Conservative forms of Boltzmann's collision operator : Landau revisited
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 1, p. 209-227
@article{M2AN_1999__33_1_209_0,
     author = {Villani, C\'edric},
     title = {Conservative forms of Boltzmann's collision operator : Landau revisited},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {33},
     number = {1},
     year = {1999},
     pages = {209-227},
     zbl = {0919.35140},
     mrnumber = {1685753},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_1_209_0}
}
Villani, Cédric. Conservative forms of Boltzmann's collision operator : Landau revisited. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 1, pp. 209-227. http://www.numdam.org/item/M2AN_1999__33_1_209_0/

[1] C. Cercignani, The Boltzmann equation and its applications. Springer, New York (1988). | MR 1313028 | Zbl 0646.76001

[2] L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing. Transp. Theory Stat. Phys. 21 (1992) 259-276. | MR 1165528 | Zbl 0769.76059

[3] M. Lemou, private communication.

[4] E. M. Lifchitz and L. P. Pitaevskii, Physical Kinetics - Course in theoretical physics, Vol. 10. Pergamon, Oxford, (1981).

[5] J. C. Maxwell, On the dynamical theory of gases. Phil. Trans. R. Soc. Lond. 157 (1886) 49-88. | JFM 01.0379.01

[6] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rat. Mech. Anal. 143 (1997) 273-307. | MR 1650006 | Zbl 0912.45011