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Modélisation Mathématique et Analyse Numérique

MINIMAX OPTIMAL CONTROL PROBLEMS. NUMERICAL ANALYSIS OF
THE FINITE HORIZON CASE

SILVIA C. Di MARCO AND ROBERTO L.V. GONZALEZ

Abstract. In this paper we consider the numerical computation of the optimal cost function asso-
ciated to the problem that consista in finding the minimum of the maximum of a scalar functional
on a trajectory. We present an approximation method for the numerical solution which employs both
discretization on time and on spatial variables. In this way, we obtain a fully discrete problem that
has unique solution. We give an optimal estimate for the error between the approximated solution and
the optimal cost function of the original problem. Also, numerical examples are presented.

Résumé. Nous étudions ici la solution numérique d'une inéquation quasi-var iationnelle associée à la
minimisât ion du maximum d'une fonctionnelle définie sur la trajectoire d'un système dynamique gou-
verné par une équation différentielle ordinaire. Nous faisons la présentation d'une méthode d'approxi-
mation en employant des discrétisations en espace et en temps. Nous obtenons des estimations
optimales pour la vélocité de convergence des solutions approchées vers la fonction de coût optimal du
problème originel.
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1. INTRODUCTION AND DESCRIPTION OF THE PROBLEM

1.1. Description of the problem
We consider in the interval [0,T] a dynamic System which evolves according to the ordinary differential

équation

ds ^

y(t) = ^ l r .

The optimal control problem consists in minimizing the functional J

J : [ 0 , r ] x E f x ^ H> R

(t, x, a(-)) ^ J(t, x, a{-)) = ess sup {ƒ(y(5), a(s)) : s G [t, T)} . (2)

The set of admissible controls is given by A = £°°([0, T ] ; 4 ) , A c Mm
5 and we also will use the notation:

At = L°°([t,T\;A).
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The value function u is defîned by

tx:[0,T]xE r H-» R
(£, x) H-» u(t} x) = inf { J(t, x, a(-)) : a(-) G At} . (3)

The continuous problem arises? for example, when we want to minimize the maximum déviation of the controlled
trajectories with respect to a given special trajectory. This differs from those problems usually considered in the
optimal control literature, where a cumulative cost is minimized. As considering a cumulative cost is ïiot always
the best method to qualify the performance of a controlled System with a unique scalar parameter, problems of
this type have received considérable interest in recent publications (see e.g. [2-10]).

Instead of being considered as an optimal control problem with a non-standard cost functional, this problem
can also be studied through other different approaches, between theni, the following two:

(a) It can be seen as an ordinary optimal control problem where the dynamic System evolves "very fast".
In effect, introducing the auxiliary state variable t/r+i, which vérifies the following differential inclusion
(see [1]),

dy.^(s)eG(f(y(s),a(S))-yr+1(s)), a.e. s €

2/r+l(t) = 0,

where G is given by

G(v) =

0 if v < 0,

[0, oo] if v = 0,

oo if v > 0,

it is easy to check that yr+i(T) = esssup {f(y(s)Ja(s)) : s e [t,T]}.

By considering the functional

JT{t,x,a(-))=yr+1(T),

we have an ordinary optimal control problem.
(b) The minimax problem can be analyzed as a disguised differential game problem.

In this game, one player tries to minimize the cost

J(t,x,a(-),T)=f(y(T),a(r)), (4)

(r dénotes a stopping time of the process), while the opponent - using Ml information of the actions of
the first player - chooses at any instant the stopping time r of the process. As a resuit of the complete
game, the pay-off (4) is given.

The objective of this work is to obtain a numerical approximation of the value function u defined by (3).
Those interprétations of the original control problem (briefly discussed above), are non-standard and con-

sequently, several numerical methods, as those presented in [11-13,19-22], cannot be directly used here. The
numerical procedure presented in detailed form in this paper, was already announced in [16]. Our work comprises
fundamentally two steps:

(i) We obtain a discrete time approximation using a finite différences scheme and we give an estimate of the
error of this approximation.
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(ii) By using linear finite éléments, we obtain a fully discrete approximation that converges to the solution of
the original problem with rate Vk. Besides, we show the optimality of the estimation y/k.

Finaily, we present some numerical applications with computational results.

1.2. Technical assumptions and properties of the value function

Assumptions

Let BUC(Wr x A) be the set of bounded and uniformly continuous functions on l r x i and let Lips(Mr) be
the set of uniformly Lipschitz continuous functions on Mr.

We assume that ƒ and g satisfy the following hypotheses:

(Ai) g : Mr x A ^ E r , g G BUC(W x A)\ g(-,a) e Lips(Mr), M a e A. The constants Mg and Lg satisfy,
respectively

\\g{x,a)\\<Mg, \ \ g ( x , a ) - g ( x , a ) \ \ <Lg\\x-x\\, V x , x G Ë f , V a G A

(A2) f :W x A^R, f G C(Rr x A)\ /(-,a) G Lips(Mr), V a e A . The constant Lf satisfies

\f{x,a)- f(x,a)\ <Lf\\x-x\l Vx,x€Mr, VaêA

(A3) The control set A is compact in W.

Properties of the value function

The following properties have been established by Barron-Ishii in [4] and [8]:

• The function u is Lipschitz continuous in its spatial variable with Lipschitz constant Lu

• The value function u satisfies the following dynamical programming principle
V t G fO, T), x G Mr

u(t, x) = inf < max < u(s, y(s)), ess sup f(y(r), a(r)) > > ,
<*** { { re[tiS] J J

u(Ty x) — min ƒ (x, a).

Remark 1.1. Similarly as to what was proved in [4], (if assumptions Ai and A2 hold), it results u €Lips([0, T]x
W). In other words, u is Lipschitz continuous in both variables.

2. A DISCRETE TIME SCHEME OF APPROXIMATION

Here we introducé an auxiliary problem that is a natural discretization of the optimal cost u defined in (3).

2.1. The discrete time problem

We divide the interval [0, T] into /x sub-intervals with common length h = T/fj,. We deflne, for every

A^ = {a(') G Anh - ot constant in [mh^ (m + l)h), m = n , . . . , /J,} ;
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for each ah(*) G A^ , the discrete time process yh

yh{m + 1) = yh(m) + hg{yh{m), ah{mh)),
(5)

yh(n) = x

and the cost functional Jh

Jh{n,x,ah{-))= max f (yh(m), ah(mh)). (6)

The discrete time cost uh is given by

uh(n,x)= minJh(n,x,ah(-)). (7)

Remark 2.1. The process yh is an Euler discretization of the continuous system (1). In (7) the minimum
exists because A% is compact in A^~n and Jh is a continuous mapping from A^ to R by virtue of hypotheses
A1-A3.

2.2. Properties of the function uh

In the following proposition we establish the dynamic programming principle verified by the discrete time
cost. It gives a recursive way to compute the function uh. The proof follows classical lines and we omit it for
the sake of brevity.

P r o p o s i t i o n 2 . 1 . For every n = 0 , . . . , / i — 1, u*1 vérifies the recursive relation

uh{n,x) — min {max {/(a?,a) ,u h (n- \ - l,x + hg(x,a))}\ , (8)
a£A

and the final condition

uh(fj,)X) — mmf(x,a). (9)

It is easy to prove - using well known techniques as those that can be seen in [18] - that the function uh is
Lipschitz continuous in its spatial variable with Lipschitz constant Lu, These results are established in the
following proposition.

Proposition 2.2. For every n = 0, . . . , /x, x and x £ Rr, it is valid that

\uh(n>x) -uh(n,x) | < Lu\\x -x\\.

2.3. Approximation of controls with step functions
To compute the discrete time cost function uh defmed in (7), we optimize the functional Jh on the set A^ ,

whose éléments are step functions. To prove the convergence of uh to uy we need to establish some suitable
relations between controls of Anh

 a n d A^ .
The relation A^ C Anh is obvious. To get results in the opposed sense, we will prove that given a(-) G Anh

there exists ah(-) e A1^ such that
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in the weak-* topology of L°°([t, T]; Rr) and

liminf Jh{n,x,ah(:)) =
/ >o

To simplify the exposition, without losing generality, we focus on the particular case where the system in (1)
starts in t = 0.

For any ̂ i , we take h\ = Tj\i\ and we divide the interval [0, T] into /ii sub-intervals ïi, where U = [£*, *i+i),
*i = îfti, and 2 — 0,. . . ,/xi — 1.
Remark 2.2. L°°([0,T]; A) can be divided into équivalence classes defined by the relation

"(•) ~ Pi-) iff a(t) = (3(t), a.e. t G [0, T].

It is clear that if a(-) differs from /?(•) in a zero measure set, so do f(y(t)7 &(t)) and ƒ (y(£), ƒ?(£))• Therefore, at
each sub-interval i^, it is possible to choose a(-) (an element of the équivalence class) such that

esssup {/(y(-), <*(•)) : * 6 /,} = sup{/(y(-)^(-)) : t G ƒ<}. (10)

From now, we consider a control a(-) G L°°([0,T]]A) that vérifies the property (10) for every JV

Définition 2.1. Given a(-) G Ai? we define A(a1i) := {a(s) : s e It] and F(a,i) := A(a,i) its closure. Clearly,
by hypothesis A3, F(a,z) is compact.

Lemma 2.1. Let r be the dimension of the state space. For every i = 0, . . . , JJL\ — 1, there exists a step function
aw : I% 1—» F(a, i) that takes at most r + 1 constant values, such that

ƒ 0fo(t»)> M s ) ) J s = ƒ 0(2>(*i W s ) ) ds , (11)
u u

maxf(y(U),aw(s)) < sup f{y{U), a(s)). (12)

Proof. Since <? is continuons and F(a,ï) is compact we have that g(y(tz)7r(ayi)) is also compact and then,
from the Convex Analysis Theory it follows that Co(g(y(ti)JT(a^i))) is closed, i.e.

Co(g(y(U),r(a,i))) =

It is clear that

1 f1

hi J

and then

Being r the dimension of the state set, from the Caratheodory Theorem (see [15], p. 42) it follows that there
r+l

exists {aki : fc = 1,. . . , r + 1}, and {Xki : fe = 1,. . . , r + 1}, with ^ ^ki = 1, ^ki > 0 such that
fe=i

-, r+l
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We consider a partition of Iîy {Iu% > k = 1 , . . . , r -h 1} such that
every t e h% •

and we define aw(t) — a,k%, for

It is clear that aw takes at most r + 1 constant values in F (a, i) and we have

ƒ g(y(U),aw(s))ds = ƒ g(y{U),a(s))ds.

To prove (12), let us note that if s G Iz, then aw(s) G F(a, i). Therefore,

< max{/(y(tt),a) : a G F(a,i)} = sup{f(y(tz),a) : a G A(a,z)}.

D
The following lemma gives an estimate for the différence between the original trajectory of the System and the
trajectory corresponding to the step control aw(-).

Lemma 2.2. Let y(-) be the response to the control a(-) and yw(')> the response to the control aw(-), then

where

\\v(t)-yw(t)\\<Mhi,

M =

Proof. We define, Vz = 0, . . . , \i — 1, E% = || y(tz) — yw{tz) ||. In conséquence, it is valid that

Et+1 < E%

To estimate the second term of (15), we write

),a(s)) - g{yw(s),aw(s))) ds

(13)

(14)

(15)

ƒ

<

)i a(s))-g(yw(s),aw{s))) ds

ƒ (g(y(s),a(s)) - g(y(tz),a(s))) ds

ƒ (9(v(U)Ms))-9(y(U),<*v,(s))) ds
u

I (g(y(U),aw{s)) - g(yw(U),aw(s))) ds
u

/ ig(yw{U),ctw{$)) - g{yw{s),®w{s))) ds (16)
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Prom (1) and (Ai), we have

Il a

\\y(s)-y(tl)\\= ƒ < Mg(s -

Then, using (Ai) and (17), we estimate the first term of (16) in the following way:

< ƒ II 9(v(s),<*(*)) - g(y(tt), a(s)) \\ ds

< Lg f \\ y(s) - y(tz) || ds < LgMg f {s - U) ds <

We can estimate in a similar way the fourth term of (16),

i ~ g(yw(s),aw(s))) ds

Prom (11), the second term of (16) is zero, t.e.

/ (g(y(ti)>a( ) , aw(s))) ds = 0,

From (Ai), the third term of (16) can be estimated as follows,

U+i

j

< / ds

U+i

f \\ y(U) ~ ds < E%Lghx .

From (15, 16, 18-21), we get

Lgh{)

(17)

(18)

(19)

(20)

(21)
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Taking int o account that Eo — 0, by induction we can prove that

i - l

Since o b t a i n ^i <

Let t € lij for some z = 0 , . . . , /ii — 1, we have

t

lly(*)-^WII<lly(*O-M*i)ll

To estimate (22), from (Ai) we have

t

! (g(y(s),a(s)) - p(2/w(s),a^(s))) ds

U

and thus, we obtain

< 2Mgh\ -f- Mghi (1 + Lghif <

< 2Mghx ,

ds (22)

D

2.4. Approximation of controls with uniform-step functions

The control aw is a step fonction which has, at most, r + 1 steps in each interval of length h\ (where r is
the dimension of the state space). We are interested in approximating the set AQ with uniform-step functions,
so we need a suitable element of AQ that approximates aw in the sense described below.

Construction of the control af^

The symbol [5] dénotes the integer part of s. For any interval I% ~ [tiy U+i), U = ih\, we know that aw takes,
at most, r + 1 different values denoted by a^-, z = 0 , . . . ,/i— 1, j = 0 , . . . ,r. Besides, Àij dénotes the length of
the sub-int er val where aw = aij .

Given v we define h = 7—r,

Ho — H 2 = 0 , . . . , / X i - 1 ,

E (23)

= h[tij/h] i = 0,. - 1, i = 0,... ,r + 1.

We define V 5 G
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Therefore, a^ = aw in 1$, except at most in r -f 1 intervals of length 77 ,̂ with 7?̂  = tij — t%j < /i. Then,
ofc = aw, in I7 except in a set which measure is smaller than

r + l
(24)

Properties of the control a^

The procedure of construction of a^ implies that

ah
w G

{a* (s) : s E It} = {aw(s) : s G

By these properties, it is valid that

= 0,.

= max

From (12) and (25), we have

< sup/(y(t l),a(s)).

(25)

(26)

Remark 2.3. In the following proofs we suppose, without losing generality, that h < 1.

The following lemma gives an estimate for the différence between the original trajectory of the system and the
response corresponding to the uniform-step control o^O •

Lemma 2.3. Let y(-) be the response to the control a(-) and y^(-) the response to the control a^(*)j then

where

K - (4 -f 3 exp(L5t)) M
/2(r

Proof. To estimate the différence between y(-) and y^(-)7
 w e write

II y(*) - y£(*) II < li y(t) - yw(t) \\ + || yw(t) - y*(t) ||. (27)

The first term of (27) was analyzed in Lemma 2.2 and a bound was given in (13), We will estimate now the
second term of (27). Let t € li, for some i = 0,. . . , /ii — 1

{g(yw(s),aw(s)) ~g(yUs)>at(s))) ds (28)

The second term of (28) is bounded by
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ds < 2Mgh1.

To estimate the first one, we define Vi =

(29)

0 - » £ ( * . ) Il, (30)

then

Et+1 < ƒ (31)

To estimate the second term of the right side of (31), we write

) , aw(s)) -g(yw(U),aw(s))) + (g(yw(tz), aw{s)) -

It is clear that the following estimâtes hold:

ds (32)

*4 + l

ƒ (33)

«*+

/

Prom (24), it results that

ds (34)

ƒ < 2Mg(r (35)

In conséquence, by substituting (32-35) into (31), we have
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Ei+i < EAl + Lgh{) + 2Mg(r + l)h -f LgMgh\ .

By induction, and taking into account (30), we obtain

x - l

E% < (2Mg(r + l)h + LgMghi) /_J(1 + Lgh\)3.

Since ^ (1 + Lgh\)3 — p-r- and (1 + Lghi)z < exp(L5t), we obtain the estimate

E% < {2Mg(r + l)h + LgMgh\) l ^ ' • (36)

The minimum of the right side of (36) is achieved at

v = V ~75x— ' ^ ^

We suppose, for the sake of simplicity, that v is an integer (the genera! case can be proved similarly with no
difficulty). Consequently, from (36) and (37), it results

The inequality (28) is bounded by

<2Mgh1+2 exp(Lff«) Mg J
2^^^ Vh . (38)

Finally, from (13), (14) and (38) we have the estimate

\\y(t)-yh
w(t)\\<KVh,

where K = (4 + 3 exp(Lgt)) Mg

V

D

2.5. Rate of convergence

In the previous section, for each policy a E AQ and its associated response y(-), we have defined an ap-
proximating control a^ E AQ and we have obtained an estimate for the différence between the cor r esp onding
trajectories. In this section, we will give an estimate of the différence between uh and u. To do that, we define,
for each n = 0,... , ̂ x, the following auxiliary function, which is the optimal cost evaluated on the uniform-step
control functions
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ue{n7x)= min J(nh7x, ah{-)). (39)
heA%

Lemma 2.4. Let ue(O,x) and uh{Q^x) be the optimal cost defined m (7) and the discrete time cost defined m
(7) respectively. Then

\ue(O,x)-uh(O,x)\ <Ch. (40)

Proof This result is easily obtamed taking into account that the error associated to Euler's intégration
method applied to the system (1) is of order h. In effect, let {I% : x = 1 , . . . ,/z — l } b e a partition of [0,T] of
length h with I% = [£z,£ï+i] and let t E I%. Let yh{-) be the function defined in (5) and yah(-) be the response to
the uniform step control ah(-). With arguments similar to those used in the proof corresponding to Lemma 2.2,
it can be obtained that

h( M9L9T

Fr om (1) it is evident that

in conséquence, there exists M (independent on the parameter h) such that

I ƒ(yh(i), ah(t)) - f(yah(t), ah(t)) \ < LfM h.

Since

Jh(0,x,ah(-))= max f(y(t,),ah(s)),
2 = 0 , ,fJ,— 1

J(0}x,ah(-)) = max \ sup f(yah(s)ya(s)) }

it easy to see that

| Jh(0, x, ah(-)) - J(0, x, <*"(.)) | < LyM h.

Then,

D
Note 2.1. To simplify the notation and the exposition, C and M dénote any generic constant whose value
dépends on the context where it appears. Such constants only depend on the functions ƒ and g of the problem
but they are independent on the parameters /i, fc, p of discretization.

Theorem 2.1. Let u(0, x) be the optimal cost of the original problem and uh(0, x) the discrete time cost defined
in (7), then

| u(0, x) - uh{0, x) j < M\/h. (41)
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Proof. Using the auxiliary définition (39) we can write:

| <u(0, x) - uh(0y x)\<\ u(0, x) - u e(0, x) | + | ue(0, x) - uh(0, x) | . (42)

Let us now estimate the first term of the right side of (42). Since AQ C AQ> we have by définition (39)

u(0,x) <ue(0,x). (43)

On the other hand, let us consider a G AQ and a^ G AQ the control defined in (23) (which is the uniform step
control fonction associated to a). Then we have

,a*) = sup

Let 5 Ç Ii,

= {f(y^(s),ah
w(s))-f(y(s),at(s)))

+ (f(y(s), a* (*)) - ƒ (y(*i), <**(*))) + /(»(**), "Ï,(*)), (44)

by (A2) and Lemma 2.3, we have

| / ( y ( ) , 5 , ( ) ) ƒ ( » ( « ) , a|i(S)) | < Cfc.

Prom (26), we obtain

sup f(y(ti)yat(s)) = max i max/(ï/(*i),a^(s)) i

< max i sup ƒ (2/(ti), a(s)) i < J(0, x, a(-)) + LfMgh. (45)
i=o,...^i-i yseh J

Consequently, from (2, 44, 45), we get

J(0,x, a£(-)) < J(0, x,a(.)) + M ^ ,

therefore

^e(0,x) < J(0,x,a&(-)) < J(0, x, a(-)) + M \ 4 . (46)

Taking the infimum over AQ in the right side of (46), we have

ue(07 x) < u(07 x) + MVh. (47)

From (43, 47), we get

| t / (0 ,x) -u(0 ,z ) | <MVh. (48)
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Finally, from (40, 48), we obtain

\u(0,x)-uh(0,x)\ <MVh.

D

R e m a r k 2 .4 . In a similar way as it was done in Theorem 2.1, V n = 0 , . . . ,/x, we can also prove tha t the
following inequality holds

u(n, x) - uh(n, x) \ <

3. FULLY DISCRETE SOLUTIONS

In the previous section we have approximated the function u with one obtained by discretizing the original
problem in its time variable. This approximation scheme is not direct ly implementable to be computed nu-
merically. To obtain a fully discrete approximation with this property, we discretize the space W, using the
methodology described in [21,22].

3.1. Eléments of the discrete problem

We identify the discretization of the spatial variables with the parameter fc, which also indicates the size of
the discretization. The symbols X° and diam(X) dénote respectively the interior and the diameter of a set X.

Approximation of the domain W

We consider a family of quasi-uniform triangulations of Mr, which is denoted by {<Sfe}fc and vérifies:

• For all fc, Sk is a denumerable collection of closed simplices {Sk} such that \JS* = Rr.
3 3

• If S* G Sk, S% e Sk, Sk
3 i- S

k, we have
- (5*)° C\{Sk)° = 0.
- Either Sk p| 5^ = 0 or Sk and Sk have in common a whole (r — m) - edge,

m = 1, . . . , r.
• max (diam(5js)) = fc,

• 3 Xi > 0 and 3 %2 > 0 independent on the discretization, such that, denoting by d3 the diameter of the
simplex Sk, it is verified

— the simplex Sk has a sphère of radius r3 in its interior and it results r3 > Xi^s ?
— for any simplex 5^, k < x2dj •

Let Vk = {x%,i G N} be the vertices of \JSj} arbitrarily arranged. Every x G W is a convex combination
3

of the vertices xl of the simplex to which x belongs. Hence, V a € Â there exists a matr ix with components
7j(a?*, a), such t h a t for each i e N:

x% + hg(xz^a) =

for a t most (r + 1) values of j ,

(49)
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Définition of the approximate space Fk

We consider the set Wk of functions w : Rr ^ IR, w G WliO°(W), such that dw/dx is constant in the interior
of pRch simplex, ?.«.5 the functions VJ are linear finite éléments and they are characterized by their values on V&.
We dénote

The éléments of Fk will be denoted by w£(n, x), n = 0,.. . , /x, x € 14-

Définition of the fully discrete solution

Taking in mind the équations (8)-(9), we define the fully discrete solution to be the function u^ G Fk which
vérifies the following récurrence V cc2 G Vk,

(50)

= min f(xl, a).

Remark 3.1. Obviously, the solution of (50) is unique and can be computed recursively. This allows us to
implement the computational procedure.

Remark 3.2. If A is an infinité set, then (50) is not a fully discrete scheme in a strict sensé. To obtain a
scheme of that sort, we should perforai a final step of discretization which consists in the approximation of the
compact set A by a suitable finite one. In order to simplify the exposition, in this paper we have omitted such
approximation and so, in the following we will suppose that the opération min{...} can be computed exactly in

a£A

the numerical implementation of (50).

3.2. Central result

3.2.1. Rate of convergence

To obtain an estimate of the rate of convergence of the fully discrete solution, we establish an auxiliary result
given by the following theorem, which brings an estimate for the différence between the discrete time cost and
the fully discrete cost (defined in (8) and (50), respectively). The proof is based on regularization techniques
and the obtained estimate dépends on the regularization parameter p.

Theorem 3.1. Let x <E Vk and n = 0,. . . , \i} then it results

(51)

To prove this theorem, we apply properties established in subsection 3.2.2. The proof (given in Sect. 3.2.3) con-
sists in obtaining estimâtes for the différences between subsolutions and supersolutions of problems introduced
ad-hoc.

The central result is given by the following theorem which establishes an estimate of the différence between
the optimal cost and the fully discrete solution.

Theorem 3.2. If there exists constants c\ and C2 such that C\k < h < 02k, then there exists a constant C such
that V x G Vk and V n = 0,.. . , /x, it results

\u{nh,x) — u^(n, x)\ < CVJk .
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Proof. By using both the results of theorems 2.1 and 3.1, we conclude that

The estimate obtained in (52) attains its minimum value at p =

k2\
phj

j in conséquence

(52)

u(nh,x) - C (V7ï+ - = ) .
V vhj

Since c\k < h < C2&, we obtain

\u[nh,x) -

D

3.2.2. Définitions and auxiliary properties

Let /?(•)€ C°°(Mr), with the following properties

supp(^) Ç B(0y 1),

where supp(^) = {x e Rr : /3(a:) / 0}.

We define, the function u^ regularization of the function uh
y as the convolution between uh and /?p, z.e.

uh
p(n, x)= [ uh{n, x - y)0p(y) dy,

where

By vir tue of the convolution propert ies, V n — 0 , . . . , / i , V x , ï e t r , the function uh
p vérifies

11! f tl "Vl — OI ( tl T*l <CT T 11™ — T*

|u^(n,x) -uh{n,x)\ < Lup.

(53)

(54)

(55)

(56)

In the following lemmas we present auxiliary results which enable us to prove Theorem 3.1. Their proofs are
given in the Appendix.

Lemma 3.1. For every x E Vit, n = 0, . . . , JJL — 1, it results

x,a)) + LuLghp}} , (57)
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where

fp(xy a) = ƒ (x, a) + Kp and K = Lf + Lu(2 + Lgh).

From the previous lemma, we get the following corollary which estabhshes that the function u^ is a subsolution
of the perturbed problem (58), or in other words, that the inequality (59) holds.

Corollary 3.1. Letvp be the element of C((IRr)M+1) recursively defined by

Then,

vJn.x) = min{max{/p(x,a) , vp(n + l,x 4- hg(x,a)) + LuLghp}} ,
aÇA

vp(fjb,x) = min fp(x7a).

, Vn = 0 , . . . ,/x, zt results

(58)

(59)

Définition 3.1. We dénote with u^k the linear interpolation of uh
p. In other words, the element of Fk> such

that V n = 0 , . . . , /i, and V x G Vfc, it vérifies

uh i (n x) = uh(n x). (60)

In [23], it is proved that the différence between u^ and its linear interpolation can be estimated in the following
way:

k2

(61)

The following lemma estabhshes that the function u^ k is a sub^olution of the problem (62).

Lemma 3.2. Let

hg(x,a))
k2})

u— > > ,
p ) )

(62)

V x G Vfc, V n e { 0 , . . . , / z } ? i i

(63)

In the lemma below we show a relation between the element ePik defined in (62) and the solution of the fully
discrete problem.

Lemma 3.3. Let x G Vk Q>nd n G {0 , . . . , ji\7 then

(64)
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Définition 3.2. Let {an : n = 0,. . . , /i} be a séquence of éléments of A We define z the function that satisfies

z(n,x) = max{f(x,an)9z(n + l,x + hg(x, a n ) ) } , V n = 0 , . . . , / x - 1.
(65)

Remark 3.3. The function z is the cost corresponding to the functional (2), where, although the control policy
{an} can be non-stationary, it does not depend on the state of the System. Clearly, z dépends on {an}; however,
we do not explicitly write this dependence in order to simplify the notation. The function z has properties similar
to those of u, i.e.

\z(n,x) - z(n,x)\ < Lu \\x - x\\ .

D é f i n i t i o n 3 . 3 . We dénote wi th zp the regularized function of z, i.e. V n = 0 , . . . , /x

{n, x) = I z(n, x - y)Pp{y) dy,

where j3p is the function defined in (54).

R e m a r k 3 .4 . By the propert ies of convolution, it is valid t h a t V n = 0 , . . . ,/x, V x , x G M r , the function zp

vérifies

\zp(n,x) - zp(n,x)\ < Lu\\x - x\\, (66)

ijx) — z(n,x)\ < Lup. (67)

Définition 3.4. Let zp^ be the linear interpolation of zp. In other words, the function of Fk such that,
V x G Vfc, V n = 0 , . . . ,f*, vérifies

,x) = zp{n,x). (68)

We use again the result obtained in [23], which establishes that the différence between zp and its linear inter-
polation can be estimated, V x e W} in the following way

k2

\zPik(n,x) - zp(n,x)\ < Lu — (69)

Lemma 3.4. Let x G l 4 , n G {0, . . . , JJ,} and let a = {am : m = 0 , . . . , JJL] be a control pohcy whose restriction
for the values n^n H- 1 , . . . ,/x is an optimal pohcy for the initial conditions {n^x); i.e.

(n,x,a) = uh(n,x).

Then, \? m — n,... ,

where y^ is defined by the récurrence

(70)

yh
x{m + 1) = yh

x{m) m
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and z is the function defined by (65), where {am} is replaced by the special séquence { â m } .

41

The following lemma establishes that the function zp is a super solution of the problem associât ed to the
ity (71).

(71)

Lemma 3.5. For every x GVk and m = 0 , . . . , /x — 1, it results

zp(m,x) > max | / p (x ,â m ) ) 2: p (m-h l,x + hg(x, 5m)) -LuLghpf,

where

7p(x, am) = ƒ (z, am ) - Kp and K = Lf + Lw(2 +

Now, we show that the function zp^ given by Définition 3.4, is a supersolution of the problem (72) introduced
below.

Lemma 3.6. Let aPik be the element of Fk recursively defined by

ifp(z,ân)J(TPjk(n+lix + hg(x,ân)) - LuLghp- Lu— > ,

n = 0 , . . . , / i - 1,
(72)

then, Vx e Vfc; Vm = 0 , . . . , /x

(73)

The following lemma establishes that the solution of the fully discrete problem defined in (50) is a subsolution
of the stopping time problem (74) (a maximizing problem), defined as follows.

Lemma 3.7. Let £& be the element of F^ recursively defined by

k(m,x) = max{/(a; ,am) , &.(m+ 1, x + hg(x,âm))} , m = 0 , . . . , / x - 1,

then Mm — 0 , . . . ,/x, VxG Vfc; ^ e have

(74)

(75)

In the lemma below we show a relation between the solution of problem (74) and the solution of problem (72).

Lemma 3.8. For every x G V&, m = 0 , . . . ,/x, z£ results

-Kp-T
k2

(76)
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3.2.3. Proof of a prehminary esttmate

Now we can prove Theorem 3.1. To do that, we write

uh(n: x) - u£(n, x) = (uh{n, x) - uh
p{n, x)) + (u£(n, x) - u£|A.(n, x))

+ (v%jk(n,x) - ePjk(n,x)) + (ep,k(n,x)-v%(n,x)) . (77)

The terms of (77) can be estimated in the following way:

By virtue of (56), we have

uh(ntx) -up(n}x) < Lup,

also, by (60)

ti*(n,x)-i£fc(n,x)=0,

by Lemma 3.2

up,k(nix) -eP*{n,x) <0,

and by Lemma 3.3

Therefore

,a;) < Kp + T f LuLgp + Lu— \ .

T [LuLgp + 1^— . (78)
V hPJ

Let now n and x be arbitrary éléments and â be a control policy which restricted to the values m — n, . . . , fx}

is a discrete optimal policy for the functional Jh and the initial values (n,x) {cf. Lemma 3.4). The function z
used in the remains of the proof is chosen according to this à. To obtain an inequality similar to (78) but where
the sign > holds, we write

uh(n,x)-ul(n,x) = (uh(n,x) - z(n,x)) + (z(n,x) - zp(n,x))

4- (zp(n, x) - zPik(n, x)) + (2p,fe(n, ar) - crp>fc(n, x))

+ (aPïk(n, x) - Êk(n, x)) + (Çfc(n, x) - u£(n, x)) . (79)

These terms are estimated in the following form:

By Lemma 3.4

uh(n, x) — z(n, x) = 0,
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by (67)

zin. x) — Zp(nt x) > —Lu p.

by (68)

zp(nyx) - zPik(n,x) = 0,

by Lemma 3.6

zPik(n,x) -crP:fc(n,x) > 0,

by Lemma 3.8

( k2\
P)fc(n, x) - ffc(n, x) > -Kp - T f LuLg p -f Lu— 1

\ nP J
and, by Lemma 3.7

In conséquence,

k2'
uh(n,x)-v%(n,x) > -Mp-T ( LuLgp +Lu— ) . (80)

hp j

From (78, 80), we obtain the inequality (51), i.e.

\uh LuLgp + Lu— ) .
hp J

D

3.3. Optimality of the estimate

In the minimax problem, even though the data ƒ and g are semiconcave in x, it is not possible to improve the
estimate yfh which appears in (41) - as it was done in the problem studied in [20, 22]. In those papers, under
semiconcavity hypothesis on ƒ and g} it was shown that the optimal cost function u also results semiconcave.
In that case, the estimate for ||u — uh\\ can be improved to order hy improvement that was crucial to prove an
estimate of type &2y/3 for the fully discrete approximation. The following example shows that, for the minimax
problem, an improvement of this type cannot be expected.

Définition 3.5. We say that the function q : Rm ^ W is semiconcave in x iff there exists C > 0 such that

\\q(x + z) + q{x - z) - 2q(x)\\ < C \\zf .

Example 3.1. An example where the optimal cost is not semiconcave despite the fact that the data are semi-
concave.
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0 0 0 . 2 0 . 4 0 . 6 r 0 . 8 1 1 . 2 1 . 4

FIGURE 1. Optimal cost not semiconcave.

Let us consider a dynamic system which evolves in M2 according to the following ordinary differential équation

y[{s) = y2(s)*(r(s))

), Vse[0,10],

(Vi(O), 2/2(0)) = (x i ,x 2 )eR 2 ,

the instantaneous cost

where r(-) =

if r<2

system moves without restrictions in M2. T/ie functions f and g verify the assumptions A1-A2 and clearly,
both of them are semiconcave.

Let r = r(0) = ^Jx\ + x\ - It is easy to check that the value function is (for r < 2)

u(0,£i ,x2)= max ƒ(2/1 (5), 2/2(5)) = 11 - r 2 r,
s6[0,10] '

/or r e [0,2], T/ie optimal cost for this problem is not semiconcave at r — 1} as it can be seen in Figure 1 (also
it is not semiconcave at r = 0).

Moreover, the discretization procedure introduced here coincides with the methodology studied in [21]. In
that work, the authors proved that the estimate Vk is optimal when Lg < A, being À the discount factor of
the cumulative problem. In fact, for the data of this example, we can prove - using the triangulation shown
in Figure 2 and calculations entirely similar to those employed in [21,22] - that the error |tt(0,x) — u^(0,x)\
vérifies
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(0,0)

FIGURE 2. Mesh in R2.

Example 3.2. An example where the error of approximation is exactly of order Vk.

We consider a dynamic system which evolves in R2 according to

^(s) = (0,1) 0 < t < 5 < T ,

y(t) = (xux2) (xux2) eR2.

The instantaneous cost f is

It is easy to check that the value function results

= axu a G A = {-1,1}.

u(t7xux2) =

In particular, for (xi, x2) = (0,0) we have u(t, 0, 0) = 0.
We use here the triangulation shown in Figure 2. Evaluating (50) in this problem, it follows that

(81)

where ji = T/h.
By elementary calculations we have that

«£(0,0,0)

Taking T = 1 and h = k, it results

In conséquence, for approximations of this type} the best error that can be expected is of order
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Remark 3.5. The optimality of the estimate (85) sterns from the fact that - as it was explained in Section 1
- our minimax problem is a disguised differential game problem. In that game, one controller tries to minimize
the cost

J(t,x,a(-),T) = f(y(r),a(r)), (82)

while the opponent - using full information of actions of the first player - chooses at any instant the stopping
time r of the process. As a resuit of the complete game, the pay-off (82) is given. As a conséquence of «the second
player's privileged action, the first one must - in a strict way - minimize a functional that is not semiconcave
with respect to the spatial variable y. In this way, once a full discretization - using finite différences or finite
éléments - is applied, the résultant fully discrete optimal control problem reflects this property in the validity
of the estimate of type \fk.

Re mark 3.6. It is easy to check that exa,ctly the same results of convergence can be obtained if ƒ and g depend
on time and verify conditions similar to (Ai—A3). In this paper we have not considered this time dependence
in order to simplify the exposition.

4. NUMERICAL EXAMPLE

The problem consists in the calculus of the optimal trajectory from a given initial position s e l 2 and the
initial time in [0,T], The functional J to be minimized is given by

J(t,x9a) = max / (S , Ï / (S ) ) }

where y(-) is the trajectory of the system. The function ƒ : [0, T] x E2 t~» M is independent on the control
and has the shape shown in Figure 3 (this figure corresponds to the function ƒ (0, •)). The optimal trajectory
minimizes the maximum value of ƒ along its way.

In this problem, A = {0,1,2,3,4} and the dynamic g defined below gives five admissible directions of
movement on M2

(0,0)
(1,0)
(0,1)
(-1,0)
(0,-1)

Here, D is the rectangular domain D = [—4,4] x [—4,4] and
We consider a regular discretization of M2, whose nodes have the genera! form

(ikjk), ieZ, jEZ.

We divide the time interval [0, T] into /i sub-intervals with common length h —

In conséquence, (50) becomes, Vi, j

if a = 0
if o = 1
if a = 2
if a = 3
if a = 4.

characteristic function of D.

=max , jk) + hg(ikik,jk>a)) >,
J (83)
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FIGURE 3. Function shape.
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FIGURE 4. Optimal trajectory.

This System gives a recursive procedure to compute the optimal cost at each time and at each node. At each
itération, the direction that produces the optimum is stored, opération which enables us to construct the optimal
trajectories, like that one shown in Figure 3.

In the particular case where the points belong to the square D, all computations can be carried out using
only the values of u^ at the points (n/i,ar2), x% e D n = 0, . . . ,/x, because for those points appearing at the
left hand side of équation (83), the corresponding points appearing at the right hand side are also points of the
form (n/i, &*), Xi E D n = 0,. . . , /x. We have profited of this property to obtain the optimal trajectory shown
in Figure 4.
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5. GENERALIZATIONS

The previous procedure can be extended to the case where the functional includes a final cost. More specifi-
cally, we consider the case where the functional to be minimized takes the form

J(£, x, a(-)) = max{ J(t ; x, <*(•)), *(y(T))}.

In this case, the optimal cost vérifies a dynamic programming principle of the following form: V £ G [0,T),
V s e [0, T] s > t, Vx e E r

u(£,:r) = inf <̂  max < «(5,2/(5)) , ess sup f(y(r),a(r))
aeA I I []

u(T, x) = max < min ƒ (x, a),

The fully discrete solution vérifies the following récurrence V x% G

max

= max <J min

= 0,.

(84)

6. CONCLUSIONS

Here, we have developed a discretization procedure to obtain the numerical solution of the problem of
minimizing the maximum cost, analyzed from the continuous point of view by Barron-Ishii in [5].

The numerical procedure obtained is easily implementable and it converges to the solution of the original
problem, with an error estimate of the form

\u — Ufc | < Cvk . (85)

This estimate was shown to be optimal.
Except for very special trajectories, where some carefully chosen triangulations may be used, it seems not

possible in genera! to get approximations with better convergence properties.

7. A P P E N D I X

In this section, we give the proofs corresponding to the lemmas introduced in Section 3.

Proof of Lemma 3.1. Let x € V& and n = 0 , . . . , /x — 1; as we have proved in Lemma 2.1,

h(n, x) — min {max { ƒ(2;, a), uh{n + 1, x -f hg(x, a

h(ii,x) =min/( ic ,a) ,
aEA
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then, V a ê A , ^ satisfies

uh{ny x) < max {ƒ (x, o), uh{n -f 1, x + ft 0(2;, a))} . (86)

Let # = Lf + Lu (1 + Lgh).

We analyze two cases concerning max { ƒ (x,a),uh{n-\- l ,x

(x,a))} < f{x,a) + i?p

It results from (86)

^(n,x) < f{x,a) + Rp. (87)

By using (56), we have

uh
p(n, x) < uh{n, x) + Lup ; (88)

consequently, from (87), it follows that

uh(n, x) + Lup < f(x, a) + Rp + Lup = ƒ (x, a) + Kp = fp(x, a). (89)

From (88, 89), we obtain

u*{n,x)<fp(x,a). (90)

2. max{/(a:,a), 'u / l(n + l ,x + ft5r(a:,a))} > f(x,a) + Rp.

This condition implies

{ ƒ (s, a),uh(n + 1, x + ft p(x, a))} = u^(n + 1, x + ft ̂ (x, a ) ) . (91)max

Let us see that V y G Bp(x) the following inequality holds (where Bp(x) dénotes a bail centered on x of
radius p),

uh{n,y) < uh(n + l ,y + fc$(y,a)) • (92)

Let us suppose that (92) is false, Le,, 3 y € Bp(x), such that

u h ( n , o ) > u h ( n + l ) y + /ip(î/,a)). (93)

As uh{n,y) < max {/(y, a), ^^(n + l ,y + hg(y^ a))}, the inequality (93) implies

By virtue of the fact that ƒ and uh are Lipschitz continuons, we obtain

> iih(n + l ,x + hg(x,a)) - Lu (1 + Lgh) p.
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He nee,

uh{n + l,x + hg(x, a)) - /(cc, a) < Lfp + LU{1 +

which contradicts (91).

By convolution of uh with (3P we have, by virtue of (92),

uh{n,x)= uh(n,x-y) (3p{y)dy
JBP(X)

r

~JBP{X)

< / uh(n + 1, a; - y -h hg{x, a)) f3p{y) dy
JBP(X)

+ / Lu \\x-y + hg(x ~y,a) - (x - y + hg(x,a))\\ (3p(y)dy
JBP(X)

< u^(n + l,a; + hg(x, a)) + LuLg

= w^(n+ l,x + hg(x7a)) -f LuLghp.

Consequently,

Up(n, x) < uj(n + 1, a + / i ^ ^ , a)) + LuLff hp. (94)

Erom (90, 94), it foliows that

uh
p{n,x) < min{max{/p(a:,a),itp(n + l,x + hg(x,a)) + LuLghp}} . (95)

D

Proof of Corollary 3.1. For n ~ fxy the following relation holds

u^(/i, a?) < uft(^, x) + Lup = min f(x, a) + Lup < min /p(ar, a) — vJfi, x). (96)

Prom (58, 95, 96), we can prove by induction the following inequality

uh
p<vp. (97)

From (96), the relation (97) holds for n = JA. Let us assume that it is true for n = m + 1 and we will prove that
the same happens for n = m. From (95), the induction assumptions and (58), we have

Up(m,x) < min{max{/p(x,a),u£(m+ l,x + hg(x,a)) + LuLghp}}

{ { / p ( , ) , p ( + , + ^(a;,a)) + LuLghp}} = vp(m,x).

D
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Proof of Lemma 3.2. From the définition of uh
p and (60), we have

u%k{^x) = uh
p{^x) < ePtk(frx). (98)

Let x eVk and n = 0,. . . , fi — 1; from Lemma 3.1, it follows that, V a € A,

uh
p{n, x) < max { fp(x, a),uh

p(n -f 1, x + hg(x} a)) + LuLg hp} .

We analyze two cases concerning max{fp(x}a),u^(n + 1, x + /i<?(x,a)) + LuLg hp}

1. max{/p(a;,a),u^(n + l,a; + hg{x,a)) + LuLghp] = fp(x:a).

In this case (60) implies

<*(«>*) =Wp(»,z) < /p(^,a). (99)

2. max{/ p ( :c ,a) ,u£(n+ l ,x + hg(x,a)) + LuLghp) = w£(n + l , x + hg(x,a)) + LuLghp,

Here, from (60), it results

upk(n,x) = uh
p(n,x) < uh

p{n + l , x + /i^(x,a)) + LuLghp.

Using (61), we obtain

/c2

Up,fc(n, x) < u^ifc(n + 1, x + ft g(x, a)) + LWL^ /ip + L u — • (100)

For each a € A, at least one of the inequalities (99) or (100), must be true. Consequently,

«p.fcfa, x) < max j /p(a:, a), uh
p%k(n + 1, x + /i#(z, a)) + L^L3 hp + L u — > ,

then, since a is an arbitrary element of A, we have

uh
pk(n,x) < min < maxi fp(x,a)1upk(n+ l , x + h^(x,a)) + LuLghp + Lu— l l . (101)

Prom (98, 101), also by induction, we can prove as we have done in Corollary 3.1 that uh
pk <

D

Proof of Lemma 3.3. Prom (50), we have uk(fjb} x) = min ƒ (as, a). By définition of ep &, we obtain

£p,k{v<,x) = min/p(x,a) = min/(x,a) + Kp = uk(fj,,x) + Kp.

Let us suppose that for a generic n,

( &2\
LuLghp-\- Lu— ] .

9 )

The previous inequaüty also holds in points of the form x + hg(x, a) that do not necessarily belong to Vfe. This
is because the functions uk and ePyk are in Fki so they verify the property of linearity and the assumption (49).
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We must prove the inequality for n — 1

£p7k(n - l,x) = min< maxi fp(x,a),e„k{n,x -h hg{x,a)) + LuLghp-h Lu— > >
aeA { { p ) )

< min< max< Jp(a;,a),^(n,a: H- hg(x,a)) H- Xp + (/z — n + 1) ( LuLghp + Lu— ) > >

< mm {m&x {fp(x, a),u%(n,x + hg(x,a))}} + K p + (fi - n + 1) ( LuLghp + Lu— j

- 1, x) + üfp + (/x - n + 1) f LwLg hp + Lu— \ .

Consequently, by induction,

uphj'

D

Proof of Lemma 3.4- By définition of {am} and by the dynamic programming principle, we have that

m = n,... , /z — 1,

Then, V m = n , . . . , ju, it follows that z(n, y^o(n)) = uh(n, y^o{n)).
D

Proof of Lemma 3.5. It is similar to the proof of Lemma 3.1, and it is hère omitted.

Proof of Lemma 3.6. Let x E Vk and n € {0 , . . . ,/x — 1} (the proof is obvious for n = JJ,). According to
the définition of zPtk and the resuit of Lemma 3.5, the following relations are valid:

zPik(n,x) = zp(n,x) > Jp{x,ân), (102)

zPtk(n,x) = zp(n,x) > zp(n + l , x + hg(x,ân)) - LuLghp, (103)

Using (69), we obtain

(n + l , x + hg(x,ân)) > zPih(n + \,x+ hg{x,a7l)) - Lu— • (104)

From (103, 104) we arrive to

k2

p,k(n,x) > zPyk(n + IJX + hg(x,ân)) - LuLghp- Lu— • (105)
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Therefore, from (102, 105), zPtk vérifies

i f (T,àr),zpJJxn + Î,? + h g(r^an)) - LuLghp- Lu— > f106)

The inequality (73) can be proved by induction as we have done in Lemma 3.1 because the relation for the final
condition is obviously true.

D

Proof of Lemma 3.7. Taking in mind the définition of £& , we obtain

£k(v,x) = f{x,a^) > min f(x,a) =Ufc(/x,x).
aÇA

Given m G {0 , . . . , JJL — 1}, let us suppose that, V x G Vfc,

£k{m + 1, x) > u%(m + 1, x). (107)

As we have seen in the proof of Lemma 3.3, this inequality also holds at any point of the form x + hg(x>a).
Let us see that the inequality (107) also holds for m.

> max {/(re, âm), u%(m -f 1, x + hg{x, âm))}

> min {max{/(x,a),tx^(m + l,x + hg(x,a))}} = u£(m,x).

Consequently, by induction we have, V m = 0,. . . , ̂ , Cfc(m>x) > ^fc(m, a:).
D

Proof of Lemma 3.8. It is similar to the proof of Lemma 3.3 and it is here omitted.
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