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Mathematical Modelling and Numerical Analysis M2AN, VoL 33, N° 1, 1999, p. 67-87
Modélisation Mathématique et Analyse Numérique

APPROXIMATION OF A MARTENSITIC LAMINATE WITH VARYING
VOLUME FRACTIONS*

BO Ll1 AND MlTCHELL LUSKIN2

Abstract. We give results for the approximation of a laminate with varying volume fractions for
multi-well energy minimization problems modeling martensitic crystals that can undergo either an
orthorhombic to monoclinic or a cubic to tetragonal transformation. We construct energy minimizing
séquences of déformations which satisfy the corresponding boundary condition, and we establish a
series of error bounds in terms of the elastic energy for the approximation of the limiting macroscopic
déformation and the simply laminated microstructure. Finally, we give results for the corresponding
finite element approximation of the laminate with varying volume fractions.

Résumé. Nous considérons des problèmes de minimisation d'énergie avec de multiples puits de po-
tentiel. De tels problèmes modélisent, pour des cristaux martensitiques, des transitions de phase d'un
réseau orthorhombique à monoclinique, ou d'un réseau cubique à tetragonal, par exemple.
Des résultats d'approximation des structures laminaires correspondantes, avec fractions volumiques
variables, sont donnés. Des suites minimisantes, avec déformations compatibles avec les conditions au
bord, sont construites et permettent l'obtention de plusieurs estimations d'erreur concernant Papproxi-
mation de la déformation macroscopique limite en fonction de l'énergie élastique.
Finalement, nous décrivons des résultats concernant l'approximation par éléments finis de la structure
laminaire avec fractions volumiques variables.
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1. INTRODUCTION

The recently developed geometrically nonlinear theory of martensite predicts the martensitic microstructure
to be the limiting configuration of energy minimizing séquences of déformations for a nonconvex energy [2,3,
10,14,15,18,19,21,24]. In this theory, the energy density is minimized on multiple energy wells S0(3)L/i U
• • • U SO($)UN where !7i, • • • , UN for N > 1 are symmetry-related transformation strains representing distinct
variants of the martensite and SO(3) is the set of ail 3 x 3 real orthogonal matrices with determinant equal to
one. Although the effect of surface energy makes a homogeneous déformation most stable, for certain boundary
constraints or loading conditions the elastic energy of a martensitic crystal can be lowered as much as possible
only by the fine-scale mixing of déformation gradients from distinct energy wells. A common example of such
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a microstructure is a simple laminate in which the déformation gradient oscillâtes in parallel layers of fine-
scale between two compatible, stress-free, homogeneous states [4,5]. More complex microstructures have been
described using the notion of Young measure which gives the volume fraction for the mixing of the déformation
gradients of the energy minimizing séquences of déformations [2,3,20,32,33].

We focus on martensitic crystals that can undergo either an orthorhombic to monoclinic or a cubic to
tetragonal transformation [3,24]. A martensitic crystal which can undergo an orthorhombic to monoclinic
transformation has two symmetry-related martensitic variants (N = 2), and hence the elastic energy density
has two wells. The more commonly observed cubic to tetragonal transformation has three symmetry-related
martensitic variants (N = 3), so the elastic energy density has three wells. For both transformations, Bail and
James have shown for boundary data which are consistent with a first-order laminate with constant volume
fractions that the unique energy minimizing microstructure is the first-order laminate [3].

In this paper, we present an approximation theory for first-order laminâtes with varying volume fractions.
We establish a series of error bounds in terms of the elastic energy of déformations for the L2 approximation
of the directional derivative of the limiting macroscopic déformation in any direction tangential to the parallel
layers of the laminate, for the L2 approximation of the limiting macroscopic déformation, for the approximation
of volume fractions of the participât ing martensitic variants, and for the approximation of nonlinear intégrais
of déformation gradients.

We also give corresponding error estimâtes for conforming finite element approximations of the laminate
with varying volume fractions. For simplicity of exposition, we restrict our analysis to continuous, piecewise
linear, tetrahedral finite éléments; but our analysis can be directly extended to higher order finite éléments. We
construct quasi-optimal finite element déformations, and we give corresponding error estimâtes for quasi-optimal
finite element déformations.

The main framework of our analysis is the approximation theory developed for simple laminâtes with constant
volume fractions for a two-well problem which applies to the orthorhombic to monoclinic transformation [25].
This analysis was extended to the cubic to tetragonal transformation in [22]. For constant volume fractions, an
analysis for a nonconforming finite element approximation was given in [23].

A theory of numerical analysis for the microstructure in nonconvex variational problems was developed
in [12,13], and extended in [7-9,17,26]. Analyses of the approximation of relaxed variational problems have
been given in [6,16,27-29,31]. We refer to the recent article [24] for a survey of models, computation, and
numerical analysis for martensitic microstructure.

In Section 2, we describe the multi-well energy minimization problems. In Section 3, we construct energy
minimizing séquences of déformations which satisfy the corresponding nonhomogeneous boundary condition. In
Sections 4 and 5, we establish a series of error bounds in terms of the elastic energy of déformations for the
approximation of the limiting macroscopic déformation and the approximation of the microstructure. Finally,
in Section 6, we give error estimâtes for the approximation by quasi-optimal finite element déformations.

2. ENERGY MINIMIZATION PROBLEMS

In this section, we give a summary of the properties and known results for the orthorhombic to monoclinic
and cubic to tetragonal martensitic transformations [2,3,24].

An orthorhombic to monoclinic transformation for a martensitic crystal is determined by its martensitic
variants

Ui = (/ -f rçei (

where / is the identity transformation from IR3 to M3,77 > 0 is a material parameter, {ei, e2i es} is an orthonormal
basis for M3, and D is a symmetrie, positive definite, linear transformation from M3 to M3, given by

D — d^e\ <8> ei + d2e2 ® ei + d^e^ <g) e3
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for some ^1,(^2^3 > 0. A cubic to tetragonal transformation for a martensitic crystal is determined by its
martensitic variants

Ui = r\\l + (m - 77i)ei ® ei, U2 = 771/ + (rç2 - rçi)e2 0 e2,
% = m^ + (V2 - rçi)e3 ® e3,

where 771 > 0 and 772 > 0 are material parameters such that 771 ̂  772, and {ei3 e2, e3} is again an orthonormal
basis for R3.

For a given martensitic crystal, we dénote by O the référence configuration which is taken to be the homo-
geneous austenitic state at the transformation température. We assume that O C l 3 is a connected, bounded,
open set with a Lipschitz continuous boundary. We also dénote the elastic energy density of the crystal at a
fixed température below the transformation température by the continuous function <j) : E 3 x 3 —> M, where M3x3

dénotes the set of ail 3 x 3 real matrices. The elastic energy of a déformation y : O —» M3 is given by

[ )dx, (2.1)

where Vy : O -» R3x3 is the déformation gradient. We define the set of déformations of finite energy by

= lye C(Ô;E3) : ƒ (p(Vy(x)) dx < 00

We assume that the energy density <j> is minimized on the energy wells

where K — {1, 2} for the orthorhonibic to monoclinic transformation and K — {1, 2, 3} for the cubic to tetragonal
transformation. Thus? we may assume after adding a constant to the energy density that

<j>(F) > G, VF e E3 x 3 ,

<t>(F) = 0 if and only if F € U == U {Ui : i G K} . (2.2)

We shall also assume that the energy density <f> grows quadratically away from the energy wells, that is,

4>(F) > K\\F - TT(F)||2, VF G M3x3, (2.3)

where K > 0 is a constant and TT : M3x3 —» U is a Borel measurable projection defined by

| | F -7 r (F ) | | =mm| |F -G | | , VF 6 TO3X3

and where

The projection ?r(F) exists for any F G 3R3x3, since U is compact, although the projection may not be unique.
It is easy to see that

det F = d1d2dz > 0, VF e U = U {Ui : i G K} , (2.4)
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for the orthorhombic to monoclinic transformation, and that

det F = rfirfr > 0, VF 6 U = U {Ui : i e K} , (2,5)

for the cubic to tetragonal transformation.
We note that every fonction in WlïOO(0) is equal almost everywhere to a unique Lipschitz continuons fonction

defined on Ö [1]. For simplicity in what follows, we shall consider only the Lipschitz continuous représenta-
tives of fonctions in WlyOO(fl). Thus, we shall consider fonctions in PFli°°(O) to be Lipschitz continuous and
defined everywhere, although the gradients of fonctions in W1|0O(fi) can only be defined almost everywhere
(denoted a.e.).

We call two matrices rank-one connected if their différence is a rank-one matrix. The classical Hadamard
compatibility condition states that, given a plane with unit normal n and two distinct constant matrices Fo, F± €
M3x3, there exists a continuous déformation y : R3 -> M3 such that Vy takes the value FQ on one side of the
plane and F± on the other side if and only if Fo and F\ are rank-one connected as

Fx - Fo = a 0 n (2.6)

for some non-zero vector Û £ Ë 3 . We next present a lemma that classifies all possible simple laminâtes formed.
by pairs of variants up to multiplication of rotations for the martensitic crystals in our discussion [2,3,24]. The
lemma states that there is no rank-one connection between Ui and itself; and that for any i, j e if,i ^ j , there
are exactly two rank-one connections between Ui and Uj.

Lemma 2.1. (1) For each i € K, there do not exist matrices R\Ui and R2Üi with distinct R\, R2 G 50(3) that
are rank-one connected.

(2) For any i,j € K,i^ j , there are exactly two distinct Q € 50(3) such that

for some a, n € M3, \n\ = 1, respectively.
We have that

n G {±ei, ±e2}

/or i/ie orthorhombic to monoclinic transformation, and that

for the cubic to tetragonal transformation.

We shall also assume that F0,Fi €U are rank-one connected as in (2.6), so

(1 - A)F0 + AFi = Fo + Xa ® n, A € M. (2.7)

By Lemma 2.1, we can assume without loss of generality that F\ E Ui and FQ El/2, and we can also assume

that

n = ei

for the orthorhombic to monoclinic transformation and that

n = _ L ( e i + e2)
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for the cubic to tetragonal transformation. We note that it can be shown under the hypotheses of Lemma 2.1
that if A / 0 and A ̂  1 then [2,3,24]

(1 - X)F0 + AFi = Fo + Aa fc> n £ W.

The following lemma shows that any déformation with a gradient that is a mixture of the two matrices Fo and
F\ must be a simple laminate.

Lemma 2.2. Let y G WliOO(Ü,R3) be such that

Vy(x) = (1 - X(x))F0 + X(x)F1 a.e. x e ï l ,

for the volume fraction X G L°°(ft) satisfying 0 < A(x) < 1. We have that there exist unique l G W1'00^) and
y G E3, y - a = 0, such that

y[x) = Fox -h l(x)a + y, x G Q}

= X(x)n a.e. xGfi.

Qisa subdomain with the property that {x G Û : x -n = £} is connected for each £ € M, then there exist
ïe W^°°(R) and X G L°°(K) such that

l(x) = ï(x-n), x e Ù,

X(x) — X(x - n) a.e. x G Ö,

ï\s) = X(s) a.e. s G E.

Proof. The proof is identical to the proof of Proposition 1 in [2] for the case when A is a characteristic function.
It follows by noting that if w G IR3, w • a = 0, then

V [(y(x) - Fox) - W ] = 0 a . e . x G ^ .

D

In this paper, we consider the minimization of the elastic energy (2.1) with respect to déformations y G
which are constrained by y(x) = yx(x) for x e dü where

y\(x) = Fox + i(x)a, x G $1,

Vl{x) = X(x)n a.e. x G Î ] , (2.8)

and where Z G V7li°°(Q) and A G L°°(Q>) satisfies 0 < X(x) < 1. Our energy minimization problem is to minimize
the energy (2.1) in the set of admissible déformations defined by

3. CONSTRUCTION OF ENERGY MINIMIZING SÉQUENCES

We first consider the special case of (2.8) where X(x) = X(x • n) for X(s) G L°°(M), so

r fx'n - i
yx(x) = Fox+\ X(s)ds + C o, xeCt, (3.1)

Uo 1
for some ( e i .
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We construct in two steps a family of déformations û 7 G W1)OO(R3;R3)? 7 G (O,7o]? for any fixed 70 > 0,
satisfying

lim £{{Lf) = 0.

First, we construct uy G W l ïOO(R3; M3), 7 G (0,70], which are simple laminâtes of scale 7 such that V W 7 ( Ï ) = F$
or F\ for almost ail x G M3. Second, we construct ûj G W"jf, 7 G (0,70], by modifying u7 by interpolation on
the boundary.

Step î. Construction of u 7 G Wr l»oo(R3;R3) ï 7 G (0,70]. Set

1 f
jW = ru _ 1)^27] and A}/ = — ƒ A(s)ds, Vt G Z,

7 7 ƒ#>

Define the piecewise constant function A7 : M. —> M by

A7(s) = A7" if s G J7* , * € Z,

and define the characteristic function X7 "• M -^ M by

{ 1 if (i — 1)7 < s < ( i — 1 4- A7 ) 7 for some i G Z,

0 i f ( i — 1 + A 7 j 7 < 5 < t 7 for some i G Z.

Since 0 < Â(s), Â7(s), x-y(5) ^ 1 f° r almost ail s G R, we have for any bounded interval J C M1 that

= 27 . (3.2)

Define now

/0

Obviously, % G W1>OO(M3;E3). Moreover, we have by (2.6) that

In view of (3.1, 3.2), we also have

\v*r(x) - y\(x)\ < 2|o|7, x G l 3 . (3.4)

Step 2. Construction of û 7 G Wf, 7 G (0,70]. Set

fi7 = {x G O : dist (a;, 90) > ^7}

for some constant v > 0 which will be specified later. Define ^ 7 : 0 -> E by

1 i f x G Û 7 )

if x G O \ O
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It is easy to see that ipj G Wli<x>(Q) and

0 < <ip7(x) < 1, xGÎl ,
%{x) = 1, x e O 7 , .
^7(z) = 0, a; € <9Q, ^ ' ° ;

| ( x ) | < (vj)'1 a.e. xGl î .

Now we define û7 : £7 -> M3 for 7 G (0,70] by

û7(a?) = ^7(a;)u7(x) + (1 - ^(x))y\(x), xGÎ] .

It is easy to verify that

Vû7(z) = [u^(x) - yx(x)} ® V^7(x) + z/>70r)Vu7(z) + (1 - ^7(x)) VyA(œ) (3.6)

for almost ail x G Ü. By (3.3) - (3.6), we have for ail 7 G (0,70] that

||Vû7(a;)|| < C a.e. x G fi, (3.7)

where C here and below is a constant independent of 7, and that

Vu7(x) e {F0,Fi} a.e. x G fl7. (3.8)

Therefore, û7 G W^ for any 7 G (0,70] by the continuity of the energy density <j>. Moreover, meas(r£\f£7) — 0(7)
as 7 —7̂  0 since ft is a Lipschitz domain, so by (3.7), (3.8), and (2.2) we have

£(ûj) = 0(7) as 7 ^ 0.

By the rank-one connection (2.6), we have that

detFi = det(F0 + a (g> n) — (detF0)(l +F0~xa-n).

This together with the fact that detF0 = detFi > 0 (see (2.4) and (2.5)) implies that

F^a • n = 0.

Consequently, for any £ G M, we have

det(Po + £a (g) n) = (det F0)(l + ÇF^a • n) = det Fo.

It now follows from the équations (2.7) and (3.3) that

V>70r)Vw7(z) + (1 - ip-yix^Vyxix) — F0 + Ç(x)a®n a.e. x G fî,

where

£(x) = t^7(a;)x7(^ • n) + (1 - ^7(x)) A(x) a.e. a: G H.

Thus,

det [^7(x)Vu7(x) + (1 - ^7(X))V?/A(^)] = det Fo = detF\ > 0 a.e. x E SI.
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Choosing v > 0 large enough, we can therefore conclude from (3.4) - (3.6) that

det Vüj(x) > C > 0 a.e. x G O, V7 G (0,70]. (3.9)

We summarize our results in the following theorem.

Theorem 3.1. Ify\(x) has the form (3.1), then there exist a family of déformations û7 G w£, 7 G (Q,7o], for
any fixed 70 > 0, such that (3.9) holds and such that

lim £{uJ) = 0.

Theorem 3.1 can be directly extended to more gênerai déformations y\(x) such as described in the following
corollary.

Corollary 3.1. We suppose that O j C O for i = 1, . . . , M are disjoint Lipschitz subdomains such that

M

and we also suppose that there exist Xt G L°°(R) for i= 1 , . . . , M such that

X(x) = Xz(x • n) a.e. x G ÎV

It then follows that there exist a family of déformations û7 G w£, 7 G (0,70]; for any fixed 70 > O, such that
(3.9) holds and such that

lim 6(ûj) = 0.

Proof We construct déformations û%J defined on Ùt for i = 1 3 . . . , M such that

u%1{x) =y\(x), x € dÜ%>

by the technique of Theorem 3.1 applied to O ,̂ and we then construct û7 G W^ by

%i (x) = û (x) x G O i = l j \ ^

D

4. APPROXIMATION OF THE LIMITING MACROSCOPIC DÉFORMATION

In this section and in the next section, we assume only that y\{x) is of the genera! form (2.8), Our first
lemma below follows immediately from the growth rate of the energy density around the energy wells (2.3).

Lemma 4.1. We have

I \\X7y(x) — TT (V2/(a;))|| dx < n~lE(y)1 \/y G W^.
Jn

Notice that by the above lemma we have that W^ C WAl)2(O,M3). In what follows we shall dénote by C a
generic positive constant which will be independent of all y G
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Lemma 4.2. There exists a constant C > 0 such that

[ \MVy(x)) - Vyx(x)]w\2 dx < C8(y)K Vy € Wjf,

for ail w £WS satisfyvng w • n = 0 and |u?| = 1.

Proof. We first prove the lemma for the orthorhombic to monoclinic transformation. We have that

TT(F) £ SO(3)F0 U SO(3)Fi, VF € E 3 x 3 .

Fix w E M3 with w • n = 0 and \w\ = 1. By (2.6) and (2.7), we have that

Vyx(x)w — FQW = Fiw a.e. a ;eO, (4.1)

leading to

\TT(F)W\ = \Vy\(x)w\ a.e. x G îî, VF E M3x3. (4.2)

Fix y G Wjf. Since y(a:) = y\(x) on 90, we have by the divergence theorem that

/ Vy(x)dx= / Vyx(x)dx. (4.3)

It follows from (4.1-4.3), the Cauchy-Schwarz inequality, and Lemma 4.1 that

/ W(Vy(x))-Vy\(x)]w dx = 2 Vyx(x)w • [Vy\(x) - ir{Vy(x))]wdx

= 2Fiw- I [Vy(x) - 7r(Vy(x))]wdx
Jn

< 2|F1t0|(measÛ)i I" ƒ ||Vy(x) - 7r(V^(a:))||2 dx] '

i (4.4)

Next, we prove the lemma for the cubic to tetragonal transformation. Recall that in this case the normal n
is given as n = (e± + e2)/\/2. Set

w\ = -7E(ei ~e2 + e3) and w2 = —?^(ei ~ e2 - e3).

We can easily verify that

wi • n = w2 • n = 0? \wi\ = \w2\ — 1,

and

r ^ ' * = 1,2,3, j = 1,2.

We can thus conclude by (4.1) that (4.2), hence (4.4), also holds true for w = w± and w = w2, respectively. We
have in fact proved the desired inequality in this case as well, since {wi,W2} is a basis for the two-dimensional
subspace {w £ M3 : w • n = 0}. •
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We next give an error bound for the L2 approximation of the directional derivative of the limiting macroscopic
déformation yx in any direction tangential to parallel layers of the laminate. It is a direct conséquence of the
triangle inequality and the above two lemmas.

Theorem 4.1. There exists a constant C > 0 such that

J \[Vy{x) - Vyx{x)} w\2 dx < C [f(y)i + £{y)] ,

for all w G M3 satisfying w - n = 0 and \w\ = 1.

We now give an error bound for the L2 approximation of the limiting macroscopic déformation y\ by the
admissible déformations y e Wjf.

Theorem 4.2. There exists a constant C > 0 such that

\y(x) - yx{x)\2 dx<C [S(y)i + £(y)] , \/y G W*.

Proof. Let z G ̂ (Ù^R3) and w G M3 with \w\ = 1. It follows from the Poincaré inequality [25,34] that

/ \z(x)\2dx <c\ f \z(x)\2dS+ f \Vz{x)w\2 dx] , (4.5)
Ja Udo. Jn \

where C — C{Vt) is a positive constant independent of z. This inequality is also true for any z G W^ by the
density of C1(^; M3) in W^. Setting z = y — yx for any y G w£, we obtain the desired result by Theorem 4.1
with w G M3 so chosen that w • n — 0 and \w\ ~ 1. D

The next corollary states that the infimum of the energy is not generally attained on W^.

Corollary 4.1. There does not exist y G Wf such that S(y) = 0 if

meas{ x ££1:0 < X(x) < 1} > 0. (4.6)

Proof. We assume that there exist y G Wf such that £(y) = 0. By Theorem 4.2, we have that y — yx- It follows
from (4.6) that there is an integer p > 3 such that the set

p

has positive measure. On the other hand, the set

1
p — < [L — Ao)ro -f- AQTI G K • - S Ao S i

l P P
is compact in M3x3 and is disjoint with IÀ by Lemma 2.1. Consequently, the continuous energy density <fi reaches
its minimum m(Ap) > 0 on the set Ap. We obtain a contradiction since

0 = £{y) = £{yx) > I <p{Vyx{x)) dx > m{Ap) measo;p > 0.

D



APPROXIMATION OF A LAMINATE 77

Now we establish an error bound for the weak L2 approximation of the limiting macroscopic déformation
gradient Vy\. It follows from such an error bound that for any energy minimizing séquence {yk}*kLi the
corresponding séquence of gradients {Vyk}^Lx converges weakly to the déformation gradient Vy\.

Theorem 4.3. For any Lipschitz domain w c f ] ; there exists a constant C = C(UJ) > 0 such that

f [Vy(x) - Vyx(x)] <*J < C [s(y)i + £ ( # ] , My G W*.

Proof. We have from the divergence theorem and the Cauchy-Schwarz inequality that

f
JLU

\f [y(x) - yx(x)} ®vd

< [ \y{x) - yx(x)\ dS < (meas2 ôw)* ( f \y(x) - yx(x)\2 ds (4.7)

for any y £ W% where v is the unit exterior normal to du) and meas2 du> is the surface area of du). By the trace
theorem [1] we have

/ \y{x)-yx{x)\2dS<c\j \y{x)-yx{x)\2dx+ f \V\y{x) - Vyx{x)\2\ dx]

<c\[ \y(x) - yx(x)\2 dx + f \y(x) - yx{x)\\\V [y(x) - yx(x)} \\ dx]

<c\f \y(x)-yx(x)\2dx+ (f \y(x) - yx(x)\2 dxY (f \\Vy(x) - Vyx(x)\\2 dx
Un \Jn J \Jn

We also have by the triangle inequality and Lemma 4.1 that

(4.8)

x)-Vyx(x)\\2dxY < ( \\Vy(x)-*{Vy(x))\\2dx \\n(Vy(x))-Vyx(x)fdx

(4.9)

Hence, we obtain from using the inequality of Theorem 4.2 and (4.9) in (4.8) that

/ \y(x)-yx(x)\2dS<c\E(y)i+£(y)\,

which, together with (4.7), leads to the desired inequality.

5. APPROXIMATION OF THE SIMPLE LAMINATE

We define the projection operator ?ri2 : M 3 X 3 -> 1Â\ UU2 by

\\F - 7C12(F)\\ - min \\F - G\\, VF G K3x3.

•

We note that ni2 = n for the orthorhombic to monoclinic transformation. Next, we define the operators
O : R3x3 -» S0(3) and n : M3x3 -> {Fo, Fi} by the identity

ni2(F) = e(F)U(F), VF e R3x3. (5.1)
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The following lemma reduces the three-well problem for the cubic to tetragonal transformation to a two-well
problem. lts proof indicates that the measure of the set of points at which the déformation gradient for an
energy minimizmg séquence is near IA% converges to zero.

Lemma 5.1. For the cubic to tetragonal transformation, there exists a constant C > 0 such that

\\Vy{x) - 7r12(Vî/(x))||2 dx < C [S(y)i + £ (y)] , Vy e

Proof. It is easy to check that

înf \[F - S7yx(x)] e3| > |r?2 - 7711 a-e- x € fi-

For a fixed y G Wjf, we set

O3 = {x e O : ir(Vy(x)) € Uz}.

Since 63 • n = 0, it follows from Lemma 4.2 that

measQa = ƒ dx < \Î]2 - Vi\~2 [ IM^yix)) " Vy\(x)] e3[
2 dx < C£(y)%.

Consequently, we have by Lemma 4.1 that

f \\Vy(x) - 7r12(Vy(x))||2 dx < 2 [ \\Vy(x) - 7r(Vy(x))||2 d^ + 2 / ||7r(Vy(x)) - 7r12(Vy(a:))||2 dx
JQ JQ Jn

<2 [ 2

(5.2)

completing the proof.

We now give an error bound for the projection operator II : M3x3 —>• {FQ}FI}.

Theorem 5.1. There exists a constant C > 0 such that

f \\Vy{x) - U(Vy(x))f dx < C [s(y)i + S (y)] , Vy € Wf.

Proof. We have for any w € M3 such that w • n = 0 the identity

Tl(F)w = Fotü = Fitü = V|/A(^)W a.e, x € Û, VF e R3x3.

Hence, we obtain from (5.1) that

D

[6 (F) - I) Fow = [G (F) - 1} IÎ(F)w = [TT12 (F) -

= [TTI2 (F) ~ TT(F)] W + [TT(F) - VÎ

t i ;

3 x 3
W ] tu a.e. x G fi, VF

We substitute F = Vy(x) for any y € W% and a; G O in the above identity, and estimate the two terms by (5.2)
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and Lemma 4.2 to obtain by the triangle inequality that

/ }[0 <Vy(x)) - / ] FQw\2 dx<2 f ![r12(Vy(x)) - TT (Vy(x))} t t f dx + 2 f \[* (Vy(x)) - VyA(x)] tt'|2 dx

(5.3)

We next fix^el3 and w2 G M3 so that Wi • n ~ W2 • n — 0 and that w\yW2 are linearly independent. We
have for m = Fou>i x F0w2 that

Qm = QFo^i x QF0w2, VQ G SO(3).

Thus, it follows that for ail F G M3 x 3 we have

[0(F) - /] m = {0 (F) FoWl x 6 (F) F0™2} - {Fow± x F0™2}

= {[G (F) - 7] Fo^x x G (F) F0™2} - {F0^i x [/ - 6 (F)] F0™2} .

We obtain from the above inequality and (5.3) that

L |[G(Vy(x)) -I]m\2 dx < CS(y)ï. (5.4)
m

Since {F0^i,Foîx;2,m} is a basis for E3, it follows from (5.3) and (5.4) that

[ \\[Q(Vy(x))-I]\\2dx<CE(y)i. (5.5)
n

The proof is completed by applying the triangle inequality to the identity

F - n(F) = [F - TT12(F)] + [TT12(F) - n(F)]

- [F - TT12(F)] + [9(F) - /] n(F), VF e M3x3,

with F = Vy(x) for x G H, and by estimating the two terms by Lemma 5.1 and (5.5). •

The following theorem gives an estimate for the approximation of volume fractions. It states that for any
energy minimizing séquence {yk} in Wf the volume fraction that Vyk(x) is near Fo converges to 1 — À(x) and
the volume fraction that Vyk(x) is near Fi converges to À(x). The statement of the theorem utilizes the subsets

w°(y) = {xecv: n(Vy(x)) = Fo and \\FQ - Vy(x)|| < p},

^p(y) = {̂  ̂  w : n(Vy(x)) = Fi and ||^x - Vy(x)|| < p} ,

which are defined for any subset w C fl, /) > 0, and y G Wjf. We also dénote the mean value of À on UJ by

1 f
Aw = ƒ A(x) dx.

measa; Jw

Theorem 5.2. For any Lipschitz domain UJ C 12 and any p > 0 £/iere exists a positive constant C such that

meas (w - {w°(y) U ̂ (y)}) < C [f (y)* + €(y)] , Vy € < , (5.6)
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meascj
- (i - k.)

meas^(y)

measo;
-K C[£(y)i+ £(y)], (5.7)

Proof. We shall assume that y E Wf. We have by the définition of ut® = ̂ (y) and o;* = ^(y) that

(w - W°p U w*}) < - f ||n (Vy(x)) - Vy{x)\\ dxmeas

J

Consequently, we have

meas i - K U WJ}) < 4 [ / lin (Vy(a;)) - Vy(x)f dx

which together with Theorem 5.1 implies (5.6).
We have by (2.7) that

measuPp — (1 — Xw) meas u \ FQ + measu;^ — Xu meas u F±

/ FTT (T7n.(™\\ T7-ï/^ (rt*X\ rj<r I TT {X7QI(^PW WT» (^ 9l\
— ƒ L v ̂  c/v*^1// — V t/A V,*^/J U"*J ~~ I 11 yv yyJLJJ fJiJb. yö.Qj

By the triangle inequality, the Cauchy-Schwarz inequality, Theorem 5.1, and Theorem 4.3, we have that

I f [Tl(Vy(x)) - Vï/A(z)] dx < I f [U (Vtf(x)) - Vy(x)} dx + f [Vy(a:) - VyA(i)] dx
\ >J ÜJ I i/w t/ tjj

* ƒ ||n(Vy(x)) - Vy(x)f dx | + ƒ [Vyfc) - V»A(a:)] d»

We also have by (5.6) that

dx < Cmeas (w - {uPp U wj}) < C

Finally, the inequality (5.7) follows from (5.8)-(5.10) and the linear independence of FQ and F\.

(5.9)

(5.10)

D

The final theorem in this section gives an estimate for nonlinear functions of the déformation gradient. The
estimate utilizes the Sobolev space V of all functions ƒ G L2 (O x R3x3) such that

= f [esssup||VF/(a;JJF)||] dx + \\Gf | |^ l l 2 ( n ) < oo,
Jn L F € R 3 X 3 J
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where

GJ(T) = f(x,Fx) - f(xyF0), x G O.

Functions in the space V can represent thermodynamic variables of the underlying crystal.

Theorem 5.3. There exists a constant C > 0 such that

Un {/ (*, Vy(x)) - [(1 - A(x)) ƒ(x, Fo) + A(x)ƒ(x, Fx)]} dx\

< C\\f\\v [e{y)i + £(y)i] , Vy e wf, V/ e V. (5.11)

Proof. We have the décomposition

f {ƒ (x, Vy(x)) - [(1 - A(x)) ƒ (x, Fo) + À(x) ƒ (x,

/
n

/ {ƒ (a;,n(Vy(x))) - [(1 - \(x))f(x, Fo) + A(x)/(x, Fx)]} dx

2. (5-12)

The first term J\ can be estimated by Theorem 5.1 as follows:

|Ji| < / [esssup||VF/(x,F)||] ||Vy(x) -

< { I |esssup||VF/(o;,F)|| dx\ 1/ \\Vy{x) - U(Vy(x))\\z dx

(5.13)

By (2.6) and the définition of II : R3x3 ->• {Fo, Fi}, we have the identity

ƒ (x, U(F)) - [(1 - A(x)) ƒ (x, Fo) + A(x) ƒ (x, F1)] = -^{a- [U(F) - Vyx(x)} n} Gf(x),

for ail F G R3x3 and for almost ail x E Cl, leading to

J2= f {ƒ (x,n (Vy(x))) - [(1 - A(x)) ƒ (x, Fo) + A(x) ƒ (x, F,)}} dx

= r^ f {a-\Il (Vy(x)) - VyA(x)] n} Gf (x) dx

= j i j jf {a • [n (Vy(x)) - V»(x)] n} G/(x) dx + ± J {a - [Vy(x) - VyA(2;)] n} Gf(x) dx

= j^jja.[H (Vy(x)) - Vy(x)] n} G/(x) dx - ± J^ {a • [y(x) - yx(x)}} {VGf(x) • n} dx,
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where we used the divergence theorem and the fact that y(x) = yx{x) for any y G Wf and for all x G 90. It
next follows from the Cauchy-Schwarz inequality, Theorem 4.2, and Theorem 5.1 that

(5.14)

We finally obtain the inequality (5.11) from (5.12-5.14). D

6. FlNITE ELEMENT APPROXIMATIONS

For simplicity, we shall assume in what follows that the référence configuration f] C M3 is a polyhedral
domain. For a fixed positive number ho, let r^, 0 < h < h0, be a family of tetrahedral finite element meshes of
fi, such that Û = ÖTerhTj where h is the maximum diameter of any tetrahedron T in the mesh r^. We shall
assume as usual that any face of any tetrahedron in a mesh r^ has a disjoint interior wit h respect to any other
tetrahedron in that mesh and that any face of a tetrahedron is either a subset of the boundary dCt or is the face
of another tetrahedron in the mesh T^. Let Ahi 0 < h < ho, be the corresponding family of piecewise linear,
continuous finite element spaces with respect to the mesh r^ [11,30].

We can define the interpolation operator 1^ : C(Ù]R3) -ï Ah for each h G (0,/io] which interpolâtes the
values at the vertices of the tetrahedral éléments T of 7V We will assume that the family i\ of finite element
meshes is quasi-regular [11,30], so that

esssup \\Vlhy{x)\\ < C esssup \\Vy(x)\\ (6.1)

for ail y G W1'oo(îî; M3), where the constant C in (6.1) and below will always dénote a generic positive constant
independent of /i. We also note for y 6 C(^;MJ) that

ZhV(x)\T = y(x)\T for any T G rh such that y(x)\T e {PX(T)}Z,

for h G (0,/i0], where {P^T)} 3 = P x ( r ) x Pl{T) x PX{T) and PX(T) dénotes the space of linear polynomials
defined on T.

Since Q is the union of disjoint tetrahedra, we can assume in this section by Lemma 2.2 that there exist
disjoint Lipschitz subdomains fi* C fi for i = 1, ...,M with Ü = (J^i Ö», h G W 1 ' 0 0 ^) , À» G L°°(K), and
yi G M3, ^ • a = 0, such that

^(x • n)a + &, a: G fii,

Zj(s) = A,(s), a.e. s e l .

Recall from Section 2 that since yA G IV1'00(fi; M3), y\ can be uniquely represented as a Lipschitz continuous
function defined on fi. So, we can then uniquely define the finite element déformation yxn G Ah by

and we can define the finite element space of admissible déformations

A\h = {yh ̂  Ah : yh(x) = y\h(%) on x e
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We also note that the trace yx\dn G WliOO(dü) E3) is then well-defined, and it follows from well-known estimâtes
for the interpolation error [11,30] that

\\yx - yxhWLoo^en^ < Ch WyxWwi^^n^) -

In what follows we shall use the result that y\h G Axhi 0 < h < /io, satisfies the condition

\\y\ - 2/Ah||L2(ön;R3) < Ch. (6.2)

We begin our analysis of the finite element approximation of a laminate with varying volume fractions with
the following result on the minimization of the energy £ on the space Axh-

Theorem 6.1. There exists yh G A\h for each h G (0, ho] such that

£(yh)= min £(zh) < Ch1'2. (6.3)

Proof. The existence of y h G A\h can be proven by the same argument as in the proof of Theorem 6.1 in [22].
To prove the inequality in (6.3) we follow the argument given in [24] to show that yh = Thû^ G Axh with uy(x)
defined by Corollary 3.1 and 7 = h1/2 satisfies

D

We next give a series of estimâtes for the finite element approximation of the déformation y\ by déformations
yh € Axh- These estimâtes follow those for the déformations y G W£ given in previous sections.

Theorem 6.2. We have for any w eM3 such that w • n = 0 and \w\ = 1 that

\[Vyh(x) - Vyx(x)} w\2 dx<C [£(yh)i + £{yh) + \\yx - yxh\\L*{dn.^ , Vŷ  e AXh.

Proof Fix y h G A\h and w G M3 such that w • n = 0 and \w\ = 1. By the décomposition

yh~yx = [yh - Ayn)] + [^(yn) - yx]

and Lemma 4.1, we need only to prove

] w\2 dx<C [£(yh)i + ||yA - yxhW^^a^] . (6.4)/'t*
Ja

We only consider the orthorhombic to monoclinic transformation, since the cubic to tetragonal transformation
can be treated similarly (see the proofs of Lemma 4.2 and Theorem 4.1). Noting that yh{x) = yxh(x) for x G 90,
we have by (4.1) and the divergence theorem that

/ |[fl"(Vyfc(2c)) - Vyx{x)] w\2 dx = 2F0w • / [Vyx(x) - 7r(Vyh(x))]wdx
Ja Ja

= 2Fow • ! ƒ \yyx(x) - Vyh(x)] dx + ƒ [Vyh(x) - <jr{Vyh(x))] dx\ w

fr r ^
= 2Fow • < / [yx(x) - yxh(x)} ®vdS + ƒ [Vyh(x) - 7r(Vyh(x))} dx *>

KJda Ja ) w

(6.5)
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ThiSj together with Lemma 4.1 and the Cauchy-Schwarz inequality, leads to (6.4).

Theorem 6.3. We have

\ \\y\ -

D

I \Vh(x) - y\(x)\2 dx<C \E{yh)^ + £(yh) + \\yx ~ G AXh.

Proof. Fix y h G Ah- Setting z = y h — y\ and choosing w G M3 so that w • n = 1 and \w\ = 1, we obtain the
desired inequality by (4.5) and Theorem 6.2. D

By an argument similar to the proof of Theorem 4.3. we can use the above theorem to obtain the following
result on the weak convergence of finite element approximations.

Theorem 6.4. For any Lipschitz domain u C Ct we have that

\[{Vyh(x)-Vyx(x)} dx\\ < C \s(yh)i + E(yh)\ +C f\\yx - yxh||la(ôn.R3) + \\yx -
\JuJ II '

Recall the operator n : R3x3 —>• {FQ:F±} defined by (5.1). We have the following result which is parallel to
Theorem 5.1. The key estimate is (6.4).

Theorem 6.5. We have

J \\Vyh{x) - U(Vyh(x))\\2 dx < C [s(yh)^ + £(yh) + \\yx - AXh.

Recall that Aw is the average of À on oj. Using the same argument as in the proof of Theorem 5.2, we can
obtain the following result from Theorem 6.4 and Theorem 6.5.

Theorem 6.6. For any Lipschitz domain tv C ft and any p > 0 we have that

meas (w - {u>°p(yh) U u>l
p(yh)}) < C [£{yh)^ + £(yh) + \\yx -

and

AXh.

mea>sujo(yh)

measw

<C

- (1 - K,) - A .
measc^

AX
h.

By slightly modifying the proof of Theorem 5.3, we can obtain the following result corresponding to Theo-
rem 5.3 for admissible finite element déformations.

Theorem 6.7. We have

f {ƒ (x, Vyh(x)) - [(1 - X(x))f (x, Fo) + \{x)ƒ(x, Fx)}} dx
Jn

< C\\f\\v [s(yh)* +£(yh)* + \\y\ - yxhWh^Q.^ + \\y\

for all y h G AXh and all f G V.
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Optimization techniques applied to the problem

inf £(yh)
yneAxn

compute one of the many local minima given by approximations on different length scales to the same optimal
microstructure [24] For this reason, we give error estimâtes for finite element déformations y h £ A\ h that
satisfy the following quasi-optimality condition

£(yh) < a inf £(zh) (6.6)
zeA

for some constant a > 1 independent of h.
It follows directly from the previous theorems in this section and (6.2) that we can obtain the following error

estimâtes for quasi-optimal finite element déformations y h G Axh-

Corollary 6.1. We have

\ \[Vyh(x) - Vy\(x)] w\2 dx < Chi
Jn

for any w G IR3 such that w • n = 1 and \w\ = 1 and for any y h G Axh which satisfies the quasi-optimahty
condition (6.6).

Corollary 6.2. We have

/ \Vh(x) -yx(x)\2dx < Chi

for any yh G Axh which satisfies the quasi-optimahty condition (6.6).

Corollary 6.3. IfcüCtïisa Lipschitz domain, then there exists a positive constant C, independent of h, such
that

f [Vyh(x)-Vyx(x)]dx <Ch^
J Lu

for any yh G Axh which satisfies the quasi-optimahty condition (6.6).

Corollary 6.4. We have

[ \\Vyh(x) - n(Vyh(a;))||2 dx < Chi
Jn

for any yh € Axh which satisfies the quasi-optimahty condition (6.6).

Corollary 6.5. For any Lipschitz domain tu C f£ and any p > 0 we have

meas (a; - {u)°p(yh) U ̂ {yh)}) < Chi
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measa; measa;
<

for any y h G A\h which satisfies the quasi-optimality condition (6.6).

Corollary 6.6. We have

f {ƒ (x, Vyh(x)) - [(1 - X(x))f(x,F0) + \(x)f(x,F1)}} dx < C\\f\\vhi
Jn

for any ƒ € V and any yh € A\h which satisfies the quasi-optimality condition (6.6).
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