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CONSERVATIVE FORMS OF BOLTZMANN'S COLLISION OPERATOR:
LANDAU REVISITED

CÉDRIC VlLLANI1

Abstract. We show that Boltzmann's collision operator can be written explicitly in divergence and
double divergence forms. These conservative formulations may be of interest for bot h theoretical and
numerical purposes. We give an application to the asymptotics of grazing collisions.
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1. INTRODUCTION

Boltzmann's collision operator is the main model in statistical physics for describing the interaction between
colliding particles. It reads

Q(ƒ)ƒ) — " / dv* I dujB(v — v*,ui)(fffl — ƒƒ*)) (1)

where ƒ : RN —> M+ is a nonnegative L1 function, standing for the distribution of the velocities of the particles,

and ƒ' = ƒ(?/), and so on. As UJ varies in the unit sphère SN x, vf and v+ describe all the possible postcollisional
velocities of two particles colliding with respective velocity v and v+, taking into account that the collisions are
assumed to be elastic, i.e.

Moreover, B{Z,OJ) is a nonnegative weight function for all possible directions of the parameter u>. It is always
assumed on physical grounds that B dépends only on \z\ and |(z,u;)|. A factor 1/2 stands in front of the
collisional intégral because in the représentation (2) the unit sphère is covered twice: alternatively, we could
restrict the intégration to the set of (u,i?*,u;) satisfying (v — V*}UJ) > 0.

Q(/, ƒ) at point v gives the variation of the "number" of particles with velocity u, in a unit of time, due to
collisions. It is often split into its positive and négative parts, Q = Q+ — Q~, which are called respectively the
gain and loss terms of the collision operator.
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Another useful représentation of Q is obtained by using a local system of spherical coordinates with axis
v — v* and spherical angle a:

Q(f,f)= f dv, f daB(v-v.,<T)(f'fl-ff.),
Jm.N Js"-1

(4)

with

v'= v — v 4

(5)
v + v* \v — v*

7\ I o

and

B{z,a) =
I2V-2

If the interaction between two particles is given by an inverse-power force l / r s (r being the distance between
particles) with s > 2, then (cf. [!})

where 6 E [0, TT] is the angle between z and a. If N = 3, then 7 = (s — 5)/(s — 1) and £ is smooth on (0, ?r/2),
but C(0) ~ Cö~^+1^/^=1^ with C > 0 as 6 —• 0. This singularity corresponds to the so-called grazing collisions,
ie . with a very small amount of momentum transfer (equivalently, (v — v*,w) ~ 0). Though it is nonintegrable,
it is possible to give a distributional sense to Q( ƒ, ƒ) under rather weak assumptions, provided that

Jo Ö <°°' (6)

ie. that the total cross-section for momentum transfer be finite. See [6] and the références therein for a detailed
study.

For Coulomb interactions, 5 = 2 and the intégral (6) diverges logarithmically, due to the effect of long-range
interactions. To circumvent this difficulty, Landau [4] formally performed asymptotics in which the grazing
collisions become prépondérant, and obtained a new collision operator,

with

QM f) - £

aij(z) =
12 '

(= _ for Coulomb potential).

The case 7 7̂  —3 is formally treated in [2] for instance.
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Assuming of course A to be finit e, the operator (7) is well-defined and is believed to give a satisfactory
description of the collisions in a dilute plasma. The basis of Landau's analysis was to write formally Boltzmann's
collision operator in a conservative form,

V„-s (8)

and the jth component of s is given by

r m
sj(v) = ~ / dh)dv% \ dwj B(w -w*,cü)[f(w + q)f(w* - q) - f(w)f(w*)] (9)

Jqj>0 Jvj-Qj

where q — (v — u*,u;)u; is the transferred momentum; see [4], paragraph 41.
It is easily seen that this expression is a crude approximation of (1), since the flux (9) counts particles going

through a hyperplane. But both expressions (1, 8) coincide in the limit when all the collisions become grazing,
because, due to the small amount of momentum transfer, the velocity of a part iele changes continuously - and a
small surface element, viewed from very close, looks like a hyperplane. In f act, it is sometimes stated in physics
textbooks that the expression (8) is meaningless in the gênerai case, because, contrary to a diffusion process,
the velocity of particles does not change continuously (hence particles "jump" in the velocity space E N , and
the flux is not well-defined).

However, we shall show that, at least from the mathematical point of view, it is perfectly possible to write

the Boltzmann collision operator in a conservative form, even if particles undergo sudden changes of velocity.

For instance, one possible expression for the flux of particles is

dv* dw B(v - V^LJ) / dr f(v + ru) ƒ 0* + rv)u>. (10)

What is more, we shall prove that Q can be written as a double divergence, that is,

ijAij{f,f). (11)

These formulas could be interesting for the mathematical study of the Boltzmann équation, especially the
singularity in B. In particular, we note that in the formula (10) a singularity of order 1 in B has been formally
reported on the divergence opération. Indeed, if ƒ is smooth,

/
Jo

(v — v*,u>)

dr f(v + ru)f{v* + ru>) — O((v — u*,

On the other hand, the représentation (10) gives the flux as an intégral operator with one multiplicity more
than the collision operator (1), Le. 2N instead of 2N — 1. In fact, one can also write J as an expression of the
form

J(fJ) = [ dv*dvof{v*)f{vo)D(v,v*,vo). (12)

Such a formula could be useful for devising new deterministic numerical schemes for the Boltzmann équation.
Indeed, the fact that u) runs through the unit sphère in (1) appears to often cause delicate problems for
discretization [3].

The organization of the paper is as follows. In Section 2, we recall the basic identities involving Q; then
we state several forms of Q(f, ƒ), considered either as a divergence or as a double divergence. We also give
a double divergence form for Landau's collision operator (7). These expressions are established in Sections 3
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to 6. Finally, in Section 7, we give an application of the results of Section 3: a simplified proof of a resuit
by Desvillettes [2] that if a fixed function ƒ is smooth enough, then in a suitable grazing asymptotics proeess,
Q( / , / ) reduces toQ L ( / , / ) .

2. BASIC IDENTITIES AND MAIN RESULTS

We first recall some well-known facts about Boltzmann's collision operator. Let (f be a smooth test function;
we consider

f Q(fJ)<P = f dvdv*d*B(v-v*,<T)(f'fi- ff+)<p(v).

By the change of variables (involutive and with unit Jacobian) (v,v*) -» (v',v£), noting that B{vf —v^a) =
B(v — V*J(T), we obtain

ƒ Q(fJ)v = ƒdvdv* daBfU{tp' - v),

where we have omitted for sirnplicity the arguments of B, This is Maxwell's form [5] of Boltzmann's collision
operator. Now, by the change of variables (v, v*) —» (v*,v),

ƒ QU\ f)<P = \Jdvdv* daBff*(<p'

This formula can actually be taken as a définition of Q{f, ƒ) in the sense of distributions [6], as soon as, say,
ƒ /(v)(l + \v\2^)dv < oc and B(z, a) sin^"2* = *(|«|)C(Ö) with $(|^|) < C(l + |^|7) and ƒ 02((0)d0 < oo. It
is also clear that analogous formulas hold for the représentation (1).

Similarly {cf. [6]), for Landau's collision operator

/ QUf, f)<p = g / dvdu# ff*ai:i{v ~ u+) (Ŝ -y? + (ftj^)*) + /

with 6 (̂z) = X ĵ djaij(z)'

In view of these formulas and of the conservation laws (3),

/ < ? ( ƒ , ƒ ) [ «i 1 = 0 ; I Q L { Î J ) \ vt 1 = 0 . (13)

This alone suffices to prove that Q (resp. QL) is formally a double divergence. Indeed, denoting by Q(£) the
Fourier transform of Q(/, ƒ), we see that

Q(0) = 0, | ^ ( 0 ) = 0,

Therefore, as soon as Q is C2
5

= Q(0) + £ • ^ ( 0 )



CONSERVATIVE FORMS OF BOLTZMANN'S OPERATOR 213

with OL%3{^) = JQ dl3Q(t£,t£)(l — t) dt. This is exactly the Fourier version of (11). Moreover, we note that
^2t an(0) = 0, which means that

But the remarkable feature of Boltzmann's collision operator is that we shall be able to obtain explicit expressions
in both représentations (1, 4), whose physical meaning will be clear.

We note that the condition ƒ X — 0 is définitely not necessary for X to be the divergence of some flux J.
Indeed, the flux could be nonvanishing at infinity, in which case it is impossible to invoke Stokes' formula and
conclude that ƒ X = 0 (such an example will be seen in Sect. 6). However, for both mathematical and numerical
purposes, it seems désirable to impose that J —> 0 at infinity.

Theorem 1. In the sense of distributions, Q( ƒ, ƒ ) = - V * J( ƒ, ƒ ) wüh

/

/»(u-u*,u;)
dv*du)B(v-v*,oj) / dr f(v + ru))f(v* + ru)uj (14)

vv-v*,w)>0 Jo

^ - (15)= f
J(v(v+-v,vo-v)<0

Alternatively,

2

drJ(fJ) = J = - Jdv*daB(v~v^a) ƒ

ƒ H r- r ƒ U* + r1 r 1
[ \ \v-v*\J V \v - v*\) \v "" v*\

(V^yy (16)
Remarks

1. The expressions (14) and (16) differ by a divergence-free vector field, but need not be equal to each other.
2. Both expressions go to 0 at infinity under suitable assumptions on ƒ and B, as is most conveniently seen

by formula (15): for instance, if ƒ has compact support and B is bounded, the decay as \v\ —> oo is at
least like C/\v\ for some C > 0.

3. Several variants are given in the paper. In particular, we also give a représentation of (16) in the form (12).

With this theorem at hand, it is very easy to p erfor m the asymptotics of grazing collisions, and show that J
converges towards the expression in curly brackets in (7). This will be done in Section 7.

As we said before, a double divergence formula is also available for the operator (l).

Theorem 2. In the sense of distributions, Q(/, ƒ) = X^*. dlkAïk(f^ ƒ), with

— — I dv* da B(v — v*, a)

f (v + r-^ZM / L + r ^ ~ ̂ * \ ,
\ Ü — v* | y \ u — v* | / |Ü — v*

(17)

dr
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Remark
In addition, Y^^(f^f) *s itself a divergence! We shall not give an explicit expression for this, but show how
to obtain it.

By the way, we shall see that Landau's collision operator (already in divergence form) is also a double
divergence,

The expressions in Theorems 1 and 2 are first guessed by formai physical reasonings; then we check their
mathematical correctness. The first expression in Theorem 1 is established in Section 3 by an explicit compu-
tation of the ctflnx'5 of particles in velocity space. Since the notion of flux is not well-defîned for a process with
sudden jumps, we simply assume that particles follow straight lines in the velocity space.

We recall that the flux j of some quantity n in MiY is formally deflned by dn = j*dS dr, giving the (algebraic)
amount of quantity n going through an infinitésimal surface dS in a time dr. In other words, if S is a closed
surface enclosing a volume V, then the variation of fv dn is given by — Js j • dSj if dS dénotes the ontward
normal to S. By Stokes' formula, this is also — Jy V - j . Taking V to be an infinitésimal volume dv in velocity
space, and n the number of particles, we get

We make it clear that this dérivation must only be taken to be a heuristic one, and that we shall give rigorous
proofs of the corresponding formulas.

To express Q(f, ƒ) as a double divergence, it sufBces to obtain a divergence form for Q(f, ƒ) and Q(/, f)vtJ

1 <: i < N, as shown in Section 4. But if we try to compute the flux of Q{ ƒ, f)v% in the same manner as bef ore
(with straight pathlines), this leads immediately to definite contradictions; therefore, we have to develop a more
complicated scheme, based on the cr-representation. The final expressions are obtained in Section 5. As for the
Landau équation, we do not know of any convenient représentation of Q& in ternis of flux, but it will be easy to
obtain conservative représentations, either by a direct method, or by analogy with the study of the Boltzmann
operator.

3. FIRST CONSERVATIVE FORM

In this section, we use the représentation (1). Let v be a fixed velocity in the phase space R^, and let ë± be
a fixed unit vector, say from left to right. We want to compute the component j \ along e% of the collisional flux
of particles j at point v. In order to do so, we consider an infinitésimal surface dS with center v, perpendicular
to ëi, and we count ail particles going from one side of dS to the other, due to collisions. Let vo dénote the
velocity of an arbitrary particle POî which may go through dS} and u* dénote the velocity of a test-particle P*
which may encounter the previous particle. Furthermore, let q be the momentum transferred from P* to Po:
q _ (v^ _ V0}W)UJ). By définition, a particle with velocity vo can go through dS only if v € [vo,vo + <?], which
implies that the collisional parameter u> is determined by

Vo —v
OJ = (jjc =

- v\

(we do not take into account the other possibility that u) — —u)Ci since this would resuit in a double covering of
the sphère, and we do not consider the exceptional event vo = v).

Now, the number of collisions in which a particle Po with velocity vo encounters P* with velocity v*, such
that the collision parameter is uc, is

dv* dvo f(v*)f(vo)B [ Vo - v*7 Y^ ) dw,
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FIGURE 1. Partiële going through a surface element in velocity space

where du) is the solid angle with which dS is viewed from vo. By an easy calculation in elementary geometry,

dS\cos(ujc,ëi)\
du =

v0 — v
N-l

Since

\vo - v\

and since the first component j \ of the flux is obtained by dividing the algebraic number of particles going
through the element of surface by the value of dS, we obtain

ff J J £( \£( \T>( Vo ~ V \\Vol - V\\ 1
Ji= dv* dvo f{v*)f{vo)B [vo - v*, 1 r L

 r ] r T

JJ 1+ \ \Vo-v\J \Vo-v\ \VO-V\N~1

- ff dv* dvo f(v*)f(vo)B (vo - v*, ̂ Ll
])

 lVol~Vl] ^—T , (18)
JJ I- \ \vo-V\J \Vo-V\ \Vo-V\N-1

where / + (resp. I~) is the set of all couples (vo,v*) such that, in the collision of Po and P*, Po goes through
dS from the left to the right (resp. from the right to the left), i.e.

/" = {(vO7v*) e R2N/vr - qx > vol >

The expression (18) is the desired quantity. In order to obtain better expressions for J + and / ~ , let us write

Vo=v + no, r > 0 , w e S ^ 1 . (19)

In these variables, by (2) we easily fmd

/+ = {o;1<0 ) (v-v*,v) > 0}, / " = {CJI > 0, (V-V^UÜ) > 0} .

Since |wi|la;i<o ~ |aJi|laji>o — —wi, and since (v — V+^UJ) has the same sign as (v — v+,vo — v), (18) can be
rewritten as

* - ƒ ƒ dv* dvo f(v*)f(vo)B [vo-v*,
-v)<0 \

v — vo \ vi
\V ~VC \V - \N-1 '

This leads us to a first possible expression of the flux, which is formula (15).
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To show that the expressions in (14, 15) are equal, we use the spherical change of variables with center v
which is given by (19).

Let us set A = J + U I~ = {(v - v*,w) > 0}. Since dvo = rN~1drdw,

3i~— \ drdu>dv*f(v+)f(v + rtj)B(v + rv — v*>u)uji.
JA

As a conséquence, the value of the flux of particles at point v can also be written as

j = ~ I / drdLodv*f(v*)f{v + ru))B(v + ru)-v*,u))w = J(fyf). (20)

This ends the first part of our program, namely guess the flux of particles by formai reasonings. We now proceed
to compute the divergence of J ( / , ƒ), and show that it is actually equal to — Q(/, ƒ). We begin with formai
manipulations, and then show how to give them a quite rigorous and simple meaning in distributional sense, by
using the weak formulation of Q.

Let us differentiate the opposite of (20) with respect to v\. This gives

/
drduj I f(v*)f(v + r(jj)B(v + rcü — V*,LÜ)CÜI + dr du) / dv* f{v*)ujidi [f(v + ruj)B(v + ru> — v+,u))]

JdA J JA

with dA = {{y — v*, CÜ) = 0}. Since UJ\ + • • • + UJ% = 1 and u)\d\ H h UJN9N = Ü; - V, we get

- V - J = (J) + (II)

with

(I)~^l duj I
J J (<y — v

where v* = f ̂  is the component of v* which is orthogonal to LJ, and

(II) = drduj

As for (/), let us introducé the new variable u>* such that, in the collision of particles with velocities v and iu*,

f w^ = iü* + (v — w*,Lü)u) =v*
| v

f =v — (v — w*,u;)u> —v + rtü,

i.e. w^r = v^r and (IÜ+, w) = (v, LJ) + r. For fixed u) and v, the change of variables (£*, r) —>• w* = (i3*,r + (v, o;))
is a translation. Moreover, w* varies in the half-space RN~l x [(v,a;),+oo). After the use of the symmetry
(r,a;) -> (—r, — a;), which leaves the integrand of (/) unchanged and allows intégration on all space RN, we
finally obtain

) = 0

(I) = ±

Since B{vf — w^u?) = B(v — w*,u>), this is exactly the "gain terra" in (1).
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As for (II), we note that the action of UJ • Vv on a function of v + ru) is the same as that of dr, so that it can
be rewritten as

drdco d

= drdrl

Using the formula ƒ dr drtp(r) = ~<p(0) for ip vanishing at infinity, we obtain

(II) = - [ dwdv* f(v*)f(v)B(v - v+,u>).
JA

By the change of variables co —> —o;, we see that this is exactly the "loss term" in (1).

To obtain a rigorous justification of these manipulations, it suffices to perform them in weak form. Let cp be
a smooth function with compact support in velocity space. Then,

ƒ J . Vy> = — dv dr dv* du) f(v*)f(v -h rcü)B(v — v* + ra;, LÜ) [LU - V<p(v)}
J J JA (21)

= — / dïïdrdv* dwf{v*)f{v)B{v — u*,o;) [u) • V(p(v — ra;)] ,

where we have used the change of variables v = v + ra;. Now, we exchange the variables v and v* to get

/
J . \/{p = — ƒ cfàdrdv* dcjf(v*)f(v)B(v — i>*,o;) [o; • V<p(v* — ra;)].

J(v—v*,u))<—r

Applying the change of variable LÜ —>• —LU to this last expression, we get

J.\7<p= / düdrdv*duf(v*)f(v)B(v - v*,u)[u> - V<p(v* + ra;)] . (22)

Summing up (21) and (22), and replacing as above LO • V by ±9 r , we obtain

/
J . v^> — - / dvdrdv* dwf(v*)f(v)B(v — v*,to)dr [ip(v — ra;) + <̂ (v* + ra;)]

2 J(v-v*,w)>r
1 /" Av-v^w)

= - dvdv*du?f(v)f(v*)B(v — v*)Uj) / dr ö r [y?(ü — ra;) + y?(ï;++ ra;)]
2 JA JO

= - ƒ dvd^da;/^)/^)^^-^
2
 JA

= - / dvdv*duü ff*B(v - u^jo;)^'

This proves that, in distributional sense, <2 = —V • J.

Finally, we note that the expression of Theorem 1 is obtained by applying to (20) the change of variables
v* —> v* — ra;.
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4. HOW TO GO FURTHER

Now, we would like to obtain a double divergence form of Q- First note that, since ƒ Qvk = 0 for 1 < k < iV,

Qvk should also be a divergence. Let us assume that we know how to compute a suitable flux Jh for it, so that

(23)
l Qvk = -V-Jk.

Then

—V • (Jvk) — — (V • J)vk — Jfc = Qvk — Jk = —V • Jk — Jfc,

so that

Jk = - V • (Jk - Jvk) = - V di{Jk - JiVk).

Therefore, Q = Y^^ih^ik with

A i k = J i - JzVk. (24)

A little more can be said. Suppose that we know how to compute an energy flux JB, Le.

Then

- V • J* = Obi2 = V OviVi = - V ( V • ÏÏvt = - V V - (J'vi) + V Jl

so that

i

In other words, J^ ̂ u '1S itself a divergence.
Therefore, we see that the only matter is to compute the flux of v^ and v2, that is, the collisional invariants

C(v).
If we still assume that particles go along straight pathlines, a serious problem arises: what value should be

given to C(v), while the partiële lies between vo and v0 + g? In fact it is impossible to use this scheme, because
such a "flux" would not be conservative, in the following sensé. Let 5 be a surface enclosing a volume V\ let
ô be inside V, and v* outside. Then it may happen that vf

o be also inside V, yet v* remain outside. Thus, the
particles may interact, and momentum may be transferred from the exterior to the interior of V', without any
momentum crossing the surface S.

The remedy to this pathology is simply to use the représentation (4), and the following underlying scheme.
Consider two colliding particles PQ and P* with velocities vo and t;*, and C(v) the collisional invariant whose
flux we want to compute. During the collision, we clearly distinguish between the position of the particles in
the phase space, say £o, £*, and the quantities C(vo), C(u*), etc., which are attached to them.

1. At the beginning of the collision, £o = vo, £* = v*. Then the two particles converge in straight lines
towards the center point in the phase space, £# = (vo + v*)/2. C is unchanged for both particles.
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FIGURE 2. This collision makes the quantity of momentum inside V change, yet no partiële
has gone through the surface S.

R p

FIGURE 3. First step of the collisional scheme

2. Once both particles are at the same position £#, occurs the momentum transfer: C(vo) and C(v*) are
replaced by C(vf

o) and C(^) , respectively. This step does not contribute to any flux of Cy since C is a
collisional invariant.

3. Then, the particles go in straight paths towards their final positions, Çf
o = vf

o and ££ — i£, without any
change of C.

It now remains to adapt the method of Section 3 to this scheme. We note that step 2 definitely f ails for
fonctions of the velocity that are not collision invariants.

5. COMPUTING IN ^-REPRÉSENTATION

First step of the scheme

We proceed to compute the flux of particles implied by the first step of the above collisional scheme. As
before, we fix an infinitésimal surface dS with center -y, and a unit vector ê\ perpendicular to dS. Clearly, v*,vo

and v must be aligned for the flux to be non 0; v must even lie between v* and vo. Therefore, we put

'v* =v + p/3,

vo=v-Rj3

For fixed vOi the volume of suitable v*, i.e. such that [̂ o,̂ *] intersect dS} is
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Setting

A(vo - u*) = / da B(vo - u+) a),

and using the notation JX_Y = fx — fY, we obtain that the first component of the flux through dS is

ii = f dvoAivv-v^f^fiv^-^ip + R^dp,
JI+-I- R

where / + (resp. I~) dénotes the set of velocities VQ such that the corresponding partiële PQ goes through dS
from the left to the right.

We can transform this expression by the changes of variables

v o = v — ü/3, r =

so that u>* — v = ̂ ^ — fO) and

We détermine / + and I~: the first of these subsets corresponds to vo\ < V\ and v#i = (^oi + w*i)/2 > i>i, z.e.
/?i > 0 and p > R. Since p = \v — w+\ — R, this last condition is R < \v — u;*|/2. For ƒ", it suflices to change
the sign of Pi.

Finally, the flux corresponding to the first step of the collisional scheme can be written as

( 2 5 )

ŒB(V-W^<T) [ 2 dRf(v-Rp)f(w*-R{3)f3
Jo

= I dw* I daB(y-w*ya) I " dR ƒ [v-{-R^~V*. ) ƒ [w
J J Jo \ |v-M/ V\ \ / \ \v-

Accordingly, the corresponding flux for the quantity C(v) is

= [dw
J \v-v* v-v*\J V h > - • " •
[
J /

(26)

Remark
To obtain an expression of the form (12), one can use the exchange of variables a and /?, in the same way as we
shall do in the third step of the scheme.

Conversely, we proceed now to compute the divergence of (25). Writing for short A{rf3) — A(r), we start
from

-31 = - f dRdpdpA(p + *)ƒ(„ - Rf3)f(v + pp)fa{p + R)N'\
JR<P

and differentiate this expression with respect to v\ :

R<P
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But

P • V [f(v - R0)f(v + pp)] = -dR[f(v - Rp)]f(v + pp) -f ƒ(t; - Rp)dp[f(v + p/3)].

Therefore, integrating by parts with respect to p,

- V - j = / dpdpdRA(p + R)(p + R^-^R [f(v - Rp)\ f{v
JR<P

f dpdpdRdp [A(p + R)(p + R)"-1} f(v - R/3)f(v + pp),
JR<PR<P

since the boundary terms for p = 0 and p —> oo both vanish. In the last intégral, one can replace dp by ÔR, and
obtain

Jdpd(l j"dRdR{A{p + R){p + R)N-lf{v - Rp)f(v

= f dpdp\A{p + R)(p + R)N-lf{v - Rp)f(v

= JdpdpA(2p)(2p)N-lf(v - p0)f(v + pp)

-JdpdPA(p)pN-1f(v)f(v

= (Ia) - (Ha).

Setting v* = v ~\- p/3y we see that the last intégral (lia) is

f(v) f dv*A(v-v+)f{v+),

which is the loss term of Boltzmann's operator.
If we perform the computation with (26), we obtain in the end

- V = JdpdpA(2p)(2p)N-1f(v - pp)f(v + pp)C(v - pp) - ƒ dPdpA(p)pN-1f(v)f(v + P0)C(v),

- (Ha)(C),

and the last intégral (IIa)(C) is really Q~(f,f)C(v). We note that for C(v) = Vk, the first intégral (Ia)(vk) is
simply

ƒ dp dp A(2p)(2P)N-1 f(v - pp)f(v + p(3)vk;

indeed, the additional term with pfik vanishes, as can be seen by the change of variables /3 —> —/3, which leaves
f(v — p/3)ƒ(v + p/3) invariant.

Third step of the scheme

The computation of the flux attached to the third step is immédiate: for vo to go through dS7 it is necessary
that

v — v JA

= crc~
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V0

da

FIGURE 4* Second step of the collisional scheme

7+ corresponds to (crc)i > 0, and J= to (<rc)i < 0; moreover, viewed from
Therefore, we obtain

jW = / düo du* f(vo)f(v*)B(vo - v*}ac)-
 C

j |v-v#

By the change of variables (uo,v*) —)- (p,ajW*) with

} da = dS\(ac)\\/\v —

= i; —

with Jacobian p^ 2, we get

ƒ dw* da S(v - tu*, a) ƒ dpfl
7 Jo V

dpflv-pa —-^ ) ƒ ( v
V 2

Moreover, in these variables, by (5) the postcoUisional velocity of Po is

, \v — w*
v'R=v+l J p I a,

so that the flux for the collisional invariant C is

a. (27)
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We now compute the divergence of the opposite of (27), after the change of variables

IA J S/ x f TJL~ I *( v-w*\ f v-w*\
— f dw* daB(u — tü*,a) ƒ dp f [v — pa — — l ƒ | v — pa \ =—-=~ i a

J Jo \ 2 / \ 2 /
= - ƒ dwdaB(w,a) ƒ dp f (y - pa - ~J f (y - pa-h^J a.

Thus,

= - fdwdaB(w,a) f * dpa • V [ƒ (v - pa - ^\ ƒ (v - pa 4- |

= ƒ d«;cfer5(«;,<7) ƒ dpdp ]J [y - pa -^j f [v ~ pa + ^ J J
|u,[

dwdaB{w,a) yf (y - pa-^) f (v - ptx + — Jj

= - JdwdaB(w,a)f (y - | ) ƒ (v -f | )

dwdaB(w,a)f [v - ^a - - J ƒ ̂  - - ^ a + - J

By a spherical change of coordinates w = r/3, the last intégral (llb) is

ƒ d/3 dr <fe ̂ - ^ ( D S , a) ƒ (v - ~a - ^ ) f (v - ^<

= Jdl3drd*rN-1B(r<T,l3)f (y ~ T-a - ^ ) ƒ (v -
 V-

since B(r/3, a) = B{ra,0). Now, it sufRces to proceed to the change of variables v — (r/2)a — (v + v*)/2, Le.
v* = v — nr, to obtain

'/3j ƒ f —̂ — 4-

which is the gain term of Boltzmann's collision operator. Moreover, (Ib) and (Ia) are equal, as can be seen by
setting w = 2pj3 in (Ib).

The same computation with C(v) — Vk for instance leads to

) = -Jdwda B(w, a)f (y-^)f(v+ | ) (vk + M<
dwdaB(w,a)f tv-~^a~- f I v - "—-a + - \ vk.

\ Z £ / \ Z Z/

Since, by ^ -> —er

-JdwdaB(w,a)f (v-fjf (v+^) l-fak = 0,

we obtain the desired result.
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As a conclusion, summing up the contributions of steps 1 and 3, we find in particular that Q = —V • J and
Qvk = -V-Jk with

, (28)
\ * / \ * / )

\v — v * I

Jk = - f dv*daB(v-v*,a) f * dr

(f(v + r
 v ~ V* } f (v + r V ~ "* ̂  ^ " ^ (v* + r ^ " " * ^ ^

W l « - « . | y J \ * \v-v.])\v-v.\\k \v-v.\)

The expression of Aik = J^ — J^fe follows.

6. LANDAU's COLLISION OPERATOR

To write Landau's collision operator as a double divergence, we first note that

K- * f)9jf - (bi * f)f = dj ((aij * f)f) - 2(bi * f)f,

hence it suffices to prove that for each z, (bi * ƒ) ƒ is a divergence. After the previous study, it is easy to guess
a convenient expression,

- [dv*b(v-v*)f(v)f{v+)

f N-l

= f dRdf3 [{R - p^'^ipP - Rp)f(v + p/3)f{v + Rp)]^*

f fR

= dRd(3 / dpôp [(i? - p)N~lb(pf3 - Rp)f{v + fl9)/(ü -h iZ/9)]
J Jo

= [dRdp [ dp{{-dR)[{R-p)N~lb(p/3-R/3)}f(v + p0)f{v + RP)
J J O K

*\
+ (R- p)iV~16(p/3 - R/3)dp [f(v + p/3)] >

J
= JdRdp J dp{(R- p)N~lb(pP - iï/3)ƒ(v + p/3)ôH [ƒ(w + ^ ) ]

JV-l \

= dRd/3 dp(R - p)N~lb(pl3 - R/3)/3 • Vlf(v + p0)f(v -f R(3)\

( f rR \
= V • I dRdp dp(R - p)N"1b(pf3 - R/3)f(v -f p(3)f (v + JR/3)/3 ,
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checking that all boundary terms vanish when integrating by parts. We note that we did not use the fact that
6 is odd, which is the condition for ƒ dv dv* b(v — v*)f(v)f(v*) to be vanishing in the gênerai case. This simply
means that the above flux does not necessarily vanish at infinity.

Another simpler possibility to compute a convenient flux is to look for it in the form

dvo dv* f(v*)f(vo)D(v, vOiv*),

and to choose

D^.Vo^v*) = b(vo -v*)VU(v — v0)

where U is the fondamental solution of the Laplace operator in MN.

7. THE ASYMPTOTICS OF GRAZING COLLISIONS

As an application of the conservative form of Boltzmann's operator, we give an adaptation of Landau's
original argument to pass from (1) to (7). We consider a séquence of kernels concentrating on grazing collisions,
ie. for example

9e(\z\) = £ f dwBE(z}uj)(z,üü)2 = *(|z|) (independently of e). (30)
2 JsN-i

In the limit, only the collisions with (V—V*,LÜ) c^ 0 are taken into account. We dénote by Q£ the Boltzmann-type
collision operator associated with Be. It was proven by Desvillettes [2] that if (say) ƒ € W3)O° and has compact
support, then Qe(ƒ, ƒ) —> QL( / 5 ƒ) in Lloc as e goes to 0. Here we shall content to show how one can simply
prove that

We note that under very weak assumptions Q£(/, ƒ) —> QLUIÎ) in the sense of distributions, see for exam-
ple [6]. A direct proof may however be useful to get strong convergence once a priori bounds are known.

Starting from

—J£ = / dv* du; B£(v — v*, ou) / dr f (v + rcü)f(v* + ruj)oüy

we note that UJ —> — u;5 r —> —r leaves the integrand invariant and transforms (v — v*, LJ) > 0 into (v — v*, UJ) < 0;
therefore,

~J€ = - ƒ dv*düjB£(v -V*,ÜJ) ƒ drf(v -f ruj)f(v* + ru)uj,

with the convention that j a g = — j^g. We assume for instance N = 3. For given v, v*, we represent u; by
spherical coordinates 0,0, and for given <j> we dénote by (j%I^j)J~ the unit vector orthogonal to v — v*7 with
angle 4>. Then we write

v — v* \ f v — v* \ v — v*
ÜJ = '
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and accordingly,

1 f Av-vm,ui) / v _v^ \

= - dv*ckü B£(v - u*,u) / dr f(v + ruj)f(v* + ro;) ^ :
2 J Jo \\V-V*\J

+ - ƒ dv*du;B£(v - V*,LJ) ƒ dr f(v + ruj)f(v* +rus) [- r,(j)
2 J Jo \lv~v*l /

^ , )
v - v*\ J \v -

+ - / dv*dwBe{v -v*,u) j dr f(v + ru;)f(v* +ruj)O

Assuming ƒ to be C2,

ƒ(u, + rw)ƒ(u + rw) = f(v)f(v*) + rf(v*)Vf(v) • a; + rf(v)Vf(v*) • u> + O(r2),

\v ~ v*

~Je=2 dv* dcüBe(v ~ v+y^iv - v*,u>)ff* f
_

1 /*

+ - / dv+(kjB£{v-v+,<
2 j

- ƒ dv*dwB£(v - v+yu>) O

ai /ii

- / ^d^£e(t;-u*,üj)/(ï; + rw)/(^

Under convenient assumptions on ƒ and I?, the last two terras vanish in the limit e -+ 0, since

3

du>B£(v - v*,w) ^ ^T, w ) —>• 0.

Moreover, by symmetry,

1 /* f v — v* \'L
- ƒ dv*düjBe{v-v*,u)(v-v*,u)ff* [-, T̂ =0 .
2J \\v — v*\J

Therefore, the limit is that of

ï/: Ut — u . ^

Then we write LO in spherical coordinates with axis v — v*: let Ö,</> be the corresponding angles, we set (for
instance) B{y — v*,a;) = JJL(6)C(V ~ v*). To conclude that the limit is the right-hand side of (31), it suffices to
use (30) and the (classical) identities (cf. [2,6])
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d<t> (/v.ƒ* + ƒ.v/) • ( i^z^y) (<!>) = * J n(« - «.) • (ƒ,v/ + /v*ƒ.),

V • {U(z)\z\2C(z)) = -2zC(z).

The author thanks F. Golse for asking him the question which is at the basis of this work.
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