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MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 30, n° 7, 1996, p. 841 à 872)

CONVERGENCE OF A FINITE VOLUME SCHEME
FOR AN ELLIPTIC-HYPERBOLIC SYSTEM (*)

by M. H. VlGNAL (0

Résumé. — Dans cet article, on étudie la convergence d'un schéma de type volumes finis pour
un système couplé formé d'une équation elliptique et d'une équation hyperbolique linéaires,
définies sur un ouvert borné de IR2.
Pour l'équation elliptique un schéma volumes finis à quatre points est utilisé, puis une inégalité
discrète de Poincaré pour les fonctions à moyenne nulle, est montrée, ce qui permet d'établir une
estimation d'erreurs de l'ordre de h, en norme H discrète, où h définit la taille du maillage.
Sur l'équation hyperbolique, on utilise un schéma décentré vers l'amont de l'écoulement, puis
en utilisant une estimation faible sur la variation de la solution approchée, on montre, sous une
condition de stabilité, la convergence de cette solution vers la solution faible du problème.

Abstract. — We study hère the convergence of a finite volume scheme for a coupled System of
an hyperbolic and an elliptic équations defined on an open bounded set of IFK .
On the elliptic équation, a four points finite volume scheme is used then an error estimate on a
discrete H1 norm of order h is proved, where h defines the size of the triangulation.
On the hyperbolic équation, one uses an upstream scheme with respect to the flow, then using an
estimate on the variation of the approximate solution, the convergence of the approximate
solution toward a solution of the coupled system is shown, under a stability condition.

1. INTRODUCTION

One considers a problem coming from the modelization of a diphasic flow
in a porous medium. In a simplified case it leads to the détermination of the
velocity u of one of the two phases and of the pressure R

Let Q be an open bounded polygonal connected set of IR2, one sets

Let g e L~(F), uö e L°°(Q) and ue L°°(F+ x R + ) , be given, with

F+ ~ {y e F\g{y) 5= 0}, one assumes g(y) dy = 0 \ then one

considers the problem defined by :

(1) AP(x)=Q, xe Q

(2) ",(*»*) -div («O, t) VP(JC)) =0, xe Q, t e R.

(*) Manuscript received July 31, 1995.
C1) UMPA. CNRS-UMR No 128, E.N.S. Lyon, 46, Allée d'Italie, 69364 Lyon Cedex 07.
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842 M. H. VIGNAL

with following boundary conditions and initial condition :

(3) VP(y) . / i (y) = 0(y), ye F

(4) M(y,O = M(y,o. ye r+, te u+

(5) M(JC, 0) = WO(X), ^ G I 2

where w is the outward unit normal to F.
More precisely, one searches u in L~(Q x IR+ ) and P in HX(Q) solutions

of (l)-(5) in the following weak sensé :

f VP(x) . V<Z>(x) dx- f g(y)&(y)dy = O for ail <Z> G H\Ü)
JQ J r

and

J ƒ II(JC, r) | f (x, t)dxdt~\ J M(X, r) VP(JC) . Vp(x, 0

f ,
I IJ l
I W(A

tl Q

iriuA

for ail ^ e C ^ ( ^ + x [ R + ) with Q+ = Q ^ F+.
Note that the test functions ^ are equal to zero on

7̂ " = {y e J T;g (y )<0} but not necessarily on F+.
To discretize these équations, a finite volume scheme is used, then the

results presented by R. Eymard and T. Gallouët in [5] and R. Herbin in [8] are
generalized. Indeed the System considered in [5] is the same as the one
presented hère but the authors use a coupled finite element-finite volume
scheme, then discrete unknowns are localized at the vertices of the meshes
whereas in this note they are localized at the cell centers. For this scheme they
prove a convergence property toward a weak solution of System (l)-(5). The
scheme used on the pressure is a finite element scheme, hence the convergence
of the approximate solution of the elliptic équation follows from the finite
element framework. In this note one uses a four points finite volume scheme
for the pressure, then a convergence proof is given by generalizing the results
of R. Herbin in [8]. One of the two essential différences cornes from boundary
condition, since in [8] the boundary condition is a Dirichlet condition whereas
hère a Neumann condition is considered, then estimâtes are changed by

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



CONVERGENCE OF A FINITE VOLUME SCHEME 843

boundary terms. In particular, for our estimâtes it is necessary to count the
number of triangles which are "after" a given triangle in ail directions, while
in [8] only one direction is sufficient In a same way, to prove the error
estimate in discrete H1 norm, the discrete L2 norm of the error is majorized
by its discrete Ho norm, assuming the solution's mean value equals to zero
since problem's solutions differ from a constant, whereas in [8] the discrete
L2 norm of the error is majorized by the sum of its discrete ƒƒ* norm and of
its discrete L norm on the boundary.

The second différence cornes from the assumptions on the meshes. In [8] all
the meshes must have a measure of same order, whereas here déformations of
the meshes are authorized (see section 2.1).

On the velocity an upstream finite volume scheme with respect to the flow
is used, then, under a stability condition, the convergence of the approximate
solution toward a solution of the hyperbolic équation is shown. To prove this
result, one needs an estimate on the variation of the approximate solution, it
uses an estimate on discrete Hl norm of the approximate solution of the elliptic
équation, this result in [5] is given by the finite element framework. Other
results on the existence and the uniqueness of solutions of hyperbolic équa-
tions are given in [7], [3], [1], [10].

Numerical experiments on the comparison between finite element scheme
and finite volume scheme, done by J. M. Fiard and R. Herbin in [6] for a
conduction problem and by R. Herbin and O. Labergerie in [9] for a diffusion-
convection problem, have shown that the approximation of fluxes is better for
the finite volume scheme. Furthermore, comparison between the scheme
presented here and the weighted finite volume scheme of R. Eymard and
T. Gallouët have also been done in [6] on a system more gênerai than (l)-(5),
where (1) is changed by div (f(u(x, t) ) VP(x) ) = 0, x e Q, t e U+. This
numerical test shows that the scheme presented here gives better results than
those given by the weighted finite volume scheme. Other authors have been
interested by finite volume scheme on triangular meshes, see for instance [11].
In [11], results are restricted to particular meshes, whereas, here, as it has been
already remark, the assumptions are most gênerai.

2. DISCRETIZATION

Before discretizing the elliptic and the hyperbolic équations, one first gives
assumptions on the triangulation.

2.1. Assumptions on the triangulation

Let ST = (Kj)i *sj^L be a triangulation of Q which satisfies : there exists
rj such that for any 6 angle of an element of 3", one has :

(6) rj < 9 < | - rj .

vol. 30, n° 7, 1996



844 M. H. VIGNAL

One deflnes h. = \/S{Kj), where S{K.) dénotes the 2D Lebesgue measure
of Kj, then the assumption (6) gives the following resuit : there exists
al > 0 and a2 > 0, depending only on rj, such that for ail side a of the
triangulation, the length l(a) of a vérifies :

(7) ax.h.*k l(a) ^ c^.hj

if a is an edge of the cell Kj.
L

Then one dermes h e M*+ by h = max h..
7 = 1

Some notations will be useful to describe the numerical scheme :

NOTATIONS

9"ext = {J 6 {1, .... L} ; Kj e<T,Kjnr* 0}
stf&xt the set of the edges of the triangulation which are on the boundary

r of Q

£&int the set of the edges of the triangulation which are in Q
= m a x ( 0 ( y ) , O ) and g~ (y) = ( - g ) + .

For ail Kj e 3", 1 ̂  j ^ L one sets :
c-(j) the edges of Kp i = 1,2 or 3
x7 the intersection of the orthogonal bisectors of the edges of Kj

gtj = 9 + (y)dy and ^ . = g" (y)dy,i =
Je &) Jc;U)

= I,2or3,ifc ( .0 ')e ^ e x t

flfiy = flfi;-^,i=l,2or3,ifC(.(7)e ^ e x t

Text(j) the set of the suffix i = 1, 2 or 3 such that c^O') E j ^ e x t

T. the set of the suffix of the neighbours of K-
cjk = dKj n a ^ for all k e r;

d.fc = d(xj, cJk) + Ö?(X ,̂, c^), for all k e z\, where d is the euclidian distance
of U2

x-k the center of the side cjk.

2.2. Discretization of the elliptic équation

To discretize (1), a four points finite volume scheme is used ; the principle
of the finite volume schemes, (see [4]), is to integrate équations on each
control volume (here (Kj G 3~), so one has :

f
J ö

VP(y).nK(y)dy = 0
j J

M2 AN Modélisation mathématique et Analyse numérique
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CONVERGENCE OF A FINITE VOLUME SCHEME 845

where nK dénotes the outward unit normal to dK..
One approximates P by P^ with P^(x) — Pj if x e K'., so the discretized

équation can be given by approximating the flux of P through one edge
ci(j)ofKJby:

l(cJk)—^—— if 3* e {l,...,L}suchthatc/(7*) = c/fc

g (y) dy if cf-(y ) e *fl^ext

Then one has :

_ (Pk-Pj) ^
(8) 2 /(c7*> 5^ +

 / 6 2 ( . ) ^ = ° for ail 7 e { 1 , - , L }

with the convention 2 = 0-
0

One can remark that on the domain's boundary the approximation of the
flux is exact.

2.3. Discretization of the hyperbolic équation

Before discretizing (2), one defines the time step Ô, so let J be a triangu-
lation of Q which satisfies the assumption (6) and a e ]0, 1[, then one
chooses S e M*+ which satisfies the following conditions :

(Pj-pk)

(9) t - v " * / djk

where £f = {(7, /:) G {l, ..., L}2 ; (^., ATfc) e 2T x ST, A; e ^ and

One sets ?" = m5 for all n e M.
To discretize (2), first an Euler scheme explicit in time is used, and as for

the elliptic équation, one intégrâtes (2) on each control volume :

f u(x,r-)-M(x,O

One approximates u by u^ è with u^ â(x, t) — uj if x G KJ and
r e [t*\ tn+l[. Then an upstream discrete value with respect to the flow is
chosen for u at the interfaces of meshes, and at the boundary.

vol. 30, n° 7, 1996



846 M. H. VIGNAL

One defines M? for ail j e {1, ..., L) by uj = { , uo(x) dx and un
yi for

1 J e ^ex t a n d f o r l e Text( i ) b y « ;

So, the discretized équation is given by :

i

where

for ail 7 G {1, ..., L} and all

ui else .

3. CONVERGENCE OF THE FOUR POINTS FINITE VOLUME SCHEME FOR THE
ELLIPTIC EQUATION

Let 2T be a triangulation of Q which satisfies the property (6).
One proves in this section the existence of solutions (P)x <= ^ L of (8) and

that these solutions differ only from a constant, proving the following resuit :

PROPOSITION 1 : Let g G LT{r), one defines for ail j e {l, . . . , L } :

g = \ g(y)dy if c.(j) e < x t .

Then :
1) if S 9U = 0 V/ e {1, ..., L} and ( ƒ> ), ,.

Py = P t Y / f * E { l , . . . , L }

3) (ƒ

satisfy (8> then
ü)

solutions of (8) and

solutions differ only from a constant.
Furthermore one proves the numerical scheme's convergence proving an error
estimate on discrete H1 norm of order h :

M2 AN Modélisation mathématique et Analyse numérique
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THEOREM 1 : Let g e L~( F), one dénotes by P the weak solution of(l), (3)
L

such that 2 S(Kj) P(Xj) — 0, where x. is the intersection of the orthogonal
bisectors of the edges of Kn one supposes g such that P is in C2(Q).

3 L

Let (Pj)] çj^L satisfy (8) and 2 S(Kj) Pj ~ 0, one defines the error by
e. = Pj - P(Xj) for ail je {1, /.~ï}.

Then there exists C{ and C2 positive, independent of 2T such that :

' - - < * - ' ) > « c > r < C * and f- -V-S E d

C2.h.

3.1. Proof of Proposition 1

Proof of the first part of the Proposition 1 : One supposes that
V/e {1.....L} E 0. = O and (PJ)l^J^L satisfy (8).

Let j0 e {1, ...,L} such that Py0 = min {^ ; k e {l, ..., L}}.
Thanks to (8), one has :

But according to assumptions 2) fif(/0
 = 0 i a n d Kc

ok)
 > 0»

i e t c x l(yo )

<i.o ̂  > 0 and P^ - PJo ^ 0 VA: e T -o, so one has :

P = p \fk e T. .

Using the fact that Q is connected, one obtains by induction : fV = Pk

V 7 ; / :G {1 L}.

Proof of the second part of the Proposition 1 : Supposing that
(Pj)x ^j^L satisfy (8) and summing these équations one gets :

I,
Proof of the third part of the Proposition 1 : One supposes that

g(y) dy = Q.
r
Then thanks to the first part of this Proposition, (8) is a linear System which

has a kernel of dimension 1.
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So, thanks to the second part of this Proposition, the image space of this
linear System is the set of the B e IRL, B = \bv b2, ..., bL) such that

£ bj = 0.

Then, as ^ b.= \ g(y) dy = 0, there exists (P;)i <ZJ<ZL solutions of (8)

and these solutions differ only from a constant.

3.2. Proof of Theorem 1

Définition of the consistency error on the fluxes : As it has been remark in
Section 2.2, fluxes are exact on the domain's boundary, then one defines the
consistency error only at the interfaces of meshes.

The exact flux on the side c.k in the direction of K. to Kk is :

and the approximate flux on the side c}k in the same direction is :

One defines the consistency error, denoted by Rc^(K), by :

P(xk)-P(x)

One can remark that the conservativity of exact and approximate fluxes
implies :

Now the following result is proved :

LEMMA 1 : Under the assumptions of Theorem 1, there exists a constant
CR 5= 0 independent of 2T such that :

IV*y>l ^CR'h Y / , * E { 1 , . . . , L } .

M2 AN Modélisation mathématique et Analyse numérique
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Proof of Lemma 1 : Using a first order Taylor expansion one proves that
there exists C, ^ 0 and C2 3= 0 depending only on av a2 and on the second
order derivative of P such that :

~ VP(y) . nK dy - VP(x.,) . nK
Cjk)Jck

 j J J

VP(xik).nK-
P(xk)~

xjk K.

C2.h

So the proof of Lemma 1 is completed.
Let ek - Pk - P(xk) be the error on the cell Kk for ail k G {1, ..., L}, then

one proves the first resuit of Theorem 1, i.e. the following property :
There exists C ^ 0 independent of ET such that :

1/2

( H )

Proof of the inequality (11) : Thanks to (1) one has :

(12)

One subtracts (8) from (12), one multiplies by e. and one sums over j , then
using the conservativity of the exact and approximate fluxes, the properties (6)
and (7), the Lemma 1 and the Young inequality (for more details see [8]), one
gets :

where S(Q) is the 2D Lebesgue measure of the domain Q.
Then the proof of the inequality (11) is completed. Let's complete the proof

of Theorem 1.

Proof of Theorem 1 : The L2 discrete error estimate is shown by using a
discrete Poincaré-Wirtinger inequality, i.e. the following result :

There exists C > 0, independent of 2T, such that :

(13)
L

Ka)

vol. 30, n° 7, 1996
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with m =
= î

S(K.) eti where and ev- are the errors on the both
X ) k î *

éléments of 2T for which a is an edge and da is defined as follows : for ail
a G seXTA there exists y and k in {l, ..., L} such that a = cJk then dü = d^.

This resuit will be proved in four steps :

Step 1 :
Let SP be a square included in Q and the both directions 2X and @>2 defined

by SP, see figure 1.

Figure 1.

One dénote by d = | b — c | and one chooses for coordinate System the
coordinate System defined by any point of [R2 and the both directions 2 x and

Let se m

Let K
be the set of the sides a of j / i n t such that

and in and Kkc\ 0 ,
by

2T such that K}r\0» *
x = (x p x2) G K.C\ SP and y = (yv y2) G Kkc\&y one dénotes
[x, y] the line segment delimited by x and y, and one defines :

^xx xn y, (respectively ( se'Xi ) the set of the sides of se'int such that the
intersection with the line segment [ (x p x2), ( x p v2)] (respectively
( [ ( x p y2), (yv y2)]) is a point.

j3/^2 ) (respectively (stf^) the set of the sides of srfint ̂  such that the
intersection with the line defined by ( x p 0 ) (respectively ( ( 0 , y 2 ) ) and
parallel to Sè2 (respectively {2X) is a point.

Then one has :

e. -

a.e y e ^ n Vx e n

M2 AN Modélisation mathématique et Analyse numérique
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Integrating over KkC\ SP and summing over k, one obtains for ail
x e @> r\Q:

l'ï
v b v b

with m#=jç^ ^

For ail a e s/inV let da be the angle between a and £%v then swapping the
summation and the intégral in the second terms, one has :

d\e. - eK: - eK- \ + ^ \ex; ~ €K~ I l(a) c o s

Using the Cauchy Schwarz inequality, one gets :

and then :

/
a2dM

\

4a2h
a

Integrating over [b, c] with respect to xx and swapping the summation and the
intégral, one has for ail x2 e [b, c] :

(14) E

vol. 30, n° 7, 1996
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where 2èx^ is the line defined by the point (0, x2) and the direction
<%VM{^) is the set of the triangles which are eut by £^1} and

26(a2)2

C\ =d+2a~h + - ( ^ + 4aJ).
1 2 a i 2

With the same arguments, one can prove the following result for all
xx e [b, c] :

(15) 2 KKji^^l2)) | ^ - m ^ | 2 ^ C , ^ 2 ^ K a ) -

One concludes by integrating (14) with respect to x2 so :

L . . . .2

(16) ^S(Kjn0>)\ej-m3i\
2^Cld

2 ^ ^ /(a)-

Step 2 :
In this step the inequalities (15), (14) and (16) are proved over half of the

square 0> denoted T, i.e. the triangle (A,B, D) (see fig. 1),
Using the orthogonal symmetry in relation to [BD], the problem is the same

as the one of the step 1, then with the same notations, one has the following
results :

I — I 2

and :

Step 3 :
One proves the result over an ordinary triangle of Q.
So let an ordinary triangle Tof Q and a right-angle triangle T, see figure 2.
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Then there exists a linear application F which transforms T in T defined as
follow :

F:
x \ \lx /, tan 6

l2 sin 0

As T=\J(K.nT) then T = \J (F(K.
j = i J'= i

/2 si

O I lx Vi O

Figure 2.

Let the function ë defined from T to IR by if

j

One has the following resuit : there exists // such that for ail triangulation
~ {KJ)X^J^L of Q one has, for ail angle of an element of 2T :

Then there exists rj(rj,F) such that for ail angle of an element of

but one can have : 0 ^ ~.
So one defines (7^ )1^^^^ ,^ triangulation of F(Q) such that
1) \/k G {l, ..., L'}, there exists 7 e {l, ..., L} such that :

2) for ail 9 angle of an element of ( Tk)x ̂  k ̂  L,9 one has :

vol. 30, n° 7, 1996
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According to the step 2, one has :

nT)) \ej-m?\
2=^S(Tkr^T) \ek-m?\

2

j=\ k=\

where m^ is the mean value of e over T.
Remarking that :

~~ eKT

and that

one gets :

Thus

So, one obtains :

= cv

/2 sm

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



CONVERGENCE OF A FINITE VOLUME SCHEME 855

With the same arguments, one proves the following inequalities :

(17) 2

(18) 2

where ^ 7 (respectively â?y) is the set of the triangles K of 2T such that
K r^ I (respectively K r\ J) is not emptyset.

Step 4 :
Let a subset T oï Q which is the union of two triangles TA and T2, one

dénotes dTx n dT2 by /.

S( Tx ) mj ( 2 ) 2
As m = c / ^ x , one can write :

2 , ^ , „ , „ . _ , . . . „,„,S(T2)( y\s(K.

According to the step 3 one has :

Then it just remains to estimate the différence between m2 and mv

Let x = (JCP JC2) e ƒ, so :

I ̂  **~ *~\ f 1 / \ I 2
lm2 ~ m i I ^ 2( |^ (JC P x2) -

Integrating over ƒ and thanks to the inequalities (17) and (18), one has

1(1) \m2-m \2

vol. 30, n° 7, 1996
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Then :

C( 2

With the same arguments, one can prove the following result :

and then :

L

7 = 1 a e. stfiTil

As we have supposed that Q is a finite union of triangles, one has :

L

where C does not depend of the triangulation ST.

One concludes remarking that ~ =S —1— for all a E ^/int, so :

Remark 1 : If the boundary condition is a Dirichlet condition, then this
proof can be generalized, it is closed to those given by R. Herbin in [8].

In this case one considers a direction £è which is parallel to none edges of
the mesh.

Let j G {1,..., L] and x e Kj9 then one dénotes by s/jxi the set of the edges
such that the intersection between these sides and the line which contains x and
parallel to Se is not empty set.

M2 AN Modélisation mathématique et Analyse numérique
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One can write :

|2

where 0a is the angle between a and 2.
Integrating over K., summing over j and swapping summations and inté-

grais, one gets :

7=1 \ a e

and then one concludes with the error estimate in discrete Hl
Q norm (see [8]).

4. CONVERGENCE OF THE NUMERICAL SCHEME FOR THE HYPERBOLIC EQUATION

In this section one will prove the convergence of the solution of (10) toward
a weak solution of problem (2), (4), (5), proving the following Theorem :

THEOREM 2 : Let ( 3~ , 3q)q&H be a séquence of triangulations of Q and

time steps which satisfy the properties (6) and the stability condition (9).

One dénotes by Vq = (Kj)\q> .* L«> and tn
{q) = nSq.

Let the séquence ( % ^ ) ^ G ^ with Uay ô (JC, t) = u"q)nj if x e K^q) and

( e [tn
{qytn

{q)\, where {M ( ^" , J e {l L ^ } , n 6 M}, is solution of the
discretized équation (10) associated to the triangulation 9"' and the time step

Then :
1) there exists a subsequence still denoted (u^ s ) e N, which converges

toward u when q —> °°, Le. when h goes to 0, in L°°(f3 x R + ) for the
weak * topology, i.e. one has :

lim Uay ô (x, t) (p(x, t) dxdt - \\ u(x, t) (p(x, t) dx dt

for ail (pe Ll(Qx U+ ).
2) u is the weak solution of problem (2), (4), (5), i.e. one has :

u(x, t) ^ (x, t)dxdt- u(x, t) VP(JC) . VÇ?(JC, t) dx dt

JQJU+
 ö t in Ju +

+ uo(x)(p(x,O)dx+\ u(y,t
JQ JrJu+
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for ail <p<= C~(Q+ xU+) with Q+ = Q u F+.
In order to prove the first part of this Theorem, one will prove in the subsection
4.1 an LT(Q X R+ ) estimate on the approximate solution.

Then to prove the second part, one will first show, in subsection 4.2, a weak
estimate on the variation of the approximate solution, and then, using this
estimate, one will prove that u is a weak solution of problem (2), (4), (5).

4.1. L°°(Q x IR + ) estimate on the approximate solution

Hère one proves that the family (wg- ô ) g e N is bounded in
L^{Q x R + ) , then, thanks to the sequential weak ic relative compactness of
the bounded sets of LT(Q x R + ) , it shows the existence of a subsequence,
still denoted (u^ ô ) N, which converges in LT(Q x R + ) for the weak *
topology when h goes to 0.

Let 2T be a triangulation of Q and ô G R*+ which satisfy the property (6) and
the stability condition (9). Another expression of the équation (10) is :

for ail j e { l , . . . ,L} .

So ufj + x is a linear combination of the un
v 1 ^ k ^ L and w£.

i = 1,2 or 3.
Then like in [5], thanks to (8) and to the stability condition (9), one has the

following properties :
1) the sum of the coefficients of the combination is equal to 1
2) the coefficients of the combination are ail positive and one can write :

|M?|, sup |û?. | \

m a x / sup |w;°|, | |M | | L - ( r + x R + )
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