2 AND ANTONIO GAUDIELLO3

Abstract. We study the asymptotic behaviour of the following nonlinear problem:

f -div(a(Duh)) + \uh\
p-2uh = f infih,

\ a(Duh)-v = Q ondQh,

in a domain Çlh of IRn whose boundary dVth contains an oscillating part with respect to h when h tends
to oo. The oscillating boundary is defined by a set of cylinders with axis öxn that are /iT1-periodically
distributed. We prove that the limit problem in the domain corresponding to the oscillating boundary
identifies with a diffusion operator with respect to xn coupled with an algebraic problem for the limit
fluxes.

Résumé. Nous étudions le comportement asymptotique du problème non linéaire monotone

f -âiv(a(Duh)) + \uh\
p~2uh = ƒ

\ a(Duh) • v = 0 sur

posé sur un ouvert Qh de M71 dont une partie de la frontière oscille avec h lorsque h tend vers oo. Cette
partie oscillante est constituée d'un ensemble de cylindres d'axe Oxn distribués avec la période h"1.
Nous démontrons que dans le domaine correspondant à la partie oscillante, le problème limite couple
un problème de diffusion en xn et un problème algébrique pour les flux limites.
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INTRODUCTION

In this paper we study the asymptotic behaviour, as h(€ N) diverges, of a monotone problem defined in a
domain fî̂  of Mn (n > 2), whose boundary contains an oscillating part depending on h.

The domain îî^ is composed of two parts: a fixed part fl~, which is a parallelepiped with sides parallel to
the coordinate planes, and a part îî£ that varies with h.
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FIGURE 2.

The set fi£ is defined as follows: let Ch be a cylinder rescaled from a fixed one C b y a / i 1-homothety in the
first n - 1 variables. Then O£ is the union of such cylinders distributed with ft-1-periodicity in the first n ~ 1
directions xu • ' • ,3n-i- The lower bases of these cylinders lie on the upper side S of fl~ (see Figs. 1 and 2
for the case n = 2 and n = 3 respectively). Observe that the volume of the material included in fi£ does not
converge to zero as h tends to +oo.

We study the asymptotic behaviour of the solution uh, as h diverges, of the following Neumann problem:

ƒ - div(a(Duh)) + \uh\
p~2uh = ƒ in fih,

\ v = 0 on ôîî

where p is a given number in ]1, +oo[, ƒ a given function in L ^ (fi), a = (ai, • • • , an) a monotone continuons
function from Rn to Rn satisfying usual growth conditions (see (1.2, 1.3)) and v dénotes the exterior unit normal

to nh.
We dénote by £7+ the smallest parallelepiped containing the sets fi£ for every h and set ft = Q+ U fî U E

(see Fig. 3). Moreover, we dénote by u^ and duh/dxi the zero extension to îî of un and duh/dxi respectively.
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FIGURE 3.

In a nutshell, we prove the existence of a function u in Lp(Cl) n WliP(Q~~) with derivative with respect to xn

in LP(Q+) and of n - 1 functions (di, • • • ,d„-i) in (L^fi*))71"1 such that

dxn

\u)\u

ÜJ

u

weakly in

-— weakly in
öxn

weakly in

as h diverges,

lim = lo;l / (a (—

-f / (a(Du)Du

and (u, di, • • • , dn_i) is a weak solution of the following problem:

~2u — f

- div(a(Du)) + \u\p~2u = ƒ

a(Du) -v = Q

= 0

= 0

dn-i du \ du
\u\ ' dxr,

+ \u\p)dx
n / v^n

in f2+,

in

=an(Du~) on E,

on the upper boundary of fty

on dft~ - S,

in 17+, Vi e 1, • • • ,n — 1,

where u (resp. u+) dénotes the restriction of u to Q (resp. H+) and J£j| dénotes the (n — l)-dimensional
Lebesgue-measure of the section {(xi, • • • ,xn) G C : xn = 0} of the référence cylinder C (see Th. 1.2 and
Cor. 1.3).

The limit behaviour of problem (0.1) with a(£) = £ is studied by Brizzi and Chalot in [5, 6] and, with a
non-homogeneous Neumann boundary condition, by Gaudiello in [16].
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The lirait behaviour of problem (0.1) with a(£) = |£|p~2£, p in [2, +oo[, is also obtained, using a few arguments
of F-convergence, by Corbo Esposito, Donato, Gaudiello and Picard in [8].

In the context of the asymptotic behaviour of thin plates or cylinders, similar limit problems are obtained
in [19, 20].

The goal of the present paper is to achieve the limit process in (0.1) through usual monotonicity methods.
For gênerai références about homogenization, we refer to [2-4, 11, 24]. For the homogenization of quasilinear

operators in other periodic frameworks, we refer to [10, 15] for the case of a fixed domain, to [1, 9, 14] for
the case of periodically perforated domains and to [7] for reinforcement problems by a layer with oscillating
thickness.

If the Neumann boundary condition in Problem (0.1) is replaced by the homogeneous Dirichlet condition
un = 0 on dQh, performing the limit process, as h diverges, becomes an easier task that is left to the reader
(see e.g. [5, 13, 18, 21-23] for similar problems). In this case the limit problem reads as

ue Wo^fi),
u = ö
~dïv(a(Du)) 2u = f

in iP
in Q~

As far as this Dirichlet problem is concerned, the lower order term \uh\p 2uh may be removed in the whole
analysis. By contrast, this term is in gênerai necessary for the Neumann problem in order to dérive an estimate
on ||'W/l||x,p(nh) {p > 1) independent of h} unless one has a Poincaré -Wirtinger inequality with a constant
independent of h in W1>p(£lh)- This is still an open problem.

1. STATEMENT OF THE PROBLEM AND MAIN RESULTS

Let zi, z2 be in ]0, +oo[, ui an open smooth subset of IR71"1 such that u) CC]0, l ^ " 1 (n > 2). Let us introducé
the following domains in Rn:

= ï l -U hk) x
(1.1)

<ki <h-lf i = lr

The generic point of Rn will be denoted by x = (xi, • • • , xn_i, xn).

Let p be a given number in ]l,+oo[, ƒ a given fonction in
continuous function rrom M.n to IR71 satisfying the following conditions:

3ae]0,+oo[: a\£\p <

3/3,7 G]0,+oo[: |a(0 | <

and a = (ai,-*- : a n ) a monotone

Mn, (1.2)

Rn. (1.3)

Let us consider the following Neumann problem:

- div(a(Duh)) + \uh\
p-2uh = f

a(Duh) • i/ = 0
in Ühi

l * }

where v dénotes the exterior unit normal to Qh- It is well known (see [17]) that problem (1.4) admits a unique
weak solution Uh in WliP(Qh)-
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Our aim is to study the asymptotic behaviour of Uh as h diverges.
We recall that a function of LP(Q+) with derivative with respect to xn in Lp(Cl+) admits a trace on E.

Consequently, we introducé the space

(1.5): v e W1*^-), p- e L^(n+), v+ = v~ on E ) ,
oxn }

where v~ (resp. v+) dénotes the restriction of v to Sl~ (resp. ü + ) , provided with the norm:

dv
\\v\\vp(n) — IMI v G Vp(tl).

We refer to Proposition 4.1 of [8] for the following properties of Vp{ft):

Proposition 1.1. Vp(Sl) is a Banach space and WltP(Q) is dense in Vp(£l) with continuons injection.

Moreover, we recall that

in weak *, (1.6)

where |u;| dénotes the (n— l)-dimensional Lebesgue measure of cv and XA dénotes the characteristic function of
a set A.

In the sequelj v or [t>]~denotes the zero-extension to Cl of any (vector) function v defined on a subset of £1.
The main resuit of this paper is given in the following theorem:

Theorem 1.2. Let Uh, h in N, be the weak solution of problem (1.4) eind VP(Q) the space defined in (1.5).
Then, there exists u in VP(Q) such that

dxn

Uh -^ U

weakly in

^r- weakly in U> (ÇÎ+),

weakly in W1'P(Q-)

(1.7)

an increasing séquence of positive integer numbers, still denoted by {h}hen, and (d\, • • - ,dn_i) in (Lp(il+))n 1
J

depending possibly on the selected subsequence, such that

- ^ -^di weakly in LP(O+), \/i e {1, • • • , n - 1},

as h diverges, where (u, di, • • • , dn-i) is a weak solution of the following problem:

(1.8)

d /di dn-i du

dxn
 n \ M ' ' \LJ\ ' dxn

+ |U|P-2U = ƒ

in

u+ — u , |u;|

di dn_i ou \
|a;| \u)\ oxnj

a(Du) - v = 0

(1.9)

on - E,
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and the function u in Vp(fl) satisfying problem (1.9) is unique.
Moreover} the énergies converge in the sensé that:

lim + \uh\p)dx

= M / ( f lM ÏÏTï'"" >
Jn+ \ M

dn-\ du
' dxr

• ] -^- + \u\p) d£ + ƒ (a(Du)Du + dx

(1.10)

If a is monotone, there is a unique function u in VP{Q) satisfying problem (1.9) (see Step 10 of Sect. 2). Moreover,
if a is strictly monotone, problem (1.9) admits a unique solution (u, d\, • • • , dn_i) in Vp(Ct) x (Lp(ft+))n~1 (see
Step 11 of Sect. 2). Consequently, convergence (1.8) holds for the whole séquence { ^ } ^ M and Theorem 1.2
yields the following resuit:

Corollary 1.3. Let Uh, h in N? be the weak solution of problem (1-4) with a strictly monotone and Vp(fl) the
space defined in (1.5). Then,

Mu

dxn

du^h

• du
| —— weakly m
oxn

weakly inL p (^+) , VÎ G {1,-• • , n - 1 } ,

weakly in W^p{ü~),

as h diverges, where (u, di, • • • , dn~.i) is the unique weak solution in VP(Q,) x (Lp(ft+))n 1 of the problem (1-9).
Moreover, the convergence of the énergies (1.10) holds.

R e m a r k 1.4. In the case a(£) = £, Corollary 1.3 is proved in [5, 6] by making use of a method introduced by
Tartar in [25] (method of oscillating test functions).

The limit behaviour of problem (1.4) with a(£) = £ and with a non-homogeneous Neumann boundary
condition is studied in [16]. In this case, an additional term may appear in the limit équation.

In the case a(£) = |£|p~2£, with p in [2,+oo[, Corollary 1.3 îs also proved in [8] by following a method
introduced by De Giorgi and Pranzoni in [12] (F-convergence). In this case it results

d\ = • • • = dn-i = 0 a.e. in S7+

and limit problem (1.9) assumes the following formulation:

p-2Ö_ / du p~2 du

uxn \ uxn oxn

-div(\Du\p-2Du) + \u\p~2u = ƒ

du+ p~2

u+ = u
dxn dxn

y dU

~dxZ
du

= 0
dxn

\Du\p~2Du - v = 0

inîî",

on S,

onjO,!^"^

on i- -s . a
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The proof of Theorem 1.2 is performed in Section 2 with 12 steps. First, we give a priori norm-estimates for Uh,
\uh\v~2Uh and a(Duh). Then, by virtue of the particular shape of Cl h &nd by making use of the method of the

oscillating test functions, we identify the limit of Duh in O", duh/dxn in £1+ and [ai(Duh)}~, * • • , [an-i(Duh)]~
in O+ . Moreover, by a monotonicity argument, we identify the limit of \uh\v~2Uh in O, [an(Duh)}~ in O+ ,
a(Duh) in fl~ and obtain the last équation in (1.9). Finally, we pass to the limit in (1.4) and we conclude with
some results about the uniqueness of the solution of problem (1.9).

2. PROOF OF THE RESULTS

The proof of Theorem 1.2 will be performed in 12 steps.

Proof of Theorem 1.2. The variational formulation of problem (1.4) is given by

f f a(Duh)Dv + \uh\
p-2uhvdx= f fvdx VveW^p(fth),

< Jnh Jah (2.1)
{ uh G W^p(Üh).

In the sequel, c will dénote any positive constant independent of h.

Step 1. A priori norm-estimate for uu, \UH\P~2UH and a(Duh)

By choosing v — Uh as test function in (2.1) and by making use of (1.2), it easily results

\\uh\\w*.p(nh) < c WieN. (2.2)

From (2.2) it follows that

|| K | p - V U ^> < c VfteN. (2.3)

Moreover, (1.3) and (2.2) provide that

\\a{Duh)\\r _ ^ _ ( n A « < c VfteN. (2.4)

By virtue of (2.2-2.4), there exists an increasing; séquence of positive integer numbers, still denoted by {/i}^eNï

u in Lp(Q), d = (di , -* ^ n ) in (Lp(Ü))n
y z in L^(ft) and r] = (mr- ,Vn) in (L^(Ü)Y satisfying the

following convergences:

uu -± \u>\uxn+ +uxn~ weakly in Lp(Ct), (2.5)

Duh -± d weakly in (Lp(Q))n, (2.6)

\uh\p~2ûh -* z weakly in L^ï(fi), (2.7)

[a(Duh)r^ V weakly in ^ ^ ( î î ) ) " , (2.8)

as h diverges. A priori u} d, z and r\ could depend on the selected subsequence.
In the sequel, {/i}/^^ will dénote the previous selected subsequence of N.
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Step 2. Identification of d on Q~ and dn on Sl+

Convergences (2.5, 2.6) provide that

d = Du a.e. in î î " . (2.9)

Moreover, by following arguments identical to those used in Proposition 2.2 and Corollary 2.3 of [8], it is easy
to prove that

(JU
dn = M^r— a.e. infi+ (2.10)

àxn

and

ueVp(ft). (2.11)

Step 3. Identification of 771, • - • , 77x1—1 on ^ +

This step is devoted to the proof of

j]i = 0 a.e. in £1+, Vz G {1, • • • , n - 1} • (2.12)

For every i in {1, • • • , n — 1}, let { ^ } ^ G N be a séquence in W 1 T O O ( Î Î + ) satisfying the following conditions:

«4 -> z* strongly in L°°(Q+) as /i -» +00, (2.13)

D ^ = 0 a.e. in ÎÎ+, V/i 6 N. (2.14)

The existence of such séquences is proved in [8] Lemma 4.3.
By choosing v = ^m^ and v = (pXij with y? in Co°(0 + ) , as test fonctions in (2.1), by virtue of (2.14) we

obtain

f ([a(Duh)rD<pwï + fa\*-2tiï<pwî)dx= f (Xn+f<pv>ï)àx Vy> G C0°°(n+), (2.15)

- ƒ (Xn+f¥>Xi )dx V^ € ^ ( 0 + ) , (2.16)^pi) dx

for any h in M and every i in {1, • • • , n — 1}.
By passing to the limit, as h diverges, in (2.15, 2.16), convergences (1.6, 2.7, 2.8, 2.13) provide that

f (rjDifXi + zipxi) dx= [ \uj\fipxi dx \fy € C(J°(ft+), (2-17)
Jn+ Jn+

) + z^Xi) dx= \w\f<pxi dx W(p G C™(Q+), (2.18)
7H+

for every i in {1, • * • , n — 1}.
Statement (2.12) is obtained by subtracting (2.17) from (2.18).
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Step 4. Convergence of the énergies

This step is devoted to the proof of

lim / (a{Duh)Duh+ uh\
p)dx= ƒ ï]n—^dx + / r)Dudx + / zudx. (2.19)

h->+oo Jçih JQ+ OXn JQ- JÇI

By passing to the limit, as h diverges, in (2.1) with v in W1)P(fl), by virtue of (1.6, 2.7, 2.8, 2.12) we obtain

f r)nT^-dx+ / rjDvdx+ zvdx= / (Mxn+ + Xn-) fvdx \/v e Wl*p(Q). (2.20)
Jn+ öxn Jn- Jn Jn

Since W1)P(fi) is dense in Vp(£l) (see Prop. 1.1), v = u can be chosen as test function in (2.20). Consequently

/ ^ n ^ — d x + / rjDudx+ I zudx= / (|u;|xn+ + Xn-) fudx. (2.21)
Jn+ öxn Jn- Jn Jn

On the other hand, by choosing v = Uh as test function in (2.1), by virtue of (2.5) we obtain

lim. / a(Duh)Duh + \UH\Pdx = lim / fuhdx = / ƒ (\w\uxn+ + ̂ Xn~) dx. (2.22)
hr—^+00 / o ^—^+oo / o /o

Convergence (2.19) is obtained by comparing (2.21) with (2.22).

Step 5. Monotone relation

This step is devoted to the proof of

/ (Vn ( •£— ~Tn ) -a(r)(d- \üü\r))dx+ / (77 - a(r))(Du - r) dx + / (z - |o;||t;|p~2ï;) (u-v)dx
Jn+ \oxn J Jn- Jn+

+ f (z- \v\p~2v) (u~v)dx>0 Vr e (Lp(n))n , VÏ; e Lp(fy, (2.23)
Jn~

which will enable us to identify 77, z and to dérive the équation satisfied by u in Q+.
Let r be in {Lp(Ü))n and u in LP(Ü).

Since the functions a(^) and |£|p~2£ are monotone, we obtain

(a(Duh) - a{r)) (Duh - r) 4- (\uh\
p'2uh - \v\p~2v) (uh - v) > 0 a.e. in fiftï V/i € N,

from which it follows that

/ {[a{Duh)}~Duh - [a(Duh)]~T - a(r)Duh + a(r)rxnh)dx
Jn

>|pXnJdz>0 Vfc€N. (2.24)

By passing to the limit, as h diverges, in (2.24) and by making use of (1.3, 1.6, 2.5-2.9, 2.12, 2.19), we obtain

ƒ Vn-^—dx-\- / 7]Dudx— / r]nTndx— / nrdx— / a(r)ddx — / a{r)Dudx + / |o;|a(r)rda:

+ / a(r)rdx+ / zwdx- / z^da;- / \u\\v\p~2vudx - / |^|p~2ï;wda; + / [cc;||t;|pdx+ / |u |pdx>0
Jn- Jn Jn Jn+ Jn~ Jn+ Jn-
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and inequality (2.23) is proved.

Step 6. Identification of z in fl

This step is devoted to the proof of

z = \uj\\u\p-2u a.e. in O+ (2.25)

and

z = \u\p~2u a.e. in fi~. (2.26)

Let us remark that a typical nonlinear phenomenon occurs here: (2.7, 2,25) show that the L^{Çl+) - weak
limit of \uh\p~2Uh is \LÜ\\U\P~2U and not, as expected, |u;|p~1|u|p~2u.

By choosing r = ^dxa+ + Duxn- and v = (u - t<p)xn+ + ^Xn-, with t in (0, +oo) and 99 in Co°(0+),
in (2.23) and by recalling (2.10), we obtain

/ (z- \tj\\u-t<p\p-2(u-t(p))t<pdx>Q Vie (0,+oo), V^C0°°(fï+). (2.27)

By dividing (2.27) by t and by passing to the limit as t tends to zero, by virtue of the Lebesgue Theorem it
follows that

f (z-\cü\\u\p~2u)ipdx>0

which implies (2.25). Statement (2.26) can be proved in the same way, by choosing r — j^idxn+ + Duxn- and

y = UXÇÏ+ + (w — t(p)xn-, with t in (0, +oo) and (p in CQ°(Q~), in (2.23).

Step 7. Equation satisfied by d in Sl+

This step is devoted to the proof of

= 0 a e in Çl^~ \fi G \\ * • • TI — 11 f2 28)

By choosing r = (TÏ, • • • , rn^lydu/dxn) xn+ 4- Duxn- and v = u, with n, • • • ,rn_i in Zyp($l+), in (2.23) and
by recalling (2.10), we obtain

E ( ^ ( T i ' - " ' T » - i ' ^ ) ( d i - M 7 i - ) ) d a ; ^ 0 V(r1).--,rI1_1)e(JL
p(n+))n"1. (2.29)

Let z be fixed in {1, • • • , n — 1}. By choosing

— t(p

n =

with £ in (0, -f-oo) and cp in Co°(n + ) , in (2.29), we obtain

ƒ ai \ —-, • • • , z , • • • , -^—i, - — ) £(/?dx > 0 V* G (0,+cx>), V̂ ? G C^°(n+) . (2.30)
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By dividing (2.30) by t and by passing to the limit as t tends to zero, by virtue of the assumption on a and the
Lebesgue Theorem it follows that

Jn+

which implies (2.28).

Step 8. Identification of r\n in Q+ and 77 in Q

This step is devoted to the proof of

, «,i d n _ i du , . , / O O I N

r?n = \uj\an ^—r, • - - , , - — a.e. m Çt+ (2.31)

and

7} = a(Du) a.e. in fi". (2.32)

By choosing r = ( ^ , • • • , ̂ , ^y - ty>) XQ+ + ^^Xf2- and v = u, with t in (0, +00) and tp in C0°°

in (2.23) and by recalling (2.10), we obtain

vu ~ an ( ^ , • • • , ̂ = i , ^ - t ^ Icjl) t ^ d x > 0 Vt € (0, +00), V^ G C0°°(n+). (2.33)

By dividing (2.33) by £ and by passing to the limit as t tends to zero, by virtue of the assumption on a and the
Lebesgue Theorem it follows that

/
n+

which implies (2.31).
On the other hand, by choosing r = r~rdxn+ + (Du — t(p)xn- and v = u, with t in (0, +00) and tp in

(C f^°(^-))n , in (2.23) and by recalling (2.10), it yields

f (77 -a(Du-ttp)) tipdx>0 Vt G (0,+oo), Vy? G (C^° (n~) ) n . (2.34)

By dividing (2.34) by t and by passing to the limit as t tends to zero, by virtue of the assumption on a and the
Lebesgue Theorem it follows that

/ (r}-a(Du))ipdx>0

which implies (2.32).
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Step 9. Equation satisfied by u and d

By passing to the limit, as h diverges, in (2.1) with v in WliP(Q) and by making use of (1.6, 2.7, 2.8. 2.11,
2.12, 2.25, 2.26, 2.31, 2.32), it follows that

/ \tü\an ( -j-ij-, • • • , - f -p , T;— ) T:—dx + / a(Du)Dvdx + / |w[|ti|p"2utîdx + / |ii|p~2wfd2;
Jn+ \|w| |u;| a x n / ôxn JQ- Jn+ JQ-

— / (Mxn+ + Xn-) /^dx V-u G W1>p(n), (u,di, • * • ,dn_i) G yp(S7) x (Lp(O+))n~1 . (2.35)

Since W^iSl) is dense in FP(O) (see Prop. 1.1), (2.35) implies that

f f
a(Du)Dvdx + / |u;||îA|p~~2m>d£ + / \u\p~2uvdx/

VveV?(n), (u,dir- ,dn^) G VP(Ü) x (LP(îî+))n-1. (2.36)

Moreover, as proved in (2.28),

^ , - - - , ^ , | ^ = 0 a .e . inQ + , V̂  G {1, • • • ,n - 1} . (2.37)

Step 10. Uniqueness of u

This step is devoted to prove that there exists a unique function u in Vp(£l) satisfying problem (2.36, 2.37).
Let (u, di, • • • , dn_i) and (û, d ,̂ • • • ,dn_i) two solutions in Vp(ü) x (Lp(O+))n"1 of problem (2.36, 2.37).
By subtracting the équation satisfied by (û, di, • • • , dn_i) from the équation satisfied by (u, di, • • • ,dn_i),

we obtain

î \ \( (dl dl dn~l d l i \ \ dv
FI' 'T
\U)\ \U)\

\uj\(\u\p-2u-\ü\p-2ü)vdx+ f (\u\p-2u-\ü\p-2ü)vdx = 0 \/veVp(n) (2.38)
in-

and

(2.39)

Equation (2.39) imply that

di di

M M
da; = 0. (2.40)
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By adding (2.40) to (2.38) with v = u -ü, it follows that
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-x du ^Zl dü

M M oxnj \ Lü\ \uj dxnjJ J Jn-

\LÜ\ (\u\p-2u - \ü\p~2ü) (u - ü) dx + / (\u\p~2u - \ü\p~2ü) (u ~ü) = 0. (2.41)

Since a(£) and \t\p 2t are monotone functions, (2.41) gives that

dn-x duL[Hw M ' dXr, — a
dn_i du

M ' dxn
(2.42)

M ' " ' M 'dxn

and

Since |t|p

|u|p=2w - |ü|p"2w) (u - ü) da; = 0.

is strictly monotone, from (2.43) it follows that

u = ü a.e. in ft.

(2.43)

Step 11. Uniqueness of the solution of problem (2.36, 2.37) with a strictly monotone

This step is devoted to a proof that problem (2.36, 2.37) admits a unique solution, if a is strictly monotone.
Let (u,di, • • • ,d n_i) and (ü,dT, • • • ,d n_i) two solutions in FP(O) x (L p (^+) ) n ~ 1 of problem (2.36, 2.37).
Step 10 provides that

u = ü a.e. in

Moreover, if a is strictly monotone, from (2.42) it follows that

di = di, • • • , d n - i = dn_i a.e. in O + .

Step 12. Conclusion: End of proof of Theorem 1.2 and Corollary 1.3

First, let us observe that the particular shape of fl^ provides that (see [6, 8])

dxn dxn
a.e. (2.44)

Then, convergences (1.7, 1.8) follow from (2.5, 2.6, 2.9-2.11, 2.44).
The limit problem (1.9) is given (in a weak formulation) by (2.36, 2.37) of Step 9.
The convergence of the énergies (1.10) is obtained by passing to the limit, as h diverges, in (2.1) with v =

as test fonction, by making use of convergence (2.5) and by choosing v = u as test function in (2.36).
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The uniqueness of u proved in Step 10 implies that convergences (1.7, 1.10) are true for all the séquence
P r o°f °f Theorem 1.2 is complete. D

If a is strictly monotone, the uniqueness of the solution of problem (1.9) proved in Step 11 implies that
convergence (1.8) also holds true for the whole séquence {v>h}hGN- Corollary 1.3 is established. D
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internazionali" -1997 of the University of Naples "Federico II". It is also part of the research project "Relaxation and
Homogenization Methods in the Study of Composite Materials" of the Progetto Strategico CNR-1997 "Applicazioni délia
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