Non-trapping sets and Huygens principle
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 3, p. 517-530
@article{M2AN_1999__33_3_517_0,
     author = {Benedetto, Dario and Caglioti, Emanuele and Libero, Roberto},
     title = {Non-trapping sets and Huygens principle},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {33},
     number = {3},
     year = {1999},
     pages = {517-530},
     zbl = {0935.35167},
     mrnumber = {1713236},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_3_517_0}
}
Benedetto, Dario; Caglioti, Emanuele; Libero, Roberto. Non-trapping sets and Huygens principle. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 3, pp. 517-530. http://www.numdam.org/item/M2AN_1999__33_3_517_0/

[1] H. Busemann, Convex Surfaces, in Interscience Tracts in Pure and Applied Mathematics, No. 6, Interscience Publishers INC.,New York (1958). | MR 105155 | Zbl 0196.55101

[2] B. Chow, L. P. Liou and D. H. Tsai, Expansion of embedded curves with turning angle greater than -π. Invent. Math. 123 (1996) 415-429. | MR 1383955 | Zbl 0858.53001

[3] M. C. Delfour and J. P. Zolésio, Shape Analysis via Oriented Distance Functions J Funct. Anal. 123 (1994) 129-201. | MR 1279299 | Zbl 0814.49032

[4] L. C. Evans and R. F. Gariepy, Measure Theory and fine properties of functions. CRC Press (1992). | MR 1158660 | Zbl 0804.28001

[5] E. Giusti, Minimal surfaces and functions of bounded variation, in Notes on Pure Mathematics, Birkhäuser, Boston (1984). | MR 775682 | Zbl 0545.49018

[6] E. Makai, Steiner type inequalities in plane geometry. Period. Polytech. Elec. Engrg. 3 (1959) 345-355. | MR 110050

[7] M. H. A. Newman, Elements of the Topology of the Plane Sets of Points. Cambridge University Press (1951). | MR 44820 | Zbl 0045.44003

[8] L. A. Santaló, Integral Geometry and Geometric Probability, in Encyclopedia of Mathematics and its applications, Addison-Wesley Pub (1976). | MR 433364 | Zbl 0342.53049