A Schwarz auditive method with high order interface conditions and nonoverlapping subdomains
ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 1, pp. 107-116.
@article{M2AN_1998__32_1_107_0,
     author = {Nataf, Fr\'ed\'eric},
     title = {A {Schwarz} auditive method with high order interface conditions and nonoverlapping subdomains},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {107--116},
     publisher = {Elsevier},
     volume = {32},
     number = {1},
     year = {1998},
     mrnumber = {1619596},
     zbl = {0926.65098},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1998__32_1_107_0/}
}
TY  - JOUR
AU  - Nataf, Frédéric
TI  - A Schwarz auditive method with high order interface conditions and nonoverlapping subdomains
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1998
SP  - 107
EP  - 116
VL  - 32
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/item/M2AN_1998__32_1_107_0/
LA  - en
ID  - M2AN_1998__32_1_107_0
ER  - 
%0 Journal Article
%A Nataf, Frédéric
%T A Schwarz auditive method with high order interface conditions and nonoverlapping subdomains
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1998
%P 107-116
%V 32
%N 1
%I Elsevier
%U http://www.numdam.org/item/M2AN_1998__32_1_107_0/
%G en
%F M2AN_1998__32_1_107_0
Nataf, Frédéric. A Schwarz auditive method with high order interface conditions and nonoverlapping subdomains. ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 1, pp. 107-116. http://www.numdam.org/item/M2AN_1998__32_1_107_0/

[1] B. Despres, Domain Decomposition Method and the Helmholtz Problem, Mathematical and Numerical aspects of wave propagation phenomena, SIAM (1991), 44-52. | MR

[2] B. Engquist and A. Majda, Absorbing Boundary Conditions for the Numerical Simulation of Waves, Math. Comp. 31 (139), (1977), 629-651. | MR | Zbl

[3] P. Grisvard, Singularities in Boundary Value Problems, RMA 22, Masson & Springer Verlag (1992). | MR | Zbl

[4] T. Hagstrom, R. P. Tewarson and A. Jazcilevich, Numerical Experiments on a Domain Decomposition Algorithm for Nonlinear Elliptic Boundary Value Problems, Appl. Math. Lett, 1, No 3 (1988), 299-302. | MR | Zbl

[5] K. Lemrabet, Problèmes aux limites de Ventcel dans un domaine non régulier, C.R. Acad. Sc. Paris, t. 300, Série I, n° 15, (1985), 531-534. | MR | Zbl

[6] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, (1968). | MR | Zbl

[7] P. L. Lions, On the Schwarz Altemating Method III: A Variant for Nonoverlapping Subdomains, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM (1989), 202-223. | MR | Zbl

[8] F. Nataf and F. Rogier, Outflow Boundary Conditions and Domain Decomposition Method, Cont. math. 180,"Proceedings of the Seventh International Conference on Domain Décomposition", (1993), 289-293. | MR | Zbl

[9] F. Nataf, F. Rogier and E. De Sturler, Domain Decomposition Methods for Fluid Dynamics, Navier-Stokes Equations and Related Nonlinear Analysis, Edited by A. Sequeira, Plenum Press Corporation, (1995), 367-376. | MR | Zbl

[10] F. Nataf and F. Rogier, Factorization of the Convection-Diffusion Operator and the Schwarz Algorithm, M3AS, 5, No 1, (1995), 67-93. | MR | Zbl