@article{M2AN_1998__32_1_51_0, author = {Chehab, Jean-Paul}, title = {Incremental unknowns method and compact schemes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {51--83}, publisher = {Elsevier}, volume = {32}, number = {1}, year = {1998}, mrnumber = {1619593}, zbl = {0914.65110}, language = {en}, url = {http://www.numdam.org/item/M2AN_1998__32_1_51_0/} }
Chehab, Jean-Paul. Incremental unknowns method and compact schemes. ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 1, pp. 51-83. http://www.numdam.org/item/M2AN_1998__32_1_51_0/
[1] The Hierarchical Basis Multigrid Method, Numer. Math. 52, 1988, 4227-458. | MR | Zbl
, ,[2] Time-Stable Boundary Conditions for Finite Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes, J. comp. Phys. 111, 1994, 220-236. | MR | Zbl
, , ,[3] Incremental Unknowns for Solving Nonlinear Eigenvalue Problems. New Multiresolution Methods, Numencal Methods for PDE's, 11, 199-228 (1995). | MR | Zbl
,[4] A Nonlinear Adaptative Multiresolution Method in Finite Differences with Incremental Unknowns, M2AN, Vol. 29, 4, 451-475, 1995. | Numdam | MR | Zbl
[5] Solution of Generalized Stokes Problems Using Hierarchical Methods and Incremental Unknowns, App. Num. Math., 21 (1996) 9-42. | MR | Zbl
[6] Incremental Unknows in Finite Differences in Space Dimension 3, Computational and Applied Mathematics, 14, 3, 1995, 1-15. | MR
, ,[7] Incremental Unknows for Solving Partial Differential Equations, Numesrische Mathematik, Springer Verlag, 59, 1991, 255-271. | MR | Zbl
,[8] Incremental Unknows in Finite Differences: Condition Number of the Matrix, SIAM. J. on Matrix Analysis and Applications (SIMAX), 14, n° 2, 1993, 432-455. | MR | Zbl
,[9] NonLinear Galerkin Method in Finite Difference case and Wavelet-like Incremental Unknowns, Numer. Math. 64, 1993, 271-294. | MR | Zbl
,[10] Nonlinearly Stable Compact Schemes for shock calculations, ICASE Preprint series, May 1992. | MR | Zbl
,[11] The Numerical Treatment of Differential Equations, 3rd. ed., Springer Verlag, 1966. | MR | Zbl
[12] The Nonlinear Galerkin Method: A Multiscale Method Applied to the Simulationof Homogeneous Turbulent Flows, Theorical and Computational Fluid Dynamics 7, 4, 1995, 279-315. | Zbl
, ,[13] Compact Finite Difference Schemes with Spectral like Resolution, J. Comp. Phys., 103, 16-42, 1992. | MR | Zbl
[14] Splitting Up Methods and Numerical Analysis of Some Multiscale Problems, Computational Fluid Dynamics J, 5, 2, 1996, 279-315.
, ,[15] Nonlinear Galerkin Methods, SIAM Journal of Numencal Analysis, 26, 1989, 1139-1157. | MR | Zbl
,[16] Nonlinear Galerkin Methods; The Finite Elements Case, Numensche Mathematik, 57, 1990, 205-226. | MR | Zbl
,[17] Inertial Manifolds and Multigrid Methods, SIAM. J. Math. Anal. 21, 1990, 154-178. | MR | Zbl
[18] Infinite Dimensional Dynamical Systems in Mechantes and Physics, Applied Mathematical Science, Springer Verlag, 68, 1988. | MR | Zbl
[19] Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear System, SIAM. J. Sci. Stat. Comput., 13 (1992) 631-644. | MR | Zbl
.[20] On Multilevel Splitting of Finite Element Spaces, Numer. Math. 49, 1986, 379-412. | MR | Zbl
.