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MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 30, n° 6, 1996, p. 763 à 795)

PARTICLE SIMULATION AND ASYMPTOTIC ANALYSIS OF KINETIC
EQUATIONS FOR MODELING A SCHOTTKY DIODE (*)

by P. DEGOND (»), F. POUPAUD (2) and A. YAMNAHAKKI (3)

Abstract. — The deterministic partiale simulations o f the Boltzmann Transport équation for
modeling the Schottky diode problem show that the behavior of the device is entirely controlled
by the non-equilibrium part of the distribution function, which is very s mail comparée with the
equilibrium part. Then, an asymptotic analysis of the problem gives us an analytical expression
for the equilibrium part, and the deterministic par tic le method is applied to compute only the
non-equilibrium ( bail is tic) part of the distribution function. This gives more accurate numerical
results.

Résumé. — La simulation par la m éth o de pa rtic nia ire dé te rm in is te de Véqua tion de t ran sp o / 7
de Boltzmann pour le problème de la diode Schottky montre que le comportement de ce
composant est entièrement contrôlé par ta partie hors-équilibre de la fonction distribution. Or
celle-ci est très petite par rapport à la partie en équilibre. Une étude asymptotique de ce
problème permet de donner une expression analytique de la partie en équilibre. La méthode
particulaire est alors utilisée pour calculer uniquement la partie hors-équilibre (ballistique) de
la fonction distribution. Cette démarche permet d'obtenir des résultats numériques plus précis.

1. INTRODUCTION

Most numerical simulations of carrier transport in semiconductor devices
are based upon drift-diffusion models (see [33], [25], [26], and références
therein). However, it is well known that these équations are only valid when
the carriers are in local thermo-dynamical equilibrium, which is not true when
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the electric field îs large or when the active zone of the device is short.
Besides, the distribution function near contacts or junctions is not an equi-
îibrium distribution, and kinetic boundary layer phenomena may appear»
which are of course not conveniently described by classical Drift-Diffusion
models, [30]. To remedy to these ïnaccuracies, hydro-dynamical models were
proposed by rnany authors in various forms [1], [2], [8] and [28]. However,
these models require transport parameters which are not known with good
accuracy (e.g. relaxation times, heat conductivities, ...)• Then, the kinetic
model (the Boîtzmann équation) seems to give the most accurate description
of the physics attainable by numerical computations.

The most widely used numerical method to simulate this kinetic model is
certainly the Monte-Carlo method (see [32], [21] and références therein), but
the deterministic partiële method seems to be attractive in particular when one
is concerned with the distribution function or transient regimes.

The ai m of this work is to numerically and mathematically study the
Schottky diode problem. The first part concerns the application of determin-
istic partiële simulations of the Boltzmann Transport Equation to the Schottky
diode problem. In such a device, the carrier dynamics is governed by boundary
conditions which, therefore» must be accurately taken into account by the
numerieal method. The geometry is one dimensional in space and three
dimensional with axisymetry in wave vector. The fully coupled systern con-
sisting of the Boltzmann Transport équation and the Poisson équation is
solved ; the collision operator takes into account many kinds of interactions of
the standard GaAs model and includes PaulPs exclusion principle. These
simulations show that the behavior of the device is entirely controlled by the
non-equilibrium (or ballistic) part of the distribution function, which is very
smal! compared with its equiîibrium (or Maxwellian) part. So, numerical
errors round-off and truncation errors, which are small compared with the
total, and thus, with the equiîibrium distribution, are large compared with the
non equiîibrium one. Thus, the numerical results concerning the quantities
which are driven by the non-equilibrium part of the distribution function (such
as the current for instance) are drowned in numerical noise and are unacces-
sible. A remedy is found by flrst performing an asymptotic analysis of the
problem, which allows an analyticaî computation of the equiîibrium part of the
distribution function. Then, the deterministic particle method is applied to only
compute the non-equilibrium (ballistic) part of the distribution function. These
computations are presented in Section 2. Section 3 contains an asymptotic
analysis of the one dimensional Vlasov-Poisson System specifîcally designed
for modeling a Schottky diode5 in order to support and interpret numerical
results of Section 2. The perturbation parameter appears in the boundary
conditions* in close relation with the previously studied Child-Langmuir
asymptotics (see [14], [15], [10], [3], [4] and référence therein). The limit
Poisson problem (when the perturbation parameter is set to zero) is in the form
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of an obstacle problem. On the other hand, we obtain explicit approximations
of the equilibrium and non-equilibrium parts of the distribution function,
and explicit formulas for the current, electric field, potential, depletion
width, ...

A generalization of this asymptotic analysis to the three dimensional case
can be found in [}6]. A review paper which focuses more on the involved
physics can be found in [5].

2. DETERMINISTIC PARTICLE SIMULATION OF THE BOLTZMANN TRANSPORT
EQUATION FOR A SCHOTTKY DIODE

2.1. Introduction

The aim of this section is the numerical simulation of électron transport near
a metal-N-type semiconductor contact. Due to the intrinsically kinetic char-
acter of électron transport in the depletion région of a Schottky contact it is
necessary to use the Boltzmann Transport Equation. The discretization method
used is the deterministic partiële method. One interesting issue of such
simulations is to obtain information on électron transport coefficients within
the depletion layer near the junction, such as momentum or energy relaxation
times. Such values of the transport coefficients are needed for instance in
hydrodynamic models.

2.2. The kinetic model of the physical problem

A Schottky diode consists of a metal-semiconductor contact. At thermal
equilibrium, because of different electro-chemical properties of the metal and
semiconductor, a positive charge is distributed all over the depletion layer,
near the semiconductor surface. This induces a potential barrier, the built-in-
potential Vbn which dépends on the metal work function, the électron affinity
of the semiconductor and the doping profile (see [34] chapter 5 for more
details). When a bias is applied to the structure, the value of the built-in-
potential strongly influences the current flowing through the device.

We assume the diode consists of a one-dimensional N-type semiconductor
of length L in the x-direction. The distribution function ƒ is supposed invariant
under rotation of the wave vector k about the x axis. Therefore we suppose
f = f(x, kv k2) where x e [0, L], kx e R is the component of the wave vector
parallel to the x-axis, and /c2 e [0, <*>] is the magnitude of the normal
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766 P. DEGOND, F. POUPAUD, A. YAMNAHAKKI

component of the wave vector to the jt-axis. The Schottky contact is put at
x — 0 while an ohmic contact is assumed at x — L. Then the Boltzmann-
Poisson system reads as follows :

(2.1)
i e [ 0 , L ] , ke UxU+ , t ^ 0,

k,t = Q)=fQ(x,k) , XG [0,L] , ke UxR+ ,

E(x,t) = - ^ \ x e [ 0 , L ] , r > 0 , ( 2 . 2 )

[0,L] , r ^ 0,

where k = (kv k2) e R x R+ is the wave vector, v(k) is the électron
velocity, given by the band diagram energy e(k) according to :

v(k) =\vkt(k) , (2.3)

h is the Planck constant, q the absolute value of elementary charge, E(x, t) the
electric field, 0(x, t) the electric potential, ND(x) the given doping profile,
and n(x, t) the électron density (see (2.9)). The Euclidean volume element in
wave vector space is given, in this geometry, by :

dQ(k)=2nk2dkx dk2 . (2.4)

The boundary conditions for this problem read :

j{x = 09ktt) ==N°M(k) , k] > 0 , k2 > 0 , t ^ 0 ,

f(x = L, k, t) = A '̂DM(k) , /Cj < 0 , A:2 > 0 , r 5= 0 ,

) = 0 , t ^ 0 ,

) = Vw - V. , r ^ 0 • (2.5)

Here, we further assume that the semiconductor is non-degenerate (i.e. mod-
erately doped) and that the injected électron distribution functions at 0 and L
are at thermo-dynamical equilibrium (i.e. Maxwellians with respect to k).

N° =
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is the equilibrium density at x = 0, Mc the effective density of states at the

conduction band, Mc = 2
2nh2 , (see [34]). Vbi is the built-in potential,

which gives the potential différence between the bottom of the conduction
band at x = 0 and x = L. lts définition (2.6) assumes that neutrality holds
at the ohmic contact x = L. &h is the barder height, which dépends on the
metal work function <Pm and the semiconductor électron affinity
X : &b = <Pm - X> (see ^g. 1). kB is the Boltzmann constant and M(k) is the
normalized Maxwellian at the lattice température T:

M(k) = C. , whereCiss.t. M(k)dQ(k) = 1 .
J

is the applied potential.
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2.a) Band diagram of the Schottky diode
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2.b) Band diagram of the Schottky diode

under forward bias

Figure 1. — Energy band diagram of the Schottky diode.

We shall only consider électrons in the /"-valley of GaAs and intra-valley
collision terms only. To be more realistic, we should perform multi-valley
simulations (see [11], [17] for multi-valley simulations using the deterministic
partiële method). However, the purpose of this paper is more to show the
practical feasibility of the method rather than to give the most accurate
physical results. Q(f), the intra-valley collision term, is given by :

Q(f)(x,k,t)=\ [S(x,k',k)f(x,k')(l-f(x,k))

vol. 30, n° 6, 1996

*, k')f(x, k) ( 1 -ƒ(*, ft'))] dQ(k') , (2.7)



768 P- DEGOND, F. POUPAUD, A. YAMNAHAKKI

where S(x, /:, k') dQ(k') is the transition rate of the state k to the volume
element dQ(k') around the state A;'at the position x. We take into account, in
this model, the following elementary interactions :
O acoustic and piezo-electric interactions in their elastic approximation ;
O polar and non polar optical interactions (émission/absorption),
O ionized impurities interactions (its transition rate is the only one which
dépends on the x variable via ND(x)).

S(x, k, k') is the sum of all these elementary transition rates, see [32] or
[12], [17], [20] for their expressions.

The energy band diagram e(/c) of this model is spherical, and not para-
bolic :

^K (2.8)( ) ( ( ) ) K
2 m

with m the effective mass and a the non parabolicity coefficient. The density
and the other macroscopic quantities are defined as follows :
• density :

n(x, t) = f /(x, K t) (4 7I3)" ' dQ{k) , (2.9)
JRXR +

mean velocity :

<!>)(*, r ) =rf ! ( x , f ) v(k)f(x,k,t) (4n3)~ l dQ(k)
J R x R +

(2.10)

mean energy :

<€>(*, r )=/ f ' (x , f) f e(k)f(x,k,O(4niyldQ(k),
J RxR +

(2.11)

mean internai energy :

e(xt t) = <€>(*, t) - \ m\v)\x, t) , (2.12)

current density :

( ƒ > ( * , t ) = - qn(x, t ) ( v ) ( x , t ) + e0e,£t(E(x, t ) ) , (2.13)
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(4 7T3)~ ' is the density of states in /:-space. We also define the total charge :

nD(x) -n(xtt))dx. (2.14)
o

We recall that the current density is independent of x. In the numerical
simulation, an average over x is computed in order to increase the accuracy.
The relaxation times deduced from a kinetic model are a priori functions of
(x, f), since the are computed from moments of the collision operator. Their
expressions are given as follows (see [2], [23], [18])
• momentum relaxation time :

-n(x,t)(v)Ut)l f v(k)Q(f)(x,k,t)(4n3yldQ(k) \ \ (2.15)

• energy relaxation time :

(2.16)

where W(x, t) = n(x, t)(e)(x, t) and

, = n(x,t) I

Now, we give a brief présentation of the numerical method.

2.3. Présentation of the deterministic partiële method

This numerical method has been investigated first in ([31], [9]) in the
context of incompressible fluid dynamics. The application to collisional ki-
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nctic équation has been done in [24]. ït has been used for the semiconductor
Boltzmann équation in [13], [12], [11]. The distribution function is approxi-
mated, in the sensé of weak solutions, by a sum of Dirac measures in the phase
space (particles) :

ƒ(* ,* , O = f Uk, 0 = ^ 0 ) ^ 0 ö(x- xi(t))®S(k-ki(t)), (2.17)
/ - i

where N is the number of particles, ;c.(f), kj=(k] , - ( 0 » ^ {(t)), f^t) and
œ{ are respectively the position, wave vector, weight and control volume of the
ith particle. They evolve in time according to :

§ =!>(*,); *.(0) =x%

dt
^ = 0; *2.,(0) = 4 , . (2.18)

f =0,(0; f,(0) =ƒ«,

where £",-(/) and Q(.(/) are the approximations of the electric field and of the
collision operator acting on thc i"' particle. The initial xj, k°, fi, and o>° are
choscn so that

(2.19)

the approximation (2.19) is also taken in the weak topology of measures.
Possible choices of ;c°, &?, co* and/^ can be found in [31].

To define Q{O)> w e introducé a cut-off function Ça(x) such that

jx)dx=\, (2.20)
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where £ is a compactly supported function, and we write

^ > ^ ; -^.(r))o;7Ca(xy-^)] . (2.21)

where S'' is a régularisation of the exact transition rate S, see [24], [11], [17]
for a justification of this expression and [17], [20] for a présentation of a fast
algorithm to compute the collision operator.

For the approximation of E^t), we considered the classical « Particle in
Cell » (PIC) method, see [22], [6], [7] and références therein for a présentation
and [27], [9] for an error analysis. The approximations of the other macro-
scopic quantities, which depend on position and time, are defined at a fixed
grid mesh points Xm = m Ax by using a numerical quadrature and a régu-
larisation function W, for example : W(x) — Max (0, 1 — \x\ ) and

(v) (X,„, O -» : , ' (0 2 a, v(K)f,(O^ w(^J \ x '" j . (2.22)

The numerical simulation is initialized with the slationary solution of the
coupled Boltzmann-Poisson System at equilibrium :

where n is the solution of the following semi-linear elliptic problem :

njx) = N° exp(^) ; P = fj., (2.23)

^ ^ ^ . , (2-24)

with /V° given by (2.6). The time stepping procedure is detailed in [17], [20].
The computational domain is chosen rectangular. We have chosen the
following boundary conditions on the wave vector : particles which
leave the domain on ki - kx max (resp. k]=-kl max) are re-injected, with
^ i / = ~^i,max ( resP- ^i r ^ i m a x ) without changing neither their weights
nor their positions, see [13], [11], [17] for a discussion of artificial boundary
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Figure 2. — Particles injection scheme in position.

conditions for particle methods. If a particle exits the domain at x = 0 or
x = L, it's re-injected in the domain according to figure 2, with a weight
consistent with formula (2.5). These boundary conditions are stable and have
been shown to numerically preserve the total charge up to machine accuracy.

2.4. Direct simulation

We have used a GaAs model with one valley (F) at 300 K. The physical
and numerical parameters are chosen according to [20] and [17]. Spécifie
values of the parameters for the Schottky diode are given in table 1. Results

Table 1. — Physical and numerical parameters.

Physical values

Applied voltage (Volts)
Lattice température (K)
Device length (microns)
Doping profile (m"3)
Barrier height (GaAs-Aluminium contact) (volts)

0.2
300.00

1.2
2.E + 22

0.8

Numerical values

Time steep (ps)
Poisson meshes number
Particles number
Position régularisation parameter fj( um )
Energy régularisation parameter a ( meV )
Maximal parallel energy e^ax - e°(eV )
Maximal perpendicular energy e™ a x-e°(eV)

0.005
M= 120

36 000
0.009
4.0
1.2
0.3
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are shown in figure 3 to 8. The equilibrium density (i.e. that corresponding to
VA = 0) is shown on figure 3 while the stationary density obtained after 2 ps
simulation for VA ~ 0.2 V is displayed on figure 4. The results are fairly
correct in spite of a variation of 8 order of magnitudes of the density between
x = 0 and x~ L. The stationary density for V̂  = 0.2 V at x = 0 is larger
than the equilibrium density at the samc point, which is a conséquence of the
direct biasing of the junction. The clectric field (fig. 6) is almost linear and the
electric potential {fig. 5) almost parabolic in the deplction région. Howevcr, the
current density as a function of time {fig. 7) displays a chaotic behavior, with
an undetermined sign and an absolute magnitude of 3 orders of magnitude
above the expected one (which is about (5.10~4A/cm2 [34]). Figure 8
displays the stationary distribution function at time t-2ps. It is essentially
Maxwellian with some numerical fluctuations, which shows that the method
has only been able to capture the equilibrium part of the distribution function.

0.4 0.6 0.8
distance(^m)

1.2

Figure 3. — Equilibrium density (VA = 0) (solution of cq. (2.23)).

le+23
le+22

lc+20

-;i) le+18

le+16

le+14
le+13

C
i

0.2

r~ 1 1

1 ! l

0.4 0.6 0.S
distance(/j77i)

-

l 1.

Figure 4. — Density (VA = 0.2 V ) at stationary state (t = 2ps) (direct simulation),
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0.2 0.4 0.6 0.8
distance {fini)

1.2

Figure 5. — Electric Potential ( VA = 0.2 V) at stationary state (/ = 2ps) (direct simulation).

0.2 0.4 0.6 0.8
distance(/jm)

1.2

Figure 6. — Electric field ( VA = 0.2 V) at stationary state (/ = 2ps) (direct simulation).
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Figure 7. — Currcnt dcnsity ( VA = 0.2 V ) as a function of time (direct simulation).
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5~
5 * =
5 S J
_ ti -
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Figure 8. — Distribution function at / = 2./?s(dircct simulation).

The non-equilibrium part, which détermines the current is completely con-
cealed by the numerical fluctuations. This explains why the method has been
unsuccessful to capture the correct value of the current.

2.5. Décomposition in equüibrium and non equilibrium distributions and
simulation of the non equilibrium distribution

In the previous subsection, we have pointed out that no information about
the non equilibrium part of the distribution function (and thus, about the
current) could be obtained from a direct computation of problem (2.1), (2.2),
(2.5), (2.7). In this subsection, we reduce the problem to the computation of
the non equilibrium distribution function.

In what follows, we assume that the électrons gas is non degenerate, i.e. the
collision term Q is linearized in (2.7), we make 1 — f~ 1. Let

= N°(x)M(k), N\ (2.25)

where 0U is solution of the following semi-linear elliptic problem :

dx~

= 0 , = Vh. - VA

Then, it will be proved in the next section that N°(x) is an approximation of
the stationary state carrier density (which is confirmed by a comparison
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0 0.2 0.4 0.6 0.8 1 1.2
distance(^m)

Figure 9. — Stationary state carrier dcnsity TV (x ), solution of (2.25),

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 10. — Current dcnsity (VA = 0 . 2 V ) as a fonction of time (simulation of the non-
equilibrium distribution).

between fig. 4 and fig. 10) and that f is an approximation of the stationary
statc distribution function. Under a forward bias, we consider the distribution
function ^ =/° - ƒ It satisfies the following Boltzmann-Poisson System:

w i t h
f
dx

=f=f{N°(x)- ng(x, t)-ND),xe ]0, L[, t > 0 ,

g(x,k,t)dQ(k),x<= ]0, L[,t>0, (2.26)
RxR
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