An active set strategy based on the augmented lagrangian formulation for image restoration
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) no. 1, p. 1-21
@article{M2AN_1999__33_1_1_0,
     author = {Ito, Kazufumi and Kunisch, Karl},
     title = {An active set strategy based on the augmented lagrangian formulation for image restoration},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {33},
     number = {1},
     year = {1999},
     pages = {1-21},
     zbl = {0918.65050},
     mrnumber = {1685741},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_1_1_0}
}
Ito, Kazufumi; Kunisch, Karl. An active set strategy based on the augmented lagrangian formulation for image restoration. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) no. 1, pp. 1-21. http://www.numdam.org/item/M2AN_1999__33_1_1_0/

[1] L. Alvarez, P.L. Lions and J.M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, II SIAM J Numer. Anal. 29 (1992) 845-866. | MR 1163360 | Zbl 0766.65117

[2] R. Acar and C.R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994) 1217-1229. | MR 1306801 | Zbl 0809.35151

[3] D.P. Bertsekas, Constraint Optimization and Lagrange Multiplier Methods. Academic Press, Paris (1982). | MR 690767 | Zbl 0572.90067

[4] F. Catte, P.L. Lions, J.M. Morel and T. Colle, Image selective smoothing and edge detection by nonlinear diffusion SIAM J. Numer. Anal. 29 (1992) 182-193. | MR 1149092 | Zbl 0746.65091

[5] D.C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data. Preprint. | MR 1398414 | Zbl 0858.68121

[6] I. Ekeland and T. Turnbull, Infinite Dimensional Optimization and Convexity. The University of Chicago Press, Chicago (1983). | MR 769469 | Zbl 0565.49003

[7] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984). | MR 775682 | Zbl 0545.49018

[8] K. Ito and K. Kumsch, Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces. To appear in Nonliner Analysis, Theory, Methods and Applications. | Zbl 0971.49014

[9] K. Ito and K. Kunisch, Augmented Lagrangian Formulation of Nonsmooth, Convex Optimization in Hilbert Spaces, in Lecture Notes in Pure and Applied Mathematics Control of Partial Differential Equations and Applications, E. Casas. Marcel Dekker Eds., 174 (1995) 107-117. | MR 1364642 | Zbl 0876.49028

[10] L.I. Rudin, S. Osher and E Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259-268. | Zbl 0780.49028

[11] C.R. Vogel, Total variation regularization for ill-posed problems. Technical Report, Department of Mathematical Sciences, Montana State University.