Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 31 (1997) no. 2, p. 185-211
@article{M2AN_1997__31_2_185_0,
     author = {Le Meur, Herv\'e},
     title = {Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {31},
     number = {2},
     year = {1997},
     pages = {185-211},
     zbl = {0870.76005},
     mrnumber = {1437120},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1997__31_2_185_0}
}
Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 31 (1997) no. 2, pp. 185-211. http://www.numdam.org/item/M2AN_1997__31_2_185_0/

[1] C. Guillopé & J. C. Saut, 1990, "Global existence and one-dimensional non linear stabihty of shearing motions of viscoelastic fluids of Oldroyd type", M2AN Vol 24, n° 3, 369-401. | Numdam | MR 1055305 | Zbl 0701.76011

[2] R. W. Kolkka, G. R. Ierley, M. G. Hansen & R. A. Worthing, 1987, "On the stability of viscoelastic parallel shear flows", Technical Report, F.R.O.G. Michigan Technological University.

[3] C. Guillopé & J. C. Saut, 1990, "Existence results for the flow of viscoelastic fluids with a differential constitutive law". Nonlinear Analysis Theory, Methods & Applications, Vol. 15, No 9, 849-869. | MR 1077577 | Zbl 0729.76006

[4] R. J. Gordon & Schowalter, 1972, Trans. Soc. Rheol., 16, 79. | Zbl 0368.76006

[5] L. A. Dàvalos-Orozco, 1992, "Capillary instability due to a shear stress on the free surface of a viscoelastic fluid layer", J. Non-Newtonian Fluid Mech., 45, 171-186. | Zbl 0761.76021

[6] M. Renardy & Y. Renardy, 1986, "Linear stability of plane Couette flow of an Upper Convected Maxwell fluid", J. Non-Newtonian Fluid Mech., 22, 23-33. | Zbl 0608.76006

[7] G. M. Wilson & B. Khomami, 1992, "An experimental investigation of interfacial instabilities in multilayer flow of viscoelastic fluids. I. Incompatible polymer Systems", J. Non-Newtonian Fluid Mech., 45, 355-384.

[8] H. Le Meur, 1994, Existence, unicité et stabilité d'écoulements de fluides viscoélastiques avec interface, PhD Thesis of University Paris-Sud Orsay.

[9] D. D. Joseph, Fluid dynamics of Visco Elastic liquids, Applied Mathematical Sciences 84 Springer Verlag. | MR 1051193 | Zbl 0698.76002

[10] D. D. Joseph, 1976, Stability of fluid motions, Vol. I, II Springer. | MR 627612 | Zbl 0345.76023

[11] N. Phan-Thien & R. I. Tanner, 1977, "A new constitutive equation derived from network theory", J. Non-Newtonian Fluid Mech, 2, 353-365. | Zbl 0361.76011

[12] R. I. Tanner, Viscoélasticité non linéaire : Rhéologie et modélisation numérique, Ecoles CEA-EDF-INRIA, 27-30/01/ 1992.

[13] R. Keunings & M. J. Crochet, 1984, "Numerical simulation of the flow of a viscoelastic fluid through an abrupt contraction", J. Non Newtonian Fluid Mech., 14, 279 299. | Zbl 0531.76013

[14] M. Renardy, "On the linear stability of parallel shear flows of viscoelastic fluids of Jeffreys type". to appear.

[15] M. Renardy, 1993, "On the type of certain C0 Semigroups", Comm. Part. Diff. Eq., 18 (7 & 8), 1299-1307. | MR 1233196 | Zbl 0801.47029

[16] P. Henrici, 1974, Applied and Computational Complex Analysis, vol. I, John Wiley, New-York. | MR 372162 | Zbl 0313.30001