Approximation of solution branches for semilinear bifurcation problems
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) no. 1, p. 191-207
@article{M2AN_1999__33_1_191_0,
     author = {Cherfils, Laurence},
     title = {Approximation of solution branches for semilinear bifurcation problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {33},
     number = {1},
     year = {1999},
     pages = {191-207},
     zbl = {0923.65077},
     mrnumber = {1685752},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_1_191_0}
}
Cherfils, Laurence. Approximation of solution branches for semilinear bifurcation problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) no. 1, pp. 191-207. http://www.numdam.org/item/M2AN_1999__33_1_191_0/

[1] R. A. Adams, Sobolev spaces. Academic Press (1975). | MR 450957 | Zbl 0314.46030

[2] E.L. Allgower and K. Georg, Numerical continuation methods, an introduction. Springer Verlag, Berlin (1990). | MR 1059455 | Zbl 0717.65030

[3] I. Babuska and H. S. Hoo, The p - version of the finite element method for domains with corners and for infinite domains. Numer. Meth. PDE 6 (1990) 371-392. | MR 1087251 | Zbl 0717.65084

[4] I. Babuska and M. Suri, The h-p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math.Anal. Numér. 21 (1987) 199-238. | Numdam | MR 896241 | Zbl 0623.65113

[5] H. Brezis Analyse fonctionnelle. Masson, Paris (1983). | MR 697382 | Zbl 0511.46001

[6] F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, part 1: branches of nonsingular solutions. Numer. Math. 36 (1980) 1-36. | MR 595803 | Zbl 0488.65021

[7] F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, part 2: limit points. Numer Math. 37 (1981) 1-28. | MR 615889 | Zbl 0525.65036

[8], F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, part 3: simple bifurcation points. Numer. Math. 38: 19811-30. | MR 634749 | Zbl 0525.65037

[9] G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems. To appear in Handbook of Numerical Analysis, 1994. | MR 1470227

[10] L. Cherfils, Méthode de cheminement adaptative pour les problèmes semi-linéaires dépendant d'un paramètre. Thèse de l'Université J. Founer, Grenoble I (1996).

[11] L. Cherfils, Approximation des branches de solutions d'un problème de bifurcation semi-lineaire. C. R. Acad. Sci. Paris 324: (1997) 933-938. | MR 1450450 | Zbl 0876.65076

[12] P.G. Ciarlet, Basic error estimates for elliptic problems. In Handbook of numencal analysis. Elsevier Science Publishers B. V., North-Holland (1991). | MR 1115237 | Zbl 0875.65086

[13] M. Crouzeix and J. Rappaz, On numerical approximation in bifurcation theory. Masson, Paris (1986). | MR 1069945 | Zbl 0687.65057

[14] P. Grisvard, Elliptic problems nonsmooth domains. Pitman, Boston (1985). | Zbl 0695.35060

[15] J. C. Paumier, Analyse numérique d'un problème aux limites non linéaire. Numer. Math. 37: (1981), 445-452. | MR 627116 | Zbl 0449.65025

[16] J.C. Paumier, Méthodes numériques pour les bifurcations statiques. collection R M A, Masson (1997). | MR 1474966

[17] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982) 437-445. | MR 645661 | Zbl 0483.65007

[18] Raugel G., Résolution numérique de problèmes elliptiques dans des domaines avec coins. Thèse de l'Université de Rennes. (1978).

[19] P. A. Raviart and J. M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1988). | Zbl 0561.65069

[20] N. M. Wigley, An efficient method for subtracting off singularities at corners for Laplace's equations J. Comput. Phys. 78 (1988) 369-377. | MR 965659 | Zbl 0657.65129