ESAIM : MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

Hua Dai

A numerical method for solving inverse eigenvalue problems
ESAIM : Modélisation mathématique et analyse numérique, tome 33, no 5 (1999), p. 1003-1017
http://www.numdam.org/item?id=M2AN_1999_33_5_1003_0
© SMAI, EDP Sciences, 1999, tous droits réservés.
L'accès aux archives de la revue «ESAIM : Modélisation mathématique et analyse numérique» (http://www.esaim-m2an.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques
http://www.numdam.org/

A NUMERICAL METHOD FOR SOLVING INVERSE EIGENVALUE PROBLEMS

Hua Dai ${ }^{1}$

Abstract

Based on $Q R$-like decomposition with column pivoting, a new and efficient numerical method for solving symmetric matrix inverse eigenvalue problems is proposed, which is suitable for both the distinct and multiple eigenvalue cases. A locally quadratic convergence analysis is given. Some numerical experiments are presented to illustrate our results.

Résumé. Basée sur la décomposition $Q R$-type avec la colonne pivot, une nouvelle et efficace méthode numérique pour résoudre des problèmes inverses des valeurs propres des matrices symétriques est proposée, qui est convenable aux deux cas des valeurs propres distinctes et multiples. Une analyse de convergence localement quadratique de la méthode est donnée. Des expériences numériques sont présentées pour illustrer nos résultats.

AMS Subject Classification. $65 \mathrm{~F} 15,65 \mathrm{H} 15$.
Received: August 31, 1998.

1. Introduction

Let $A(c)$ be the affine family

$$
\begin{equation*}
A(c)=A_{0}+\sum_{i=1}^{n} c_{i} A_{i} \tag{1}
\end{equation*}
$$

where $A_{0}, A_{1}, \cdots, A_{n}$ are real symmetric $n \times n$ matrices, and $c=\left(c_{1}, \cdots, c_{n}\right)^{T} \in \mathbb{R}^{n}$. We consider inverse eigenvalue problems (IEP) of the following form.
IEP. Given real numbers $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$, find $c \in \mathbb{R}^{n}$ such that the eigenvalues $\lambda_{1}(c) \leq \lambda_{2}(c) \leq \cdots \leq \lambda_{n}(c)$ of $A(c)$ satisfy

$$
\begin{equation*}
\lambda_{i}(c)=\lambda_{i}, \quad i=1,2, \cdots, n . \tag{2}
\end{equation*}
$$

The IEP are of great importance to many applications. A good collection of interesting applications where the IEP may arise is included in [13]. There is a large literature on conditions for existence of solutions to the IEP.

[^0]See, for example $[2,9,19,20,27-31,33]$. A special case of the IEP is obtained when the linear family (1) is defined by

$$
A_{i}=e_{i} e_{i}^{T}, \quad i=1, \cdots, n
$$

where e_{i} is the i th unit vector, so that $A(c)=A_{0}+D$, where $D=\operatorname{diag}\left(c_{1}, \cdots, c_{n}\right)$. This problem is well known as the additive inverse eigenvalue problem. For decades there has been considerable discussion about the additive inverse eigenvalue problem. Some theoretical results and computational methods can be found, for example, in the articles $[7,8,11,12,15,17,24,32]$, and the book [33] and the references contained therein.

Numerical algorithms for solving the IEP can be found, for example, in $[1,3,4,6,13,16,23,33]$. Friedland et al. [13] have surveyed four quadratically convergent numerical methods. One of the algorithms analyzed in [13] (also see $[1,4,16]$) is Newton's method for solving the nonlinear system (2). Each step in the numerical solution by Newton's method of the system (2) involves the solution of complete eigenproblem for the matrix $A(c)$. Two of the other methods analyzed in [13] are motivated as modifications to Newton's method in which computing time is saved by approximating the eigenvectors when the matrix $A(c)$ changes, rather than recomputing them. The fourth method considered in [13] is based on determinant evaluation and originated with Biegler-König [3], but it is not computationally attractive [13] for real symmetric matrices. When $\lambda_{1}, \cdots, \lambda_{n}$ include multiple eigenvalues, however, the eigenvalues $\lambda_{1}(c), \cdots, \lambda_{n}(c)$ of the matrix $A(c)$ are not, in general, differentiable at a solution c^{*}. Furthermore, the eigenvectors are not unique, and they cannot generally be defined to be continuous functions of c at c^{*}. The modification to the IEP has been considered in [13], but the number of the given eigenvalues and their multiplicities should be satisfied a certain condition in the modified problem. Based on the differentiability theory [21] of $Q R$ decomposition of a matrix depending on several variables, Li [23] presented a numerical method for solving inverse eigenvalue problems in the distinct eigenvalue case.

In this paper, we consider the formulation and local analysis of a quadratically convergent method for solving the IEP, assuming the existence of a solution. The paper is organized as follows. In Section 2 we recall some necessary differentiability theory for $Q R$-like decomposition of a matrix dependent on several parameters. In Section 3 a new algorithm based on $Q R$-like decomposition is proposed. It consists of extension of ideas developed by Li [22, 23], Dai and Lancaster [10], and is suitable for both the distinct and multiple eigenvalues cases. Its locally quadratic convergence analysis is given in Section 4. Finally in Section 5 some numerical experiments are presented to illustrate our results.

We shall use the following notation. A solution to the IEP will always be denoted by c^{*}. For the given eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$, we write $\lambda^{*}=\left(\lambda_{1}, \cdots, \lambda_{n}\right) .\|\cdot\|_{2}$ denotes the Euclidean vector norm or induced spectral norm, and $\|\cdot\|_{F}$ the Frobenius matrix norm. For an $n \times m$ matrix $A=\left[a_{1}, \cdots, a_{m}\right]$, where a_{i} is the i th column vector of A , we define a vector $\operatorname{col} A$ by $\operatorname{col} A=\left[a_{1}{ }^{T}, \cdots, a_{m}^{T}\right]^{T}$, and the norm $\|A\|_{\psi}:=\max _{j=1, \cdots, m}\left(\left\|a_{j}\right\|_{2}\right)$. The symbol \otimes denotes the Kronecker product of matrices.

2. $Q R$-LIKE DECOMPOSITION AND DIFFERENTIABILITY

Let $A \in \mathbb{R}^{n \times n}$ and $m(1 \leq m \leq n)$ be an integer. Following Li [22], we define a $Q R$-like decomposition of A with index m to be a factorization

$$
A=Q R, R=\left(\begin{array}{cc}
R_{11} & R_{12} \tag{3}\\
0 & R_{22}
\end{array}\right)
$$

where $Q \in \mathbb{R}^{n \times n}$ is orthogonal, R_{11} is $(n-m) \times(n-m)$ upper triangular, and R_{22} is $m \times m$ square. When $m=1$, this is a $Q R$ decomposition of A. Clearly, a $Q R$-like decomposition of a matrix exists always. In fact, we need only construct a "partial" $Q R$ decomposition, see [14], for example. In general, however, it is not unique as the following theorem shows.
Theorem 2.1 (see [10,12]). Let A be an $n \times n$ matrix whose first $n-m$ columns are linearly independent and let $A=Q R$ be a $Q R$-like decomposition with index m. Then $A=\widehat{Q} \widehat{R}$ is also a $Q R$-like decomposition with
index m if and only if

$$
\begin{equation*}
Q=\widehat{Q} D, R=D^{T} \widehat{R} \tag{4}
\end{equation*}
$$

where $D=\operatorname{diag}\left(D_{11}, D_{22}\right), D_{11}$ is an orthogonal diagonal matrix, and D_{22} is an $m \times m$ orthogonal matrix.
Note that the linear independence hypothesis ensures that the R_{11} blocks of R and \widehat{R} are nonsingular. In order to ensure that the submatrix R_{11} of such a decomposition is nonsingular, we admit a permutation of the columns of A. So the $Q R$-like decomposition with column pivoting of $A \in \mathbb{R}^{n \times n}$ may be expressed as

$$
\begin{equation*}
A P=Q R \tag{5}
\end{equation*}
$$

where P is an $n \times n$ permutation matrix, and R is of the (3). If $\operatorname{rank}(A)=n-m$, then the permutation matrix P can be chosen such that the first $n-m$ columns of the matrix $A P$ are linearly independent and $R=\left(r_{i j}\right)$ satisfies

$$
\begin{equation*}
\left|r_{11}\right| \geq\left|r_{22}\right| \geq \cdots \geq\left|r_{n-m, n-m}\right|>0, R_{22}=0 \tag{6}
\end{equation*}
$$

Now let $A(c)=\left(a_{i j}(c)\right) \in \mathbb{R}^{n \times n}$ be a continuously differentiable matrix-valued function of $c \in \mathbb{R}^{n}$. Here, the differentiability of $A(c)$ with respect to c means, for any $c^{(0)} \in \mathbb{R}^{n}$, we have

$$
\begin{equation*}
A(c)=A\left(c^{(0)}\right)+\sum_{j=1}^{n} \frac{\partial A\left(c^{(0)}\right)}{\partial c_{j}}\left(c_{j}-c_{j}^{(0)}\right)+o\left(\left\|c-c^{(0)}\right\|_{2}\right) \tag{7}
\end{equation*}
$$

where $c=\left(c_{1}, \cdots, c_{n}\right)^{T}, c^{(0)}=\left(c_{1}^{(0)}, \cdots, c_{n}^{(0)}\right)^{T}$, and

$$
\frac{\partial A\left(c^{(0)}\right)}{\partial c_{j}}=\left(\left.\frac{\partial a_{i j}(c)}{\partial c_{j}}\right|_{c=c^{(0)}}\right) .
$$

Note that if $A(c)$ is twice differentiable, then $o\left(\left\|c-c^{(0)}\right\|_{2}\right)$ in (7) may be replaced by $O\left(\left\|c-c^{(0)}\right\|_{2}^{2}\right)$. If $A(c)$ is of the form (1), then $A(c)$ is twice continuously differentiable, and

$$
\begin{align*}
\frac{\partial A(c)}{\partial c_{j}} & =A_{j}, \quad j=1, \cdots, n \tag{8}\\
A(c) & =A\left(c^{(0)}\right)+\sum_{j=1}^{n} A_{j}\left(c_{j}-c_{j}^{(0)}\right) \tag{9}
\end{align*}
$$

We consider only hereafter the affine family $A(c)$. The next result which follows from Theorem 3.2 in [10] concerns the existence of a locally smooth $Q R$-like decomposition of $A(c)$.
Theorem 2.2. Let $A(c)$ be the affine family (1) and assume that $\operatorname{rank}\left(A\left(c^{(0)}\right)\right) \geq n-m$ at $c^{(0)} \in \mathbb{R}^{n}$. Let P be a permutation matrix such that the first $n-m$ columns of $A\left(c^{(0)}\right) P$ are linearly independent, and

$$
A\left(c^{(0)}\right) P=Q^{(0)} R^{(0)}, R^{(0)}=\left(\begin{array}{cc}
R_{11}^{(0)} & R_{12}^{(0)} \tag{10}\\
0 & R_{22}^{(0)}
\end{array}\right)
$$

be a $Q R$-like decomposition of $A\left(c^{(0)}\right) P$ with index m. Then there exists a neighbourhood $\mathbb{N}\left(c^{(0)}\right)$ of $c^{(0)}$ in \mathbb{R}^{n} such that, for any $c \in N\left(c^{(0)}\right)$, there is a $Q R$-like decomposition of $A(c) P$ with index m

$$
A(c) P=Q(c) R(c), R(c)=\left(\begin{array}{cl}
R_{11}(c) & R_{12}(c) \tag{11}\\
0 & R_{22}(c)
\end{array}\right)
$$

with the following properties:

1. $Q\left(c^{(0)}\right)=Q^{(0)}, R\left(c^{(0)}\right)=R^{(0)}$.
2. All elements of $Q(c)$ and $R(c)$ are continuous in $\mathrm{N}\left(c^{(0)}\right)$.
3. $R_{22}(c)$ and the diagonal elements $r_{j j}(c), j=1, \cdots, n-m$, of $R_{11}(c)$ are continuously differentiable at $c^{(0)}$. Moreover, if we write

$$
Q^{(0)^{T}} A_{j} P=\left(\begin{array}{cc}
A_{j, 11} & A_{j, 12} \tag{12}\\
A_{j, 21} & A_{j, 22}
\end{array}\right), \quad A_{j, 11} \in \mathbb{R}^{(n-m) \times(n-m)}, \quad j=1, \cdots, n
$$

then

$$
\begin{equation*}
R_{22}(c)=R_{22}^{(0)}+\sum_{j=1}^{n}\left(A_{j, 22}-A_{j, 21} R_{11}^{(0)^{-1}} R_{12}^{(0)}\right)\left(c_{j}-c_{j}^{(0)}\right)+O\left(\left\|c-c^{(0)}\right\|_{2}^{2}\right) \tag{13}
\end{equation*}
$$

3. An algorithm based on $Q R$-like decomposition

3.1. Formulation of the IEP

We now consider a new formulation of the IEP, which is an extension of ideas developed in [10, 22, 23]. For convenience, we assume that only the first eigenvalue is multiple, with multiplicity m, i.e.,

$$
\begin{equation*}
\lambda_{1}=\cdots=\lambda_{m}<\lambda_{m+1}<\cdots<\lambda_{n} \tag{14}
\end{equation*}
$$

There is no difficulty in generalizing all our results to an arbitrary set of given eigenvalues.
Compute a $Q R$-like decomposition with column pivoting of $A(c)-\lambda_{1} I$ with index m

$$
\begin{equation*}
\left(A(c)-\lambda_{1} I\right) \cdot P_{1}(c)=Q_{1}(c) R_{1}(c) \tag{15}
\end{equation*}
$$

where

$$
R_{1}(c)=\left(\begin{array}{cc}
R_{11}^{(1)}(c) & R_{12}^{(1)}(c) \tag{16}\\
0 & R_{22}^{(1)}(c)
\end{array}\right), \quad R_{11}^{(1)}(c) \in \mathbb{R}^{(n-m) \times(n-m)}
$$

and $Q R$ decompositions with column pivoting of $A(c)-\lambda_{i} I(i=m+1, \cdots, n)$

$$
\begin{equation*}
\left(A(c)-\lambda_{i} I\right) P_{i}(c)=Q_{i}(c) R_{i}(c), i=m+1, \cdots, n \tag{17}
\end{equation*}
$$

where

$$
R_{i}(c)=\left(\begin{array}{cc}
R_{11}^{(i)}(c) & r_{12}^{(i)}(c) \tag{18}\\
0 & r_{n n}^{(i)}(c)
\end{array}\right), \quad R_{11}^{(i)}(c) \in \mathbb{R}^{(n-1) \times(n-1)}
$$

and assume permutation matrices $P_{i}(c) \in \mathbb{R}^{n \times n}(i=1, m+1, \cdots, n)$ are constant in a sufficiently small neighbourhood of c for each i, and are chosen such that

$$
\begin{equation*}
\operatorname{det}\left(R_{11}^{(1)}(c)\right) \neq 0,\left|e_{1}^{T} R_{1}(c) e_{1}\right| \geq\left|e_{2}^{T} R_{1}(c) e_{2}\right| \geq \cdots \geq\left|e_{n-m}^{T} R_{1}(c) e_{n-m}\right| \geq\left\|R_{22}^{(1)}(c)\right\|_{\psi} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|e_{1}^{T} R_{i}(c) e_{1}\right| \geq\left|e_{2}^{T} R_{i}(c) e_{2}\right| \geq \cdots \geq\left|e_{n}^{T} R_{i}(c) e_{n}\right|=\left|r_{n n}^{(i)}(c)\right|, i=m+1, \cdots, n \tag{20}
\end{equation*}
$$

Then the symmetric matrix $A(c)$ has the eigenvalues $\lambda_{1}, \lambda_{m+1}, \cdots, \lambda_{n}$ in which λ_{1} is a multiple eigenvalue with multiplicity m if and only if

$$
\left\{\begin{array}{l}
R_{22}^{(1)}(c)=0 \tag{21}\\
r_{n n}^{(i)}(c)=0, i=m+1, \cdots, n
\end{array}\right.
$$

We introduce a new formulation of the IEP:
Solve the following least squares problem

$$
\begin{equation*}
\min F(c)=\frac{1}{2}\left\{\left\|R_{22}^{(1)}(c)\right\|_{F}^{2}+\sum_{i=m+1}^{n}\left(r_{n n}^{(i)}(c)\right)^{2}\right\} \tag{22}
\end{equation*}
$$

If $m=1$, i.e., the given eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are distinct, we may consider solving the nonlinear system

$$
\left(\begin{array}{c}
r_{n n}^{(1)}(c) \tag{23}\\
r_{n n}^{(2)}(c) \\
\cdots \\
r_{n n}^{(n)}(c)
\end{array}\right)=0
$$

The formulation (23) has been studied by $\mathrm{Li}[23]$. In fact, if $m=1$ and a solution of the IEP exists, (22) and (23) are equivalent.

It is worth while mentioning that $F(c)$ may be not uniquely determined for any c because of the nonuniqueness of $Q R$-like and $Q R$ decompositions. However, we shall show that such "flexibility" does not affect the effectiveness of our algorithm (see Lem. 4.1 below).

3.2. An algorithm

Let $c^{(k)}$ be sufficiently close to c^{*}. It follows from Theorem 2.2 that the matrix-valued function $R_{22}^{(1)}(c)$ and $n-m$ functions $r_{n n}^{(i)}(c)(i=m+1, \cdots, n)$ are continuously differentiable at $c^{(k)}$, and $R_{22}^{(1)}(c)$ and $r_{n n}^{(i)}(c)(i=$ $m+1, \cdots, n)$ can be expressed as

$$
\begin{align*}
R_{22}^{(1)}(c) & =R_{22}^{(1)}\left(c^{(k)}\right)+\sum_{j=1}^{n} \frac{\partial R_{22}^{(1)}\left(c^{(k)}\right)}{\partial c_{j}}\left(c_{j}-c_{j}^{(k)}\right)+O\left(\left\|c-c^{(k)}\right\|_{2}^{2}\right) \\
& =R_{22}^{(1)}\left(c^{(k)}\right)+\sum_{j=1}^{n}\left[T_{j, 22}^{(1)}\left(c^{(k)}\right)-T_{j, 21}^{(1)}\left(c^{(k)}\right) R_{11}^{(1)^{-1}}\left(c^{(k)}\right) R_{12}^{(1)}\left(c^{(k)}\right)\right]\left(c_{j}-c_{j}^{(k)}\right)+O\left(\left\|c-c^{(k)}\right\|_{2}^{2}\right) \tag{24}\\
r_{n n}^{(i)}(c) & =r_{n n}^{(i)}\left(c^{(k)}\right)+\sum_{j=1}^{n} \frac{\partial r_{n n}^{(i)}\left(c^{(k)}\right)}{\partial c_{j}}\left(c_{j}-c_{j}^{(k)}\right)+O\left(\left\|c-c^{(k)}\right\|_{2}^{2}\right) \\
& =r_{n n}^{(i)}\left(c^{(k)}\right)+\sum_{j=1}^{n}\left[t_{j, 22}^{(i)}\left(c^{(k)}\right)-t_{j, 21}^{(i)}\left(c^{(k)}\right) R_{11}^{(i)^{-1}}\left(c^{(k)}\right) r_{12}^{(i)}\left(c^{(k)}\right)\right]\left(c_{j}-c_{j}^{(k)}\right)+O\left(\left\|c-c^{(k)}\right\|_{2}^{2}\right)
\end{align*}
$$

where

$$
\begin{cases}Q_{1}^{T}(c)\left(A_{j}-\lambda_{1} I\right) P_{1}(c)=\left(\begin{array}{cc}
T_{j, 11}^{(1)}(c) & T_{j, 12}^{(1)}(c) \\
T_{j, 21}^{(1)}(c) & T_{j, 22}^{(1)}(c)
\end{array}\right), & T_{j, 11}^{(1)}(c) \in \mathbb{R}^{(n-m) \times(n-m)} \tag{26}\\
Q_{i}^{T}(c)\left(A_{j}-\lambda_{i} I\right) P_{i}(c)=\left(\begin{array}{cc}
T_{j, 11}^{(i)}(c) & t_{j, 12}^{(i)}(c) \\
t_{j, 21}^{(i)}(c) & t_{j, 22}^{(i)}(c)
\end{array}\right), & T_{j, 11}^{(i)}(c) \in \mathbb{R}^{(n-1) \times(n-1)}\end{cases}
$$

Let

$$
f(c)=\left(\begin{array}{c}
\operatorname{col} R_{22}^{(1)}(c) \tag{27}\\
r_{n n}^{(m+1)}(c) \\
\ldots \\
r_{n n}^{(n)}(c)
\end{array}\right)
$$

Then

$$
\begin{equation*}
F(c)=\frac{1}{2} f^{T}(c) f(c) \tag{28}
\end{equation*}
$$

We apply the Gauss-Newton method (see [25]) to solve the least squares problem (22). By use of (24, 25), one step of Gauss-Newton method for the solution of (22) has the following form

$$
\begin{equation*}
J_{f}^{T}\left(c^{(k)}\right) J_{f}\left(c^{(k)}\right)\left(c^{(k+1)}-c^{(k)}\right)=-J_{f}^{T}\left(c^{(k)}\right) f\left(c^{(k)}\right) \tag{29}
\end{equation*}
$$

where

$$
J_{f}(c)=\left(\begin{array}{ccc}
\operatorname{col} \frac{\partial R_{22}^{(1)}(c)}{\partial c_{1}} & \cdots & \operatorname{col} \frac{\partial R_{22}^{(1)}(c)}{\partial c_{n}} \tag{30}\\
\frac{\partial r_{n n}^{(m+1)}(c)}{\partial c_{1}} & \cdots & \frac{\partial r_{n n}^{(m+1)}(c)}{\partial c_{n}} \\
\cdots & & \cdots \\
\frac{\partial r_{n n}^{(n)}(c)}{\partial c_{1}} & \cdots & \frac{\partial r_{n n}^{(n)}(c)}{\partial c_{n}}
\end{array}\right)
$$

with

$$
\left\{\begin{array}{l}
\frac{\partial R_{22}^{(1)}(c)}{\partial c_{j}}=T_{j, 22}^{(1)}(c)-T_{j, 21}^{(1)}(c) R_{11}^{(1)^{-1}}(c) R_{12}^{(1)}(c) \tag{31}\\
\frac{\partial r_{n n}^{(i)}(c)}{\partial c_{j}}=t_{j, 22}^{(i)}(c)-t_{j, 21}^{(i)}(c) R_{11}^{(i)^{-1}}(c) r_{12}^{(i)}(c), i=m+1, \cdots, n
\end{array}\right.
$$

Thus, our algorithm for solving the IEP has the following form:
Algorithm 3.1.

1. Choose an initial approximation $c^{(0)}$ to c^{*}, and for $k=0,1,2, \cdots$
2. Compute $\cdot A\left(c^{(k)}\right)-\lambda_{i} I(i=1, m+1, \cdots, n)$.
3. Compute $Q R$-like decomposition with column pivoting of $A\left(c^{(k)}\right)-\lambda_{1} I$ with index m :

$$
\left(A\left(c^{(k)}\right)-\lambda_{1} I\right) P_{1}\left(c^{(k)}\right)=Q_{1}\left(c^{(k)}\right) R_{1}\left(c^{(k)}\right), R_{1}\left(c^{(k)}\right)=\left(\begin{array}{cc}
R_{11}^{(1)}\left(c^{(k)}\right) & R_{12}^{(1)}\left(c^{(k)}\right) \\
0 & R_{22}^{(1)}\left(c^{(k)}\right)
\end{array}\right)
$$

and $Q R$ decompositions with column pivoting of $A\left(c^{(k)}\right)-\lambda_{i} I(i=m+1, \cdots, n)$:

$$
\left(A\left(c^{(k)}\right)-\lambda_{i} I\right) P_{i}\left(c^{(k)}\right)=Q_{i}\left(c^{(k)}\right) R_{i}\left(c^{(k)}\right), R_{i}\left(c^{(k)}\right)=\left(\begin{array}{cc}
R_{11}^{(i)}\left(c^{(k)}\right) & r_{12}^{(i)}\left(c^{(k)}\right) \\
0 & r_{n n}^{(i)}\left(c^{(k)}\right)
\end{array}\right)
$$

4. If $\sqrt{\left\|R_{22}^{(1)}\left(c^{(k)}\right)\right\|_{F}^{2}+\sum_{i=m+1}^{n}\left(r_{n n}^{(i)}\left(c^{(k)}\right)\right)^{2}}$ is small enough stop; otherwise:
5. Form $f\left(c^{(k)}\right)$ and $J_{f}\left(c^{(k)}\right)$ using (27, 30).
6. Find $c^{(k+1)}$ by solving linear system (29).
7. Go to 2 .

4. Convergence analysis

Because of the non-uniqueness of $Q R$-like and $Q R$ decompositions described in Theorem 2.1 it is necessary to check that the iterates $c^{(k)}, k=1,2, \cdots$, generated by Algorithm 3.1 do not depend on the decompositions used in (15) and (17). We can prove the following result.
Lemma 4.1. In Algorithm 3.1, for any fixed k, suppose

$$
\begin{align*}
\left(A\left(c^{(k)}\right)-\lambda_{1} I\right) P_{1}\left(c^{(k)}\right) & =Q_{1}\left(c^{(k)}\right) R_{1}\left(c^{(k)}\right)=\widetilde{Q}_{1}\left(c^{(k)}\right) \widetilde{R}_{1}\left(c^{(k)}\right), \\
\widetilde{R}_{1}\left(c^{(k)}\right) & =\left(\begin{array}{cc}
\widetilde{R}_{11}^{(1)}\left(c^{(k)}\right) & \widetilde{R}_{12}^{(1)}\left(c^{(k)}\right) \\
0 & \widetilde{R}_{22}^{(1)}\left(c^{(k)}\right)
\end{array}\right) \tag{32}
\end{align*}
$$

are two (different) QR-like decompositions with column pivoting of $A\left(c^{(k)}\right)-\lambda_{1} I$ with index m, and

$$
\begin{align*}
\left(A\left(c^{(k)}\right)-\lambda_{i} I\right) P_{i}\left(c^{(k)}\right) & =Q_{i}\left(c^{(k)}\right) R_{i}\left(c^{(k)}\right)=\widetilde{Q}_{i}\left(c^{(k)}\right) \widetilde{R}_{i}\left(c^{(k)}\right), \\
\widetilde{R}_{i}\left(c^{(k)}\right) & =\left(\begin{array}{cc}
\widetilde{R}_{11}^{(i)}\left(c^{(k)}\right) & \widetilde{r}_{12}^{(i)}\left(c^{(k)}\right) \\
0 & \widetilde{r}_{n n}^{(i)}\left(c^{(k)}\right)
\end{array}\right), \quad i=m+1, \cdots, n \tag{33}
\end{align*}
$$

are two (different) $Q R$ decompositions with column pivoting of $A\left(c^{(k)}\right)-\lambda_{i} I(i=m+1, \cdots, n), J_{f}\left(c^{(k)}\right), f\left(c^{(k)}\right)$ and $\widetilde{J}_{f}\left(c^{(k)}\right), \widetilde{f}\left(c^{(k)}\right)$ are obtained in Step 5 of Algorithm 3.1 corresponding to two different decompositions of (32) and (33). Then

$$
\begin{align*}
J_{f}^{T}\left(c^{(k)}\right) J_{f}\left(c^{(k)}\right) & =\widetilde{J}_{f}^{T}\left(c^{(k)}\right) \widetilde{J}_{f}\left(c^{(k)}\right) \tag{34}\\
J_{f}^{T}\left(c^{(k)}\right) f\left(c^{(k)}\right) & =\widetilde{J}_{f}^{T}\left(c^{(k)}\right) \widetilde{f}\left(c^{(k)}\right) . \tag{35}
\end{align*}
$$

Proof. It follows from Theorem 2.1 that there exist a partitioned orthogonal matrix $D_{1}=\operatorname{diag}\left(D_{11}, D_{22}\right)$ where D_{11} is an orthogonal diagonal matrix, D_{22} is an $m \times m$ orthogonal matrix, and $n-m$ orthogonal diagonal
matrices $D_{i}=\operatorname{diag}\left(\delta_{1}^{(i)}, \cdots, \delta_{n}^{(i)}\right)$ where $\delta_{j}^{(i)}= \pm 1(i=m+1, \cdots, n)$ such that

$$
\left\{\begin{array}{l}
Q_{1}\left(c^{(k)}\right)=\widetilde{Q}_{1}\left(c^{(k)}\right) D_{1}, R_{1}\left(c^{(k)}\right)=D_{1}^{T} \widetilde{R}_{1}\left(c^{(k)}\right) \tag{36}\\
Q_{i}\left(c^{(k)}\right)=\widetilde{Q}_{i}\left(c^{(k)}\right) D_{i}, R_{i}\left(c^{(k)}\right)=D_{i} \widetilde{R}_{i}\left(c^{(k)}\right), i=m+1, \cdots, n
\end{array}\right.
$$

By use of $(26,31,36)$, we have

$$
\begin{cases}R_{22}^{(1)}\left(c^{(k)}\right)=D_{22}^{T} \widetilde{R}_{22}^{(1)}\left(c^{(k)}\right), \frac{\partial R_{22}^{(1)}\left(c^{(k)}\right)}{\partial c_{j}}=D_{22}^{T} \frac{\partial \widetilde{R}_{22}^{(1)}\left(c^{(k)}\right)}{\partial c_{j}}, & j=1, \cdots, n \tag{37}\\ r_{n n}^{(i)}\left(c^{(k)}\right)=\delta_{n}^{(i)} \widetilde{r}_{n n}^{(i)}\left(c^{(k)}\right), \frac{\partial r_{n n}^{(i)}\left(c^{(k)}\right)}{\partial c_{j}}=\delta_{n}^{(i)} \frac{\partial \widetilde{r}_{n n}^{(i)}\left(c^{(k)}\right)}{\partial c_{j}}, & i=m+1, \cdots, n\end{cases}
$$

From (37) and the properties of the Kronecker product (see [18]), we obtain

$$
\left\{\begin{array}{l}
\operatorname{col} R_{22}^{(1)}\left(c^{(k)}\right)=\left(I \otimes D_{22}^{T}\right) \operatorname{col} \widetilde{R}_{22}^{(1)}\left(c^{(k)}\right) \tag{38}\\
\operatorname{col} \frac{\partial R_{22}^{(1)}\left(c^{(k)}\right)}{\partial c_{j}}=\left(I \otimes D_{22}^{T}\right) \operatorname{col} \frac{\partial \widetilde{R}_{22}^{(1)}\left(c^{(k)}\right)}{\partial c_{j}}, j=1, \cdots, n
\end{array}\right.
$$

From (27, 30, 37, 38), the matrices $J_{f}\left(c^{(k)}\right), \widetilde{J}_{f}\left(c^{(k)}\right)$ and the vectors $f\left(c^{(k)}\right), \tilde{f}\left(c^{(k)}\right)$ obtained in Algorithm 3.1 satisfy

$$
\begin{align*}
J_{f}\left(c^{(k)}\right) & =\operatorname{diag}\left(I \otimes D_{22}^{T}, \delta_{n}^{(m+1)}, \cdots, \delta_{n}^{(n)}\right) \widetilde{J}_{f}\left(c^{(k)}\right) \tag{39}\\
f\left(c^{(k)}\right) & =\operatorname{diag}\left(I \otimes D_{22}^{T}, \delta_{n}^{(m+1)}, \cdots, \delta_{n}^{(n)}\right) \widetilde{f}\left(c^{(k)}\right) \tag{40}
\end{align*}
$$

Hence (34) and (35) hold.
Lemma 4.1 shows that the iterates $c^{(k)}$ generated by Algorithm 3.1 do not vary with different $Q R$-like decompositions of $\left(A\left(c^{(k)}\right)-\lambda_{1} I\right) P_{1}\left(c^{(k)}\right)$ and different $Q R$ decompositions of $\left(A\left(c^{(k)}\right)-\lambda_{i} I\right) P_{i}\left(c^{(k)}\right)(i=m+$ $1, \cdots, n)$.

In order to analyse locally quadratic convergence of Algorithm 3.1, the following lemma on perturbation of $Q R$-like decomposition is required.

Lemma 4.2 (see [10]). Let $C_{1} \in \mathbb{R}^{n \times n}$ have its first $n-m$ columns linearly independent and let $C_{1}=Q_{1} R_{1}$ be a $Q R$-like decomposition with index m. Let $C_{2} \in \mathbb{R}^{n \times n}$ be any matrix satisfying $\left\|C_{1}-C_{2}\right\|_{2}<\varepsilon$. Then, for sufficiently small ε, C_{2} has a $Q R$-like decomposition with index $m, C_{2}=Q_{2} R_{2}$, such that $\left\|Q_{1}-Q_{2}\right\|_{2} \leq \kappa_{1} \varepsilon$ and $\left\|R_{1}-R_{2}\right\|_{2} \leq \kappa_{2} \varepsilon$, where κ_{1}, κ_{2} are constants independent on C_{2}.

Theorem 4.1. Suppose that the IEP have a solution c^{*}, and that in Algorithm $3.1 P_{i}\left(c^{(k)}\right)=P_{i}\left(c^{*}\right)(i=1, m+$ $1, \cdots, n)$ are independent on k when $\left\|c^{*}-c^{(k)}\right\|_{2}$ is sufficiently small. Assume also that $J_{f}\left(c^{*}\right) \in \mathbb{R}^{\left(m^{2}+n-m\right) \times n}$ corresponding to a $Q R$-like decomposition of $\left(A\left(c^{*}\right)-\lambda_{1} I\right) P_{1}\left(c^{*}\right)$ with index m and to $Q R$ decompositions of $\left(A\left(c^{*}\right)-\lambda_{i} I\right) P_{i}\left(c^{*}\right)(i=m+1, \cdots, n)$ is of full rank. Then Algorithm 3.1 is locally quadratically convergent.

Proof. First form the $Q R$-like decomposition of $\left(A\left(c^{*}\right)-\lambda_{1} I\right) P_{1}\left(c^{*}\right)$ with index m and $n-m Q R$ decompositions of $\left(A\left(c^{*}\right)-\lambda_{i} I\right) P_{i}\left(c^{*}\right)(i=m+1, \cdots, n)$

$$
\left\{\begin{array}{l}
\left(A\left(c^{*}\right)-\lambda_{1} I\right) P_{1}\left(c^{*}\right)=Q_{1}\left(c^{*}\right) R_{1}\left(c^{*}\right) \tag{41}\\
\left(A\left(c^{*}\right)-\lambda_{i} I\right) P_{i}\left(c^{*}\right)=Q_{i}\left(c^{*}\right) R_{i}\left(c^{*}\right), \quad i=m+1, \cdots, n .
\end{array}\right.
$$

Note that the matrix $J_{f}\left(c^{*}\right)$ corresponding to the decompositions (41), by assumption, has full rank, and that $J_{f}^{T}\left(c^{*}\right) J_{f}\left(c^{*}\right)$ is invertible.

Assuming that $\left\|c^{*}-c^{(k)}\right\|_{2}$ is sufficiently small, we can form a $Q R$-like decomposition of $\left(A\left(c^{(k)}\right)-\lambda_{1} I\right) P_{1}\left(c^{*}\right)$ with index m and $n-m Q R$ decompositions of $\left(A\left(c^{(k)}\right)-\lambda_{i} I\right) P_{i}\left(c^{*}\right)(i=m+1, \cdots, n)$

$$
\left\{\begin{array}{l}
\left(A\left(c^{(k)}\right)-\lambda_{1} I\right) P_{1}\left(c^{*}\right)=\widetilde{Q}_{1}\left(c^{(k)}\right) \widetilde{R}_{1}\left(c^{(k)}\right) \tag{42}\\
\left(A\left(c^{(k)}\right)-\lambda_{i} I\right) P_{i}\left(c^{*}\right)=\widetilde{Q}_{i}\left(c^{(k)}\right) \widetilde{R}_{i}\left(c^{(k)}\right)(i=m+1, \cdots, n) .
\end{array}\right.
$$

It follows from Lemma 4.2 that

$$
\left\{\begin{array}{l}
\left\|Q_{i}\left(c^{*}\right)-\widetilde{Q}_{i}\left(c^{(k)}\right)\right\|_{2} \leq \kappa_{1}^{(i)} \varepsilon \tag{43}\\
\left\|R_{i}\left(c^{*}\right)-\widetilde{R}_{i}\left(c^{(k)}\right)\right\|_{2} \leq \kappa_{2}^{(i)} \varepsilon, i=1, m+1, \cdots, n
\end{array}\right.
$$

where $\varepsilon=\max _{i=1, m+1, \ldots, n}\left\{\left\|\left(A\left(c^{*}\right)-A\left(c^{(k)}\right)\right) P_{i}\left(c^{*}\right)\right\|_{2}\right\}$. Corresponding to the decompositions (42), we obtain a matrix $\widetilde{J}_{f}\left(c^{(k)}\right) \in \mathbb{R}^{\left(m^{2}+n-m\right) \times n}$. From the definition of $J_{f}(c)$ and (43) we know that $\left\|J_{f}\left(c^{*}\right)-\widetilde{J}_{f}\left(c^{(k)}\right)\right\|_{2}$ is sufficiently small, and so is $\left\|J_{f}^{T}\left(c^{*}\right) J_{f}\left(c^{*}\right)-\widetilde{J}_{f}^{T}\left(c^{(k)}\right) \widetilde{J}_{f}\left(c^{(k)}\right)\right\|_{2}$ when $c^{(k)}$ is close to c^{*}. Therefore, $\widetilde{J}_{f}^{T}\left(c^{(k)}\right) \widetilde{J}_{f}\left(c^{(k)}\right)$ is invertible, $\widetilde{J}_{f}\left(c^{(k)}\right)$ has full rank, and $\left\|\widetilde{J}_{f}\left(c^{(k)}\right)\right\|_{2}$ is bounded.

The $Q R$-like decomposition and $n-m Q R$ decompositions obtained in Algorithm 3.1 at $c^{(k)}$ are not necessarily (42). Write them

$$
\left\{\begin{array}{l}
\left(A\left(c^{(k)}\right)-\lambda_{1} I\right) P_{1}\left(c^{*}\right)=Q_{1}\left(c^{(k)}\right) R_{1}\left(c^{(k)}\right) \tag{44}\\
\left(A\left(c^{(k)}\right)-\lambda_{i} I\right) P_{i}\left(c^{*}\right)=Q_{i}\left(c^{(k)}\right) R_{i}\left(c^{(k)}\right)(i=m+1, \cdots, n) .
\end{array}\right.
$$

It follows from Lemma 4.1 and (39) that $J_{f}\left(c^{(k)}\right)$ corresponding to the decompositions (44) also has full rank, $\left\|J_{f}^{T}\left(c^{*}\right) J_{f}\left(c^{*}\right)-J_{f}^{T}\left(c^{(k)}\right) J_{f}\left(c^{(k)}\right)\right\|_{2}$ is sufficiently small, and $\left\|J_{f}\left(c^{(k)}\right)\right\|_{2}$ is bounded if $\left\|c^{*}-c^{(k)}\right\|_{2}$ is small enough. Using the perturbation theory for the inversion of a matrix (see, for example [26]), we have

$$
\begin{equation*}
\left\|\left[J_{f}^{T}\left(c^{(k)}\right) J_{f}\left(c^{(k)}\right)\right]^{-1}\right\|_{2} \leq\left\|\left[J_{f}^{T}\left(c^{*}\right) J_{f}\left(c^{*}\right)\right]^{-1}\right\|_{2}+\omega(\varepsilon) \tag{45}
\end{equation*}
$$

for the sufficiently small $\left\|c^{*}-c^{(k)}\right\|_{2}$, where $\omega(\varepsilon) \geq 0$ is a continuous function of ε and $\omega(0)=0$.
Now we use Theorem 2.2 to extend smoothly the decompositions (44) to a neighbourhood of $c^{(k)}$ which may be assumed to include c^{*}. Then, abbreviating equations (24, 25)

$$
\begin{aligned}
& R_{22}^{(1)}\left(c^{*}\right)=R_{22}^{(1)}\left(c^{(k)}\right)+\sum_{j=1}^{n} \frac{\partial R_{22}^{(1)}\left(c^{(k)}\right)}{\partial c_{j}}\left(c_{j}^{*}-c_{j}^{(k)}\right)+O\left(\left\|c^{*}-c^{(k)}\right\|_{2}^{2}\right) \\
& r_{n n}^{(i)}\left(c^{*}\right)=r_{n n}^{(i)}\left(c^{(k)}\right)+\sum_{j=1}^{n} \frac{\partial r_{n n}^{(i)}\left(c^{(k)}\right)}{\partial c_{j}}\left(c_{j}^{*}-c_{j}^{(k)}\right)+O\left(\left\|c^{*}-c^{(k)}\right\|_{2}^{2}\right) .
\end{aligned}
$$

But $R_{22}^{(1)}\left(c^{*}\right)=0, r_{n n}^{(i)}\left(c^{*}\right)=0(i=m+1, \cdots, n)$, and we have

$$
f\left(c^{(k)}\right)+J_{f}\left(c^{(k)}\right)\left(c^{*}-c^{(k)}\right)=O\left(\left\|c^{*}-c^{(k)}\right\|_{2}^{2}\right) .
$$

Since $\left\|J_{f}\left(c^{(k)}\right)\right\|_{2}$ is bounded, then

$$
\begin{equation*}
J_{f}^{T}\left(c^{(k)}\right) J_{f}\left(c^{(k)}\right)\left(c^{*}-c^{(k)}\right)=-J_{f}^{T}\left(c^{(k)}\right) f\left(c^{(k)}\right)+O\left(\left\|c^{*}-c^{(k)}\right\|_{2}^{2}\right) \tag{46}
\end{equation*}
$$

Comparing (46) with the equation (29) defining $c^{(k+1)}$, we have

$$
J_{f}^{T}\left(c^{(k)}\right) J_{f}\left(c^{(k)}\right)\left(c^{*}-c^{(k+1)}\right)=O\left(\left\|c^{*}-c^{(k)}\right\|_{2}^{2}\right)
$$

It follows from this and (45) that

$$
\left\|c^{*}-c^{(k+1)}\right\|_{2}=O\left(\left\|c^{*}-c^{(k)}\right\|_{2}^{2}\right)
$$

as required.

5. Numerical experiments

We first give some perturbation results which may be used to measure the difference between the given eigenvalues and those of $A\left(c^{(k)}\right)$, where $c^{(k)}$ is an accepted approximation to c^{*}.

By use of $Q R$-like decomposition (15) of $A\left(c^{(k)}\right)-\lambda_{1} I$ with index m and $Q R$ decompositions (17) of $A\left(c^{(k)}\right)-$ $\lambda_{i} I(i=m+1, \cdots, n)$, it is easily verified that

$$
\begin{align*}
\left(A\left(c^{(k)}\right)-\lambda_{1} I\right) Q_{1}\left(c^{(k)}\right) E_{m} & =P_{1}\left(c^{(k)}\right) E_{m} R_{22}^{(1)^{T}}\left(c^{(k)}\right) \tag{47}\\
\left(A\left(c^{(k)}\right)-\lambda_{i} I\right) Q_{i}\left(c^{(k)}\right) e_{n} & =r_{n n}^{(i)}\left(c^{(k)}\right) P_{i}\left(c^{(k)}\right) e_{n}, i=m+1, \cdots, n \tag{48}
\end{align*}
$$

where $E_{m}=\left[e_{n-m+1}, \cdots, e_{n}\right]$. From the perturbation theory of eigenvalues (see [5, 26]), it follows that there exist m eigenvalues $\lambda_{1}\left(c^{(k)}\right), \cdots, \lambda_{m}\left(c^{(k)}\right)$ of $A\left(c^{(k)}\right)$ such that

$$
\begin{equation*}
\left|\lambda_{i}\left(c^{(k)}\right)-\lambda_{1}\right| \leq\left\|R_{22}^{(1)}\left(c^{(k)}\right)\right\|_{F}, i=1, \cdots, m \tag{49}
\end{equation*}
$$

and that for any $i(m+1 \leq i \leq n)$ there is an eigenvalue λ of $A\left(c^{(k)}\right)$ such that

$$
\begin{equation*}
\left|\lambda-\lambda_{i}\right| \leq\left|r_{n n}^{(i)}\left(c^{(k)}\right)\right|, i=m+1, \cdots, n \tag{50}
\end{equation*}
$$

Since $\lambda_{1}<\lambda_{m+1}<\cdots<\lambda_{n}$, the intervals $\left|z-\lambda_{1}\right| \leq\left\|R_{22}^{(1)}\left(c^{(k)}\right)\right\|_{F},\left|z-\lambda_{i}\right| \leq\left|r_{n n}^{(i)}\left(c^{(k)}\right)\right|(i=m+1, \cdots, n)$ are disjoint from each other if $\left\|R_{22}^{(1)}\left(c^{(k)}\right)\right\|_{F},\left|r_{n n}^{(i)}\left(c^{(k)}\right)\right|$ are sufficiently small. Therefore, the smallest m eigenvalues $\lambda_{1}\left(c^{(k)}\right), \cdots, \lambda_{m}\left(c^{(k)}\right)$ of $A\left(c^{(k)}\right)$ satisfy (49), and the remainder $n-m$ eigenvalues $\lambda_{m+1}\left(c^{(k)}\right), \cdots, \lambda_{n}\left(c^{(k)}\right)$ are different from each other and satisfy

$$
\begin{equation*}
\left|\lambda_{i}\left(c^{(k)}\right)-\lambda_{i}\right| \leq\left|r_{n n}^{(i)}\left(c^{(k)}\right)\right|, i=m+1, \cdots, n \tag{51}
\end{equation*}
$$

Now we present some of our numerical experiments with Algorithm 3.1, and also give a numerical comparison between Algorithm 3.1 and Method I in [13] for our examples. The following tests were made on a SUN workstation at CERFACS. Double precision arithmetic was used throughout. The iterations were stopped when the norm $\left\|f\left(c^{(k)}\right)\right\|_{2}$ was less than 10^{-10}. For convenience, all vectors will be written as row-vectors.

Table 1.

Iteration	Algorithm 3.1		Method I in [13]									
	$\left\\|c^{*}-c^{(k)}\right\\|_{2}$	$\left\\|f\left(c^{(k)}\right)\right\\|_{2}$	$\left\\|c^{*}-c^{(k)}\right\\|_{2}$	$\left\\|\lambda^{*}-\lambda\left(c^{(k)}\right)\right\\|_{2}$								
0	$0.1020 \mathrm{E}+02$	$0.7064 \mathrm{E}+01$	$0.1020 \mathrm{E}+02$	$0.6401 \mathrm{E}+01$								
1	$0.1627 \mathrm{E}+01$	$0.8234 \mathrm{E}+00$	$0.2064 \mathrm{E}+01$	$0.8931 \mathrm{E}+00$								
2	$0.1360 \mathrm{E}+00$	$0.6400 \mathrm{E}-01$	$0.3070 \mathrm{E}+00$	$0.1031 \mathrm{E}+00$								
3	$0.1419 \mathrm{E}-02$	$0.6335 \mathrm{E}-03$	$0.8195 \mathrm{E}-02$	$0.2725 \mathrm{E}-02$								
4	$0.1576 \mathrm{E}-06$	$0.7023 \mathrm{E}-07$	$0.7170 \mathrm{E}-05$	$0.2316 \mathrm{E}-05$								
5	$0.9010 \mathrm{E}-13$	$0.8392 \mathrm{E}-14$	$0.5139 \mathrm{E}-11$	$0.1690 \mathrm{E}-11$								

Example 5.1 (see [13]). This is an additive inverse eigenvalue problem with distinct eigenvalues. Let $n=8$,

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{cccccccc}
0 & 4 & -1 & 1 & 1 & 5 & -1 & 1 \\
4 & 0 & -1 & 2 & 1 & 4 & -1 & 2 \\
-1 & -1 & 0 & 3 & 1 & 3 & -1 & 3 \\
1 & 2 & 3 & 0 & 1 & 2 & -1 & 4 \\
1 & 1 & 1 & 1 & 0 & 1 & -1 & 5 \\
5 & 4 & 3 & 2 & 1 & 0 & -1 & 6 \\
-1 & -1 & -1 & -1 & -1 & -1 & 0 & 7 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 0
\end{array}\right), \quad A_{k}=e_{k} e_{k}^{T}, k=1, \cdots, 8 \\
& A(c)=A_{0}+\sum_{i=1}^{n} c_{i} A_{i} .
\end{aligned}
$$

The eigenvalues are prescribed to be

$$
\lambda^{*}=(10,20,30,40,50,60,70,80)
$$

(i) with the starting point $c^{(0)}=(10,20,30,40,50,60,70,80)$, Algorithm 3.1 converges to a solution

$$
\begin{aligned}
c^{*}= & (11.90787610,19.70552151,30.54549819,40.06265749 \\
& 51.58714029,64.70213143,70.17067582,71.31849917)
\end{aligned}
$$

and the results are displayed in Table 1.
(ii) with a different starting point $c^{(0)}=(10,80,70,50,60,30,20,40)$, Algorithm 3.1 also converges, but to a different solution

$$
\begin{aligned}
c^{*}= & (11.46135430,78.88082936,68.35339960,49.87833041 \\
& 59.16891783,30.41047015,24.83432401,37.01237433)
\end{aligned}
$$

The nature of the convergence is illustrated in Table 2.

Table 2.

Iteration	Algorithm 3.1		Method I in [13]									
	$\left\\|c^{*}-c^{(k)}\right\\|_{2}$	$\left\\|f\left(c^{(k)}\right)\right\\|_{2}$	$\left\\|c^{*}-c^{(k)}\right\\|_{2}$	$\left\\|\lambda^{*}-\lambda\left(c^{(k)}\right)\right\\|_{2}$								
0	$0.6267 \mathrm{E}+01$	$0.4783 \mathrm{E}+01$	$0.6267 \mathrm{E}+01$	$0.4376 \mathrm{E}+01$								
1	$0.5978 \mathrm{E}+00$	$0.3736 \mathrm{E}+00$	$0.8358 \mathrm{E}+00$	$0.4086 \mathrm{E}+00$								
2	$0.1438 \mathrm{E}-01$	$0.8334 \mathrm{E}-02$	$0.3931 \mathrm{E}-01$	$0.1881 \mathrm{E}-01$								
3	$0.9151 \mathrm{E}-05$	$0.5368 \mathrm{E}-05$	$0.9733 \mathrm{E}-04$	$0.4598 \mathrm{E}-04$								
4	$0.3708 \mathrm{E}-11$	$0.2145 \mathrm{E}-11$	$0.6066 \mathrm{E}-09$	$0.2875 \mathrm{E}-09$								
5			$0.1587 \mathrm{E}-14$	$0.4293 \mathrm{E}-13$								

Table 3.

Iteration	Algorithm 3.1		Method I in [13]									
	$\left\\|c^{*}-c^{(k)}\right\\|_{2}$	$\left\\|f\left(c^{(k)}\right)\right\\|_{2}$	$\left\\|c^{*}-c^{(k)}\right\\|_{2}$	$\left\\|\lambda^{*}-\lambda\left(c^{(k)}\right)\right\\|_{2}$								
0	$0.2828 \mathrm{E}-01$	$0.1025 \mathrm{E}+02$	$0.2828 \mathrm{E}-01$	$0.9327 \mathrm{E}-01$								
1	$0.5689 \mathrm{E}-03$	$0.6087 \mathrm{E}-02$	$0.1466 \mathrm{E}-01$	$0.9630 \mathrm{E}-03$								
2	$0.1348 \mathrm{E}-06$	$0.1087 \mathrm{E}-05$	$0.1844 \mathrm{E}-03$	$0.3045 \mathrm{E}-03$								
3	$0.4210 \mathrm{E}-13$	$0.3746 \mathrm{E}-12$	$0.6129 \mathrm{E}-07$	$0.5262 \mathrm{E}-07$								
4			$0.1314 \mathrm{E}-12$	$0.6573 \mathrm{E}-13$								

Example 5.2 (see [13]). An inverse eigenvalue problem with multiple eigenvalues is defined. Let $n=8$,

$$
V=\left(\begin{array}{ccccc}
1 & -1 & -3 & -5 & -6 \\
1 & 1 & -2 & -5 & -17 \\
1 & -1 & -1 & 5 & 18 \\
1 & 1 & 1 & 2 & 0 \\
1 & -1 & 2 & 0 & 1 \\
1 & 1 & 3 & 0 & -1 \\
2.5 & 0.2 & 0.3 & 0.5 & 0.6 \\
2 & -0.2 & 0.3 & 0.5 & 0.8
\end{array}\right)
$$

and $B=I+V V^{T}$. We define the matrices $\left\{A_{i}\right\}$ as follows:

$$
A_{0}=0, \quad A_{k}=\sum_{j=1}^{k-1} b_{k j}\left(e_{k} e_{j}^{T}+e_{j} e_{k}^{T}\right)+b_{k k} e_{k} e_{k}^{T}, k=1, \cdots, 8, \quad A(c)=A_{0}+\sum_{i=1}^{n} c_{i} A_{i}
$$

(i) We consider $c^{*}=(1,1,1,1,1,1,1,1)$, then $A\left(c^{*}\right)=B$ and its eigenvalues are

$$
\lambda^{*}=(1,1,1,2.12075361,9.21886818,17.28136579,35.70821864,722.68079377)
$$

With the starting point $c^{(0)}=(0.99,0.99,0.99,0.99,1.01,1.01,1.01,1.01)$, Algorithm 3.1 converges and the results are displayed in Table 3.

We choose $\lambda^{*}=(1,1,1,2.12075361,9.21886818)$, and use the same starting point $c^{(0)}$, the locally unique solution found by Method I in [13] is also exactly c^{*}. The residual is also given in Table 3.
(ii) Now let us choose the target eigenvalues

$$
\lambda^{*}=(1,1,1,2.1,9.0,15.98788273,34.43000675,704.22223731)
$$

Table 4.

Iteration	Algorithm 3.1		Method I in [13]									
	$\left\\|c^{*}-c^{(k)}\right\\|_{2}$	$\left\\|f\left(c^{(k)}\right)\right\\|_{2}$	$\left\\|c^{*}-c^{(k)}\right\\|_{2}$	$\left\\|\lambda^{*}-\lambda\left(c^{(k)}\right)\right\\|_{2}$								
0	$0.2444 \mathrm{E}+00$	$0.1667 \mathrm{E}+02$	$0.2444 \mathrm{E}+00$	$0.2096 \mathrm{E}+00$								
1	$0.2683 \mathrm{E}-01$	$0.2269 \mathrm{E}+00$	$0.1421 \mathrm{E}+00$	$0.1925 \mathrm{E}+00$								
2	$0.1167 \mathrm{E}-02$	$0.7393 \mathrm{E}-02$	$0.2205 \mathrm{E}+00$	$0.2042 \mathrm{E}+00$								
3	$0.1919 \mathrm{E}-05$	$0.1619 \mathrm{E}-04$	$0.7226 \mathrm{E}-01$	$0.3231 \mathrm{E}-01$								
4	$0.6633 \mathrm{E}-11$	$0.5174 \mathrm{E}-10$	$0.8662 \mathrm{E}-02$	$0.7108 \mathrm{E}-02$								
5			$0.1983 \mathrm{E}-03$	$0.1444 \mathrm{E}-03$								
6			$0.1086 \mathrm{E}-06$	$0.7892 \mathrm{E}-07$								
7			$0.8441 \mathrm{E}-12$	$0.7171 \mathrm{E}-13$								

Table 5.

Iteration	Algorithm 3.1		Method I in [13]									
	$\left\\|c^{*}-c^{(k)}\right\\|_{2}$	$\left\\|f\left(c^{(k)}\right)\right\\|_{2}$	$\left\\|c^{*}-c^{(k)}\right\\|_{2}$	$\left\\|\lambda^{*}-\lambda\left(c^{(k)}\right)\right\\|_{2}$								
0	$0.2000 \mathrm{E}+00$	$0.3231 \mathrm{E}+00$	$0.2000 \mathrm{E}+00$	$0.1583 \mathrm{E}+00$								
1	$0.4041 \mathrm{E}-01$	$0.4341 \mathrm{E}-01$	$0.9981 \mathrm{E}-01$	$0.2439 \mathrm{E}-01$								
2	$0.7522 \mathrm{E}-03$	$0.6398 \mathrm{E}-03$	$0.3753 \mathrm{E}-02$	$0.1179 \mathrm{E}-02$								
3	$0.3999 \mathrm{E}-06$	$0.4985 \mathrm{E}-06$	$0.6254 \mathrm{E}-06$	$0.5534 \mathrm{E}-06$								
4	$0.2579 \mathrm{E}--13$	$0.1474 \mathrm{E}-13$	$0.6071 \mathrm{E}-12$	$0.1827 \mathrm{E}-12$								

Using the same starting point $c^{(0)}$ as above, Algorithm 3.1 converges quadratically to the locally unique solution c^{*}.

$$
\begin{align*}
c^{*}= & (0.98336098,0.97437047,0.97531317,1.05452291, \\
& 0.85548596,0.91177696,0.92833105,0.88800130) . \tag{52}
\end{align*}
$$

Table 4 gives the residual.
Choosing the target eigenvalues $\lambda^{*}=(1,1,1,2.1,9.0)$ and using the same starting point $c^{(0)}$, the locally unique solution found by Method I in [13] is also exactly (52). Table 4 displays the residual.
Example 5.3. Let $n=4$,

$$
\begin{gathered}
A_{0}=\operatorname{diag}(1.5,1,2,1), \quad A_{1}=\left(\begin{array}{cccc}
0.5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
A_{3}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad A_{4}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \\
A(c)=A_{0}+\sum_{i=1}^{n} c_{i} A_{i} .
\end{gathered}
$$

The eigenvalues are prescribed by

$$
\lambda^{*}=(0,2,2,4) .
$$

An exact solution of the IEP is $c^{*}=(1,1,1,1)$. Algorithm 3.1 and Method I in $[13]\left(\lambda^{*}=(0,2,2)\right)$ converge to the locally unique solution c^{*} from the starting point $c^{(0)}=(1.1,0.9,1.1,0.9)$. The results are presented in Table 5.

These examples and our other numerical experiments with Algorithm 3.1 indicate that quadratic convergence indeed occurs in practice. We observed in most of our tests that Algorithm 3.1 took less iterations than Method I in [13].

The author would like to thank Professor F. Chaitin-Chatelin and Dr.V. Frayssé for providing a fine working environment during his visit to CERFACS and for their careful reading of a preliminary version of this manuscript.

References

[1] G. Alefeld, A. Gienger and G. Mayer, Numerical validation for an inverse matrix eigenvalue problem. Computing 53 (1984) 311-322.
[2] F.W. Biegler-König, Sufficient conditions for the solubility of inverse eigenvalue problems. Linear Algebra Appl. 49 (1981) 89-100.
[3] F.W. Biegler-König, A Newton iteration process for inverse eigenvalue problems. Numer. Math. 37 (1981) 349-354.
[4] Z. Bohte, Numerical solution of the inverse algebraic eigenvalue problem. Comput. J. 10 (1968) 385-388.
[5] Z.H. Cao, J.J. Xie and R.C. Li, A sharp version of Kahan's theorem on clustered eigenvalues. Linear Algebra Appl. 245 (1996) 147-156.
[6] X. Chen and M.T. Chu, On the least squares solution of inverse eigenvalue problems. SIAM J. Numer. Anal. 33 (1996) 2417-2430.
[7] M.T. Chu, Solving additive inverse eigenvalue problem for symmetric matrices by the homotopy method. IMA J. Numer. Anal. 9 (1990) 331-342.
[8] H. Dai, On the additive inverse eigenvalue problem. Transaction of Nanjing University of Aeronautics and Astronautics 7 (1990) 108-113.
[9] H. Dai, Sufficient condition for the solubility of an algebraic inverse eigenvalue problem (in Chinese). Math. Numer. Sinica 11 (1989) 333-336.
[10] H. Dai and P. Lancaster, Numerical methods for finding multiple eigenvalues of matrices depending on parameters. Numer. Math. 76 (1997) 189-208.
[11] A.C. Downing and A.S. Householder, Some inverse characteristic value problems. J. Assoc. Comput. Mach. 3 (1956) 203-207.
[12] S. Friedland, Inverse eigenvalue problems. Linear Algebra Appl. 17 (1977) 15-51.
[13] S. Friedland, J. Nocedal and M.L. Overton, The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J. Numer. Anal. 24 (1987) 634-667.
[14] G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd edn. Johns Hopkins University Press, Baltimore, MD (1989).
[15] K.P. Hadeler, Ein inverses Eigenwertproblem. Linear Algebra Appl. 1 (1968) 83-101.
[16] W.N. Kublanovskaya, On an approach to the solution of the inverse eigenvalue problem. Zap. Naucn. Sem. Leningrad Otdel. Mat. Inst. Stcklov. (1970) 138-149.
[17] F. Laborde, Sur un problème inverse d'un problème de valeurs propres. C.R. Acad. Sci. Paris. Sér. A-B 268 (1969) 153-156.
[18] P. Lancaster and M. Tismenetsky, The Theory of Matrices with Applications. Academic Press, New York (1985).
[19] L.L. Li, Some sufficient conditions for the solvability of inverse eigenvalue problems. Linear Algebra Appl. 148 (1991) 225-236.
[20] L.L. Li, Sufficient conditions for the solvability of algebraic inverse eigenvalue problems. Linear Algebra Appl. 221 (1995) 117-129.
[21] R.C. Li, $Q R$ decomposition and nonlinear eigenvalue problems (in Chinese). Math. Numer. Sinica 14 (1989) 374-385.
[22] R.C. Li, Compute multiply nonlinear eigenvalues. J. Comput. Math. 10 (1992) 1-20.
[23] R.C. Li, Algorithms for inverse eigenvalue problems. J. Comput. Math. 10 (1992) 97-111.
[24] P. Morel, Des algorithmes pour le problème inverse des valeur propres. Linear Algebra Appl. 13 (1976) 251-273.
[25] M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970).
[26] G.W. Stewart and J.-G. Sun, Matrix Perturbation Analysis. Academic Press, New York (1990).
[27] J.-G. Sun, On the sufficient conditions for the solubility of algebraic inverse eigenvalue problems (in Chinese). Math. Numer. Sinica 9 (1987) 49-59.
[28] J.-G. Sun and Q. Ye, The unsolvability of inverse algebraic eigenvalue problems almost everywhere. J. Comput. Math. 4 (1986) 212-226.
[29] J.-G. Sun, The unsolvability of multiplicative inverse eigenvalues almost everywhere. J. Comput. Math. 4 (1986) 227-244.
[30] S.F. Xu, On the necessary conditions for the solvability of algebraic inverse eigenvalue problems. J. Comput. Math. 10 (1992) 93-97.
[31] S.F. Xu, On the sufficient conditions for the solvability of algebraic inverse eigenvalue problems. J. Comput. Math. 10 (1992) 171-180.
[32] Q. Ye, A class of iterative algorithms for solving inverse eigenvalue problems (in Chinese). Math. Numer. Sinica 9 (1987) 144-153.
[33] S.Q. Zhou and H. Dai, The Algebraic Inverse eigenvalue Problem (in Chinese). Henan Science and Technology Press, Zhengzhou, China (1991).

The proofs have not been corrected by the author.

[^0]: Keywords and phrases. Inverse eigenvalue problems, $Q R$-like decomposition, least squares, Gauss-Newton method.
 1 Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. The research was supported in part by the National Natural Science Foundation of China and the Jiangsu Province Natural Science Foundation. This work was done while the author was visiting CERFACS, France (March-August 1998).

