
ESAIM : MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

HUA DAI
A numerical method for solving inverse eigenvalue problems
ESAIM : Modélisation mathématique et analyse numérique, tome 33, no 5 (1999),
p. 1003-1017
<http://www.numdam.org/item?id=M2AN_1999__33_5_1003_0>

© SMAI, EDP Sciences, 1999, tous droits réservés.

L’accès aux archives de la revue « ESAIM : Modélisation mathématique et analyse
numérique » (http://www.esaim-m2an.org/) implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com-
merciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1999__33_5_1003_0
http://www.esaim-m2an.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/
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Modélisation Mathématique et Analyse Numérique

A NUMERICAL METHOD FOR SOLVING
INVERSE EIGENVALUE PROBLEMS

HUA DAI 1

Abstract. Based on QR~\ike décomposition with column pivoting, a new and efficient numerical
method for solving symmetrie matrix inverse eigenvalue problems is proposed, which is suitable for
both the distinct and multiple eigenvalue cases. A locally quadratic convergence analysis is given.
Some numerical experiments are presented to illustrate our results.

Résumé. Basée sur la décomposition QR-iype avec la colonne pivot, une nouvelle et efficace méthode
numérique pour résoudre des problèmes inverses des valeurs propres des matrices symétriques est
proposée, qui est convenable aux deux cas des valeurs propres distinctes et multiples. Une analyse
de convergence localement quadratique de la méthode est donnée. Des expériences numériques sont
présentées pour illustrer nos résultats.
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1. INTRODUCTION

Let A(c) be the affine family

where Ao, Ai, • • • yAn are real symmetrie n x n matrices, and c = (ci, • • • , cn)
T G M71. We consider inverse

eigenvalue problems (IEP) of the following form.

IEP. Given real numbers Ai < A2 < • • • < An, find c G Mn such that the eigenvalues Ai(c) < A2(c) < • • • < An(c)
of A(c) satisfy

Ai(c) = Ài, i = l ,2 , - . - ,n . (2)

The IEP are of great importance to many applications. A good collection of interesting applications where the
IEP may arise is included in [13]. There is a large literature on conditions for existence of solutions to the IEP.

Keywords and phrases. Inverse eigenvalue problems, QR-like décomposition, least squares, Gauss-Newton method.
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See, for example [2, 9, 19, 20, 27-31, 33]. A special case of the IEP is obtained when the linear family (1) is
defined by

Ai = eiei
T

J i = l , - - - , n

where ê  is the ith unit vector, so that A(c) — Aö + D, where D = diag(ci, • * • ,cn). This problem is well
known as the additive inverse eigenvalue problem. For decades there has been considérable discussion about
the additive inverse eigenvalue problem. Some theoretical results and computational methods can be found, for
example, in the articles [7, 8, 11, 12, 15, 17, 24, 32], and the book [33] and the références contained therein.

Numerical algorithme for solving the IEP can be found, for example, in [1, 3, 4, 6, 13, 16, 23, 33]. Friedland
et al, [13] have surveyed four quadratically convergent numerical methods. One of the algorithms analyzed in [13]
(also see [1, 4, 16]) is Newton's method for solving the nonlinear system (2). Each step in the numerical solution
by Newton's method of the system (2) involves the solution of complete eigenproblem for the matrix A(c). Two
of the other methods analyzed in [13] are motivated as modifications to Newton's method in which computing
time is saved by approximating the eigenvectors when the matrix A(c) changes, rather than recomputing them.
The fourth method considered in [13] is based on determinant évaluation and originated with Biegler-König [3],
but it is not computationally attractive [13] for real symmetrie matrices. When Ai,--- , Xn include multiple
eigenvalues, however, the eigenvalues Ai(c), • • • , An(c) of the matrix A(c) are not, in gênerai, differentiable at a
solution c*. Furthermore, the eigenvectors are not unique, and they cannot generally be defined to be continuous
functions of c at c*. The modification to the IEP has been considered in [13], but the number of the given
eigenvalues and their multiplicities should be satisfied a certain condition in the modified problem. Based on the
differentiability theory [21] of QR décomposition of a matrix depending on several variables, Li [23] presented
a numerical method for solving inverse eigenvalue problems in the distinct eigenvalue case.

In this paper, we consider the formulation and local analysis of a quadratically convergent method for solving
the IEP, assuming the existence of a solution. The paper is organized as follows. In Section 2 we recall some
necessary differentiability theory for QR-like décomposition of a matrix dependent on several parameters. In
Section 3 a new algorithm based on Qitï-like décomposition is proposed. It consists of extension of ideas
developed by Li [22, 23], Dai and Lancaster [10], and is suitable for both the distinct and multiple eigenvaiues
cases. lts locally quadratic convergence analysis is given in Section 4. Finally in Section 5 some numerical
experiments are presented to illustrate our results.

We shall use the following notation. A solution to the IEP will always be denoted by c*. For the given
eigenvalues Ai, • • • , An, we write A* = (Ai, • * • , An). ||.||2 dénotes the Euclidean vector norm or induced spectral
norm, and \\-\\F "the Frobenius matrix norm. For a n n x m matrix A — [ai, • • • , am], where a$ is the ith column
vector of A, we define a vector coL4 by coL4 = [aiT, • • • , am

T] , and the norm II AIL := max (lla?!^). The
symbol ® dénotes the Kronecker product of matrices.

2. Qi?-LIKE DECOMPOSITION AND DIFFERENTIABILITY

Let A e M.nxn and m(l < m < n) be an integer. Following Li [22], we define a QR-\ike décomposition of A
with index m to be a factorization

(* £ ) (3)
where Q e Rnxn is orthogonal, Rn is (n — m) x (n — m) upper triangular, and R22 is m x m square. When
m = 1, this is a QR décomposition of A. Clearly, a Qiî-like décomposition of a matrix exists always. In fact, we
need only construct a "partial" QR décomposition, see [14], for example. In gênerai, however, it is not unique
as the following theorem shows.

Theorem 2.1 (see [10,12]). Let A be annx n matrix whose first n — m columns are linearly independent and
let A = QR be a QR-like décomposition with index m. Then A = QR is also a QR-like décomposition with
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index m if and only if

Q = QD,R = DTR (4)

where D = diag(£>ii,D22), Du is an orthogonal diagonal matrix, and D22 is an m x m orthogonal matrix.

Note that the Iinear independence hypothesis ensures that the Ru blocks of R and R are nonsingular. In
order to ensure that the submatrix Ru of such a décomposition is nonsingular, we admit a permutation of the
columns of A. So the QR-like décomposition with column pivoting of A G Mn x n may be expressed as

AP - QR (5)

where P is an n x n permutation matrix, and R is of the (3). If rank(A) = n — m, then the permutation
matrix P can be chosen such that the first n — m columns of the matrix AP are linearly independent and
R = (r^) satisfies

kul > |r22| > ••• > |rn_m ,n_m | >0,i222 = 0. (6)

Now let A(c) = (ÛÎJ(C)) G Rnxn be a continuously differentiable matrix-valued function of c G M71. Hère, the
differentiability of A(c) with respect to c means, for any c^ G Mn, we have

A{c) = A(c(0)) + J2 d^1{c3 - cf) + o(\\c - CC°) ||2) (7)

w h e r e c = ( c i , • • • , c n ) T , c ( ° > = (c^, ••• , c ^ ) T , a n d

dAjçW) _ rdaij(c)

Note that if Â(c) is twice differentiable, then o(\\c - c(0) ||2) in (7) may be replaced by O(\\c - c^ | | | ) . If A(c) is
of the form (1), then A(c) is twice continuously differentiable, and

^ = ^ i = l , - , « (8)

A(c) = A(c^) + J2AJ(cJ-cf)). (9)

We consider only hereafter the affine family A(c). The next resuit which follows from Theorem 3.2 in [10]
concerns the existence of a locally smooth Qiî-like décomposition of A(c).

Theorem 2.2. Let A(c) be the affine family (1) and assume that rank(A(c(0))) > n - m at c(0) S R". Let P
be a permutation matrix such that the first n — m columns of A{cf^)P are linearly independent, and

f o(o) „(O) \
A { C ^ ) P = Q W R W , R W = n ) 2 \ (10)

be a QR-like décomposition of A(c^)P with index m. Then there exists a neighbourhood N(c^0^) of é^ in Rn

such that, for any c G N(c^°^); there is a QR-like décomposition of A(c)P with index m

A{c)P = Q(c)R(c),R(c) = ( Ru® | ^ j ) (11)
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with the following properties:

2. AU éléments of Q(c) and R(c) are continuons in N(c^).

3. R22(c) and the diagonal éléments rjj(c),j — 1, • • • }n — m, of Rn(c) are continuously differentiable at
Moreover, if we write

( ^ £ ) ^, l lGR("-™)x("—), j = ! , . . . , « (12)

then

R22(c) = 4°2} + £ ( ^ - A^R^R^Kcj - cf}) + O(\\c - c<°>||5). (13)

3. A N ALGORITHM BASED ON QR-LIKE DÉCOMPOSITION

3.1. Formulation of the IEP

We now consider a new formulation of the IEP, which is an extension of ideas developed in [10, 22, 23]. For
convenience, we assume that only the first eigenvalue is multiple, with multiplicity m, i.e.}

Ai = • • • = Am < Am+1 < • • • < Àn. (14)

There is no difEculty in generalizing ail our resuits to an arbitrary set of given eigenvalues.
Compute a QR-like décomposition with column pivoting of A(c) — Ai ƒ with index m

(A(c) - XiiyP^c) = Qi(c)üi(c) (15)

where

J R 1 ( c ) = ( f i " ( c ) ^ ( C ) V i#>(c)GR<»-m»«»-''O (16)
V 0 RW() )

and QR décompositions with column pivoting of A(c) — \il(i = m H-1, • • • , n)

(A(c) - XiI)Pi(c) = Qi(c)Ri(c), i - m + 1, • • - , n (17)

where

( f y ( ) - ) (18)
and assume permutation matrices Pi(c) G MnXn(i = 1, m + 1, • • • ,n) are constant in a sufficiently small neigh-
bourhood of c for each i, and are chosen such that

0, lef

and

f ^ e a l > ••• > | e ^ ( c ) e n | = |rW(c)|,i = m + ! , • • • ,n. (20)
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Then the symmetrie matrix A(c) has the eigenvalues Ai, Am+i, * • • , Xn in which Ai is a multiple eigenvalue with
multiplicity m if and only if

( 2 1 )

= 0,z = m

We introducé a new formulation of the IEP:
Solve the following least squares problem

(22)

If 77i = 1, Le., the given eigenvalues Ai, A2,••• , An are distinct, we may consider solving the nonlinear System

= 0. (23)

The formulation (23) has been studied by Li [23]. In fact, if m — 1 and a solution of the IEP exists, (22)
and (23) are equivalent.

It is worth while mentioning that F(c) may be not uniquely determined for any c because of the non-
uniqueness of QR-\ike and QR décompositions. However, we shall show that such "flexibility" does not affect
the effectiveness of our algorithm (see Lem. 4.1 below).

3.2. An algorithm

Let c ^ be sufficiently close to c*. It follows from Theorem 2.2 that the matrix-valued function R^2 (c) and
n — m functions Vnn{c){i = m + 1, • • • , n) are continuously differentiable at c^k\ and Ü22 (c) an<^ rnn(c)(i ~
m + 1, • • • , n) can be expressed as

Bg\c) = , - cf )

(24)

rW (r\ =
3=1

i - c«) + O(\\c -
3=1

(25)
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n(l)

QT(c)(Aj-X1I)P1(c) = (n-m)x(n-m)

(26)

+ (

Let

f(c) =

J,22 (C)

colR&\c) \
fm+1),

(27)

Then

= J fT{c)f{c). (28)

We apply the Gauss-Newton method (see [25]) to solve the least squares problem (22). By use of (24, 25), one
step of Gauss-Newton method for the solution of (22) has the following form

(29)

where

Mc) =

col
OCn

drt+1)(c)

V 0Ci

(30)

with

_ (t)

(31)

ôc.
Wï"Ï2(c),i = m + l , - " ,n.

Thus, our algorithm for solving the IEP has the following form:

Algorithm 3-1.

1. Choose an initial approximation c^ to c*, and for k = 0,1, 2, •
2. i = 1 , m + ! , -•• ,n ) .
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3. Compute QR-like décomposition with column pivoting of A(c^) — Ai/ with index m:

(A(cW) - W ^ ) ) = Q1(cW)R1(cM),Ri(cW) = ( ^ ) ( c ( f e ) ) * » (

V 0 $

and QR décompositions with column pivoting of A(c^) — \il(i — m + 1, - • • , n):

/ DW/

V 0

4. IfJ\\I^(cW)\\2p + E (r^(c(fc)))2 i5 small enough stop; otherwise:

5. Formf(cW) and Jf(c^) using (27, 30).
6. Fmd c^fc+1^ by solving linear System (29).
7. Go to 2.

4. CONVERGENCE ANALYSIS

Because of the non-uniqueness of QR-\ike and QR décompositions described in Theorem 2.1 it is necessary
to check that the itérâtes c^k\ k = 1, 2, • • •, generated by Algorithm 3.1 do not depend on the décompositions
used in (15) and (17). We can prove the following resuit.

Lemma 4.1. In Algorithm 3.1, for any fixed k, suppose

/ f^cW) S®&))\ (32)

are two (different) QR-like décompositions with column pivoting of A{cfà) — X\I with index m, and

r«(c«)\ . (33)
i m+l, ,n

0 ^ ( ( f e ) ) J

are two (different) QR décompositions with column pivoting of A(c^) — Xil(i = m + 1, • • • , n), J/
and Jf (c(fc)), f(c^) are obtained in Step 5 of Algorithm 3.1 corresponding to two different décompositions of (32)
and (33). Then

W Jto (34)

(35)

Proo/. It follows from Theorem 2.1 that there exist a partitioned orthogonal matrix D^ = diag(Dn, D22) where
Du is an orthogonal diagonal matrix, D22 is an m x m orthogonal matrix, and n — m orthogonal diagonal
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• • • S) where Smat r i ce s Di = diag($i , • • • , Sn) where Sj — ± l ( i = m + l , - " , n) such t ha t

l Q«(cW) = Qi (c ( f e ) )A, -Ri (c< f c >)=Af i i ( c (* ) ) , t = m + l , - . . , n .

B y use of (26, 3 1 , 36), we have

OCj OCj

(37)

n
, 7i.

From (37) and the properties of the Kronecker product (see [18]), we obtain

= (ƒ &V)
dR^\c^) (^)

Prom (27, 30, 37, 38), the matrices Jf(c^), Jf{c{k)) and the vectors f(c^), f(c^) obtained in Algorithm 3.1
satisfy

D%2,ô(r+1\--- ,6^)Jf(cW) (39)

fe)). (40)

Hence (34) and (35) hold. D
Lemma 4.1 shows that the itérâtes é^ generated by Algorithm 3.1 do not vary with different Qiî-like

décompositions of {A{ékï) - \iI)Pi{é-k^) and different QR décompositions of (A(c(fe)) - Ai/)Pj(c(fe))(i = m +
!,-•• ,n).

In order to analyse locally quadratic convergence of Algorithm 3.1, the following lemma on perturbation of
décomposition is required.

L e m m a 4.2 (see [10]). Let C\ € R n X n have its first n — m columns linearly independent and let Ci = Q\R\
be a QR-like décomposition with index m. Let C2 € RnXn be any matrix satisfying \\Ci — C2W2 < £• Then, for
sufficiently small e, C% has a QR-like décomposition with index m, C2 = QïRii such that \\Q± - Q2II2 <
and \\Ri ~~ R2W2 < K>2£, where ^I,AC2 are constants independent on C2.

Theorem 4.1 . Suppose that the IEP have a solution c*; and that in Algorithm SA Pi(c^) = Pi{c*)(i ~ l , m +
1, • • • Î?^) are independent on k when \\c* —c^\\2 is sufficiently smalL Assume also that Jf(c*) G M^m + n ~ m ) x n

corresponding to a QR-like décomposition of (A(c*) — Àx/)Pi(c*) with index m and to QR décompositions of
) — \iI)Pi(c*)(i = m + 1, • • • , n) is of full rank. Then Algorithm SA is locally quadratically convergent

Proof. First form the Q/Mike décomposition of (A(c*) —Ai/)Pi(c*) with index m and n — m QR décompositions
of (A(c*) - \iI)Pi(c*)(i = m + 1, • • • ,n)

(A(c*) - \lI)P1(c*) = ^ ( c * ) ^ ^ )
(A(c*) - XiI)Pi{c*) - Qt(c*)iîi(c*), î = m + 1, • • • ,n. l j
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Note that the matrix Jf{c*) corresponding to the décompositions (41), by assumption, has full rank, and that
jJ(c*)Jf(c*) is invertible.

Assuming that \\c* — c(fc)||2 is sufficiently small, we can form a QR-\ike décomposition of (A(c^) — XiI)Pi(c*)
with index m and n — m QR décompositions of (A(c^) — XiI)Pi(c*)(i ~ m + 1, • • • , n)

- X1I)P1(c*) = Ql(c^)R1(cW) . .

It follows from Lemma 4.2 that

(43)
i j j c t % y u j - T L ^ ^ c ^ H 2 _ ' V 2 ' — J - j " « ~ T ~ - * - } * * * ? 'f*

where e = max {||(A(c*) — A(c^))Pi(c*)\\2}- Corresponding to the décompositions (42), we obtain a

matrix Jf(c^) G M^m + n " m ) x n . From the définition of Jf(c) and (43) we know that \\Jf(c*) — Jf(c^)\\2 is suf-
ficiently small, and so is || Jj(c*) Jf (c*) - JJ(c^)Jf(c^)\\2 when c ^ is close to c*. Therefore, Jj(c^)Jf(c^)

is invertible, Jf(c^) has full rank, and ||J/(c^)||2 is bounded.
The Q-R-like décomposition and n — m QR décompositions obtained in Algorithm 3.1 at c ^ are not neces-

sarily (42). Write them

f (A(c^) - Ài/)Pi(c*) = Qi(c^)Ri(c^)
{ (A(cW) - \iI)Pi(c*) - Qi(cW)Ri(c(k))(i = m + 1, • • • ,n). ^

It follows from Lemma 4.1 and (39) that Jf(c^) corresponding to the décompositions (44) also has full rank,
I|jJ(c*)J/(c*) - JJ(c^)Jf(c^)\\2 is sufficiently small, and ||J/(c(fc))||2 is bounded if ||c* » c<fc>||2 is small
enough. Using the perturbation theory for the inversion of a matrix (see, for example [26]), we have

for the sufficiently small \\c* — c^l^ , where u)(e) > 0 is a continuous function of e and a;(0) = 0.
Now we use Theorem 2.2 to extend smoothly the décompositions (44) to a neighbourhood of c^ which may

be assumed to include c*. Then, abbreviating équations (24, 25)

r ( c ) r ( c ) + V
' nn\c ) ~ ' nn\c ) ^ / v a

3 = 1 j

But B^2(C*) = °» rnl(c*) = 0(i = m + 1, • • • , n), and we have

f(cM) + J/(c«)(c* - c ^ ) - O(||c* -

Since || Jf(c^)\\2 is bounded, then

W W j ^ ^ < f c > l . ( 4 6 )
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Comparing (46) with the équation (29) defining c^k+1\ we have

jJ(cW)Jf(c^)(c*-c^)) = O(\\c* -

It follows from this and (45) that

as required. •

5. NUMERICAL EXPERIMENTS

We first give some perturbation results which may be used to measure the différence between the given
eigenvalues and those of A(c^) , where c^ is an accepted approximation to c*.

By use of QR-\ike décomposition (15) of A(c^ ) — Ai/ with index m and QR décompositions (17) of
Xil(i — m + 1, • • • , n), it is easily verified that

(A(c^) - X^Q^c^E^ = Piic^EmRgf (cW) (47)

= r^n{c^)PMk))en, % = m + 1, • • • , n (48)

where Em = [en_m+i, • • • , en]. From the perturbation theory of eigenvalues (see [5, 26]), it follows that there
exist m eigenvalues Ài(c*fe)), • • • , Am(c^fc^) of A(c^) such that

)2 = l , - - - ,m (49)

and that for any i(m + 1 < i < n) there is an eigenvalue A of A(c^) such that

+ lr~ ,n. (50)

Since Ai < Am+1 < • • • < An, the intervais |z - Ai| < \\R^2\c^)\\F,\z ~ X{\ < \r(Jl(c^)\(i = m + 1, • • • ,n) are
disjoint from each other if WR^^^WF, \rnn(c^)\ are sufBciently small. Therefore, the smallest m eigenvalues
Ai(c^) , • • • , Am(c(fc)) of A(c(fc)) satisfy (49), and the remainder n-m eigenvalues Am + i (c^) , • • • , Xn(c^) are
different from each other and satisfy

| A i ( c « ) - Ai| <|rW(cW)|,* = m + l , • • - ,« . (51)

Now we present some of our numerical experiments with Algorithm 3.1, and also give a numerical comparison
between Algorithm 3.1 and Method I in [13] for our examples. The following tests were made on a SUN
workstation at CERFACS. Double précision arithmetic was used throughout. The itérations were stopped
when the norm | | /(c^)| |2 was less than 10~10. For convenience, ail vectors will be written as row-vectors.
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TABLE 1.

Itération

0
1
2
3
4
5

Algorithm 3.1
I l e * - c W Ha
0.1020E+02
0.1627E+01
0.1360E+00
0.1419E-02
0.1576E-06
0.9010E-13

\\f(c{k))h
0.7064E+01
0.8234E+00
0.6400E-01
0.6335E-03
0.7023E-07
0.8392E-14

Method I in [13]
| |c*-cW||2

0.1020E+02
0.2064E+01
0.3070E+00
0.8195E-02
0.7170E-05
0.5139E-11

||A*-À(cW)||2
0.6401E+01
0.8931E+00
0.1031E+00
0.2725E-02
0.2316E-05
0.1690E-11

Example 5.1 (see [13]). This is an additive inverse eigenvalue problem with distinct eigenvalues. Let n = 8,

0
4

- 1
1
1
5

- 1
1

4
0

- 1
2
1
4

- 1
2

- 1
- 1
0
3
1
3

=-1
3

1
2
3
0
1
2

- 1
4

1
1
1
1
0
1

- 1
5

5
4
3
2
1
0

- 1
6

- 1
" 1
- 1
- 1
- 1
" 1
0
7

1
2
3
4
5
6
7
0

, Ak =

The eigenvalues are prescribed to be

A* = (10,20,30,40,50,60, 70,80)

(i) with the starting point c(0> = (10, 20,30,40, 50, 60, 70, 80), Algorithm 3.1 converges to a solution

c* - (11.90787610,19.70552151,30.54549819,40.06265749,

51.58714029,64.70213143, 70.17067582, 71.31849917)

and the results are displayed in Table 1.
(ii) with a different starting point c<0) = (10,80, 70, 50, 60,30, 20,40), Algorithm 3.1 also converges, but to a

different solution

c* = (11.46135430,78.88082936,68.35339960,49.87833041,

59.16891783,30.41047015,24.83432401,37.01237433).

The nature of the convergence is illustrated in Table 2.
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TABLE 2.

Itération

0
1
2
3
4
5

Algorithm 3.1
l|c*-cW||2

0.6267E+01
0.5978E+00
0.1438E-01
0.9151E-05
0.3708E-11

\\f(c{k))h
0.4783E+01
0.3736E+00
0.8334E-02
0.5368E-05
0.2145E-11

Method I in [13]
||c*-cW||2

0.6267E+01
0.8358E+00
0.3931E-01
0.9733E-04
0.6066E-09
0.1587E-14

|A*-A(C(fc))||2
0.4376E+01
0.4086E+00
0.1881E-01
0.4598E-04
0.2875E-09
0.4293E-13

TABLE 3.

Itération

0
1
2
3
4

Algorithm 3.1
l|c*-cW||2

0.2828E-01
0.5689E-03
0.1348E-06
0.4210E-13

\\f(cW)h
0.1025E+02
0.6087E-02
0.1087E-05
0.3746E-12

Method I in [13]
I l e * - c W ||2
0.2828E-01
0.1466E-01
0.1844E-03
0.6129E-07
0.1314E-12

||A*-À(cW)||2
0.9327E-01
0.9630E-03
0.3045E-03
0.5262E=07
0.6573E-13

Example 5.2 (see [13]). An inverse eigenvalue problem with multiple eigenvalues is defined. Let n = 8,

/ 1 - 1 - 3 - 5 - 6 \
1 1 - 2 - 5 -17
1 - 1 - 1 5 18
1 1 1 2 0
1 - 1 2 0 1
1 1 3 0 - 1

2.5 0.2 0.3 0.5 0.6
2 -0.2 0.3 0.5 0.8 /

V =

and B = / + VVT, We define the matrices {Ai} as follows:

fc-l

AQ = 0, Ak = ^2 hj(ekej , k = 1, • • • , 8, A(c) = Ao

2 = 1

(i) We consider c* = (1,1,1,1,1,1,1,1), then A(c*) = B and its eigenvalues are

A* = (1,1,1,2.12075361,9.21886818,17.28136579,35.70821864,722.68079377).

With the starting point c<°) = (0.99,0.99,0.99,0.99,1.01,1.01,1.01,1.01), Algorithm 3.1 converges and the
results are displayed in Table 3.

We choose A* = (1,1,1,2.12075361,9.21886818), and use the same starting point c<0', the locally unique
solution found by Method I in [13] is also exactly c*. The residual is also given in Table 3.

(ii) Now let us choose the target eigenvalues

A* = (1,1,1, 2.1,9.0,15.98788273,34.43000675,704.22223731).
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TABLE 4.

Itération

0
1
2
3
4
5
6
7

Algorithm 3.1
l|c*-cW||2
0.2444E+00
0.2683E-01
0.1167E-02
0.1919E-05
0.6633E-11

ll/(cW)l|2
0.1667E+02
0.2269E+00
0.7393E-02
0.1619E-04
0.5174E-10

Method I in [13]
l|c*-cW||2
0.2444E+00
0.1421E+00
0.2205E+00
0.7226E-01
0.8662E-02
0.1983E-03
0.1086E-06
0.8441E-12

l|A*-A(cW)||2
0.2096E+00
0.1925E+00
0.2042E+00
0.3231E-01
0.7108E-02
0.1444E-03
0.7892E-07
0.7171E-13

TABLE 5.

Itération

0
1
2
3
4

Algorithm 3.1
||c*-cW||2

0.2000E+00
0.4041E-01
0.7522E-03
0.3999E-06
0.2579E-13

\\f(cW)h
0.3231E+00
0.4341E-01
0.6398E-03
0.4985E-06
0.1474E-13

Method I in [13]
| |c*-cW||2

0.2000E+00
0.9981E-01
0.3753E-02
0.6254E-06
0.6071E-12

l|A*-A(cW)||2
0.1583E+00
0.2439E-01
0.1179E-02
0.5534E-06
0.1827E-12

Using the same starting point c^ as above, Algorithm 3.1 converges quadratically to the locally unique solu-
tion c*.

c* = (0.98336098,0.97437047,0.97531317,1.05452291,

0.85548596,0.91177696,0.92833105,0.88800130).

Table 4 gives the residual.
Choosing the target eigenvalues À* = (1,1,1,2.1,9.0) and using the same starting point

unique solution found by Method I in [13] is also exactly (52). Table 4 displays the residual.
Example 5.3. Let n = 4,

(52)

\ the locally

1,2,1),

/ 0.5 0 0 0
0 0 0 0
0 0 0 0

\ 0 0 0 0

0 1 0 0 \
1 1 0 0
0 0 0 0
o o o o y

0 0 1 0 \
0 0 0 0
1 0 0 0
o o o o y

0 0 0 0
0 0 0 1
0 0 0 1
0 1 1 1

The eigenvalues are prescribed by

A* = (0,2,2,4).
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An exact solution of the IEP is c* = (1,1,1,1). Algorithm 3.1 and Method I in [13] (A* = (0,2, 2)) converge
to the locally unique solution c* from the starting point c ^ = (1.1,0.9,1.1,0.9). The results are presented in
Table 5.

These examples and our other numerical experiments with Algorithm 3.1 indicate that quadratic convergence
indeed occurs in practice. We observed in most of our tests that Algorithm 3.1 took less itérations than Method I
in [13].

The author would like to thank Professor F. Chaitin-Chatelin and Dr.V. Frayssé for providing a fine working environment
during his visit to CERFACS and for their careful reading of a preliminary version of this manuscript.
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