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MATHEMATICAL M0DELL1NG AND NUMERICAL ANALYS1S
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 30, n° 6, 1996, p. 711 à 729)

A WAVELET MULTIGRID PRECONDITIONER
FOR DIRICHLET BOUNDARY VALUE PROBLEMS

IN GENERAL DOMAINS

b y R o l a n d G L O W I N S K I ( ' ) (*) ( 2 ) , A n d r é a s RiEDER (») (:!:) ( 3 ) ,
R a y m o n d O . W E L L S , Jr . (>) ( 4 ) a n d X I A O D O N G Z H O U ( ' )

Abstract. — We present a wavelet multigrid preconditioner for the conjugale gradient method
which gives an efficient solver for the linear System art s ing from a wavelet-Galerkin discreti-
z.ation of a Dirichlet boundary-value problem via a pénalty/fictitious domain formulation. The
preconditioner is chosen to be a wavelet-based multigrid method for solving the same elliptic
équation, however over the fictitious domain and with periodic boundary conditions. N urne rival
experiment s de sert bed in the paper vonfirm the efficiency of this new itérative solver.

Key words : wavelets, penalty/fictitious domain formulation, Galerkin methods, multilevel
methods, preconditioned cg-method

Subject classification : AMS(MOS) 65F10, 65N30

Résumé. — On présente dans cet article un algorithme de gradient conjugué préconditionné
par une méthode utilisant les propriétés multi-niveaux des ondelettes. Cette approche conduit à
une méthode de résolution efficace des systèmes linéaires qui proviennent de la discrétisation du
problème de Dirichlet par une méthode combinant pénalisation, domaines fictifs et approximation
de Galerkin sur des bases d'ondelettes. Le préconditionneur est en fait un algorithme de
résolution, de type multi-niveaux, de problèmes elliptiques sur le domaine prolongé, avec
conditions périodiques, pour des approximations de Galerkin sur des bases d'ondelettes. Les
expériences numériques présentées dans cet article montrent l'efficacité de ce nouveau solveur.

1. INTRODUCTION

We s h all pro vide a wavelet multigrid preconditioner for the conjugate
gradient method applied to a class of linear Systems arising by a wavelet-based
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712 R. GLOW1NSKI, A. RIEDER, R. O. WELLS, XIAODONG ZHOU

discrctization of the following clliptic model problem over a bounded domain
œ in R" (there is however no principal restriction to two dimensions),

- a. Au + M = ƒ , in co ,

u = g , on dco ,

where a is a positive constant.
First, we consider the above differential équation on a square with periodic

boundary conditions (Section 3). We discrctize this problem by a wavelet-
Galerkin melhod similar to those discussed in [13], [14] and [15]. To solvc the
discrete problem, we have devcloped multilevel methods ; the discretization
stcp-size independent convergence rate of these methods can be proved by
techniques closely rclalcd to those used for fini te différence and fini te element
approximations (see, e.g. [8] and [17] for related références). A crucial tool for
studying the multilevel solution of the wavclet-based approximate problems is
the Mallat transformation described in e.g. [12], Hère, the Mallat transfor-
mation plays the fundamental rôle of prolongation and restriction between the
consécutive levels.

Things become more complicated for boundary-value problems over gen-
erally shaped domains. In Section 4 we use the fictitious domain/penalty
methods described in [6], [14] and [15] to reduce these problems to elliptic
problems for closely related operators — in the embedding domain (box-
shaped in gênerai). The présence of the penalty term requires a special
attention in order to achieve an efficient solver. Indeed, the condition number
of the corresponding discrete System is dominated by the penalty term. A
care fui analysis shows how to overcome this difficulty. We end up with a
modified linear system which is akin to that one we obtained by the discreti-
zation of the periodic problem over the square already studied in Section 3.
Now, it is near at hand to use our periodic multigrid solver as a preconditioner
for a conjugale gradient method applied to the modified system approximating
the penalized boundary-value problem over the fictitous domain. The resulting
itérative solver is highly efficient which is demonstrated by various numerical
experiments.

We start our considérations by shortly recaliing the necessary wavelet
vocabulary.

2. WAVELET ANALYSIS

2.1. Wavelet System

In this section, we will briefly recall from [3] various définitions and
properties of the Daubechies wavelets. For a positive integer /V, the
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A WAVELET MULTIGRID PRECONDITIONER 713

Daubechies scallng function (p and wavelet function yj of order N are defined
as follows : There exist 2N real numbers ai% / = 0, 1,. . . ,2/V- 1, satisfying

2 ^ = 2 and ^ ak + n ak = 2 ^o / for ail / E Z ,
k k

so that

<p(x) = ̂ ak<p(2x-k) , forallxe R, (2.1)

and

^( j t ) = 2 ^ A ' ^ ( 2 ; c - ^ ) > for all x e R , (2.2)

where bk = ( - 1 )* a2N_k_ p for k = 2 - 2 /V, ..., 1. The functions ^ and
i// are compactly supported, with supp(^) = supp( ^ ) = [0,2 N — 1 ] . For
convenience, we define ak = 0 for A: ̂  [ 0 , 2 i V - 1].

Furthermore, (p and î  are in C , the space of Hölder continuous functions
with exponent a(N)y where a ( 2 ) « 0 . 5 5 , a ( 3 ) « 1 . 0 9 , a ( 4 ) « 1 . 6 2 and
a ( N ) - 0.2075 TV for large N, see [5]. For y, A: e Z, let us define

ç/k(x) := 2!12 (p{2! x - h) , for all x e R .

Set , f o r ; E Z , V. = c l o s u r e ( s p a n { ^ : k e Z } ) . T h e n , { ^ :j,k,G Z } is an
o r t h o n o r m a l b a s i s for V.. A l s o , L 2 ( R ) = c l o s u r e ( ^ . V ) , in t h e s e n s é t h a t

2 J J

for any function ƒ E L ( R ) , the orthogonal projection ƒ of/onto V. converges
to ƒ in L2( R ) as ; -> + «».

2.2. Mallat Transformations

The (periodic) Mallat Transformations h, g : R'1 —> R"/2 , n even, of a
vector v E R" are defined by

2N~ 1

= ^ S a i» i + 2*. * = 0, .... n/2 - 1 , (2.3)
v ^ / = o

^ E V / + 2*> * = 0, ..., ZI/2 - 1 , (2.4)

where we extend v periodically, i.e. vt = u/ + /i. The coefficients a/ in (2.3) and
è»/ in (2.4) are those in (2.1) and (2.2), respectively.

vol. 30, n° 6, 1996



714 R. GLOWINSKI, A. RIEDER, R. O, WELLS, XIAODONG ZHOU

The Mallat Transformations satisfy (see [3], [12]),

gti = Aj' = 0 .

We use / to dénote the identity matrix of appropriate size throughout this
paper.

3. PERIODIC BOUNDARY-VALUE PROBLEM

In this section, we are going to discuss a wavelet based multigrid method
for the following simple but typical elliptic boundary-value problem,

-aAu + u=f, in Q, (3.1)

u is periodic on the boundary of G , (3.2)

where a is a positive constant and Q is a square of side length 5 in R2 (for
convenience, we assume that s is a positive integer and s ^ 4 iV ~ 3 ).

3.1. Wavelet Based Diseretization

We introducé the Sobolev space Hl
p(Q), £>=(ö, s)2, with periodic

boundary conditions,

H)} = Hl
p(Q) := {v G L2(Q) : vx, vy 6 L2(Ü) ,

s,y),v(x, 0) = y(jc,s)} .

The weak or variational formulation of the boundary-value problem (3.1),
(3.2) becomes :

find u e Hl
p : s/( u9 v ) = \ Jv dx dy , for all v e Hl

p , (3.3)

where sé is the //^-elliptic bilinear form

u>v)=\ (aVu*Vv + uv)dxdy . (3.4)

M2 AN Modélisation mathématique et Analyse numérique
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Due to the Lax-Milgram theorem [2] (3.3) has a unique solution u. For a
Galerkin discretization of (3.3), we introducé the periodic wavelet-Galerkin
spaces at level L, by

j = V j ( O , 5 ) : = ( i ) 6 L2(0,s):v(x) = ^ ckq>L
k{x\xe [ 0 , * ] .

4with c. = i

Obviously, VP
L has the dimension nL = 2L s. The wavelet-Galerkin approxi-

mation uL e VP
L <8> VP

L to u is the unique solution of

jrf(uL, vL) = JvLdxdy , for all vL e ^ ® V* . (3.5)

We expand uL in

ij e Z

where the expansion coefficients are periodic in each index with period nL.
Further, we define

By introducing the following connection coefficients (see [1] and [11])

rk= (p\x) cp\x » k) dx , ^ 2 - 2 / V , . . t 1 2 i V - 2 ,
JR

one can dérive from (3.5) the following linear System for the unknowns
M [ ( ' S in compact form [15],

a( cL uL + uL cL ) + uL = / , (3.6)

vol. 30, n° 6, 1996
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where

R. GLOWINSKI, A. RIEDER, R. O. WELLS, XÏAODONG ZHOU

u =

t L L L \
/ « 1 1 «12 - « l „ \

(3.7)

and f^ is arranged in the same way.
In (3.6) cL is a n x n symmetrie circulant matrix (see e.g. [4] for a

discussion and algorithm concerning circulant matrices) with the first row

ri...r2N_2o...o r2N_2...r, (3.8)

where SL := 2~ L is the discretization step-size.

LEMMA 3.1 : Let u be the solution of the variational problem (3.3) and let
uL be the approximate solution of (3.5), then

the constant C being independent of S^
The norms || • || v in the above lemma correspond to the Sobolev spaces

HS(Ü) = WSt2(Q), see e.g. [2]. See [16] for the proof.
If we use UL and FL to dénote the n" x 1 vector resulting from uL and

f* lexicographically, AL to dénote the corresponding n x n2 coefficient matrix
resulting from (3.6), then we have the desired linear system

ALUL~FL. (3.9)

3.2. A Multigrid Approach

Let Ap /: = /,..., L, 0 ^ / < L, dénote the discretization matrix of (3.1)
and (3.2) at level k. Thus, Ak has the dimension ^ x % where nk~2ks.
Correspondingly, we have Fk ' s and the unknown Uk ' s, as in (3.9). In order
to establish the multigrid process, we deflne the basic itérative method (BIM)
on each level k by

where Sk = I — ~

Ur> = U'ï-L-k\AkU:-Fk), (3.10)

Ak/\s called the itération matrix of (3.10) and where
Lk is an « approximate » inverse of Ak. For instance, if Lk = ff [ /, then we

M2 AN Modélisation mathématique et Analyse numérique
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A WAVELET MULTIGRID PRECONDITIONER 717

have the Richardson itération, and if Lk~ ff ! DA^ := (T l diag(ÂA), then we
have the damped Jacobi itération. Hère fi is a suitable damping factor. In our
applications we will choose /? sufficiently small such that the resulting Jacobi
method is a symmetrie itération [9].

Now, we describe the recursive periodic multigrid procedure (MGP) for this
periodic case. For this procedure we consider a range of levels with 0 being
the coarsest and L > 0 being the finest level. We let hk be the periodic Mallat
transformation acting on data at level k as given in (2.4), where n = nk, and
we let Hk be the tensor product hk <8> hk, where 0 ^ k ^ L. We now have
the varying quantities in our multigrid procedure :

k the actual level, 0 ^ k «£ L,

w the approximate solution at level k, w e R"* ,

b the righthand side and defect at level k, b s R"* .

Then we define MGP(/c, vv, b) as follows :

MGP(Jfc, w,b)
begin
if k = 0 then w \= A~t

 ! b {exact solution on the coarsest level)
else

w : ^S[ vv+ 2 ) S[Lrk
 ! b (v steps ofBÏM on level k) (3.11)

i = 0

d : = Hk(Ak w - b) ( restriction ofthe defect to level k - 1 )

v : = 0

M G P ( £ - l.u.rf) (MGP starting on level k- 1 (3.12)

vv/Y/î initial guess v = 0 )

vy := w — //^. i> (prolongation ofthe k - 1 /eve/ approximation

to the higher level k, course grid correction )

end

One step of the multigrid method (MGM) is performed by

w := C/̂  ,

M G P ( L , w , F J , (3.13)

£/t := w .

vol. 30, n° 6, 1996
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Remark : a) The MGP describes one V-cycle with presmoothing only. To
achieve a W-cycle, perform (3.12) twice. Applying (3.11) again after the
coarse grid correction yields an MGM (3.13) with postsmoothing.

b) The linear System which has to be solved on the coarsest level has the
relatively large dimension n0 — s 5= (4 N — 3 )2. However, it can be solved
in an efficient manner if one considers its compact form (3.6) and uses the
circulant structure of the matrix c0.

3.3. Convergence Analysis

To prove the ^-independent convergence of MGM (3.13), we follow the
theory of Hackbusch [8], and for this, we need the following notation. For
simplicity we dénote

k K J ® ^ , (3.14)

and we will call Xk the (finite-dimensional) periodic scaling space of
level k approximating H { Q ). For a finite dimensional space
V := span{ep ..., em} cz L2( Q), we define the transformation P : R"' —> V as

xkek- ^ e ^ e n o t e by R the adjoint operator of P with

respect to the L2 scalar product. We use Pk, Rk to dénote such operators for the
space Xk and we Iet | |/\J|, || Rk\\ dénote the Euclidean norm of these
finite-dimensional operators.

In order to be able to adapt the proofs in Section 6.3 in [8], we supply the
following lemma. lts straightforward proof is omitted.

LEMMA 3.2 : We have
( i ) R k P k = I, \\Pk\\ = K i l = 1 ,
(iO U'k = RkPk_, and Hk = Rk_lPk,
(iii) Ak^=HkAkH'k.

By taking Lemma 3.1 into account, the approximation property

\\A~k
 l -HkA-^Hk\\ ^ CAS2

k, O ^ U L ,

where CA is a constant being independent of Sk> follows readily from the
Standard proof for the finite element case, see Proposition 6.3.14 in [8]. Here
and later || • || dénotes the Euclidean norm. Consequently, we have the
following theorem, cf. Section 7.2 of [8].

M2 AN Modélisation mathématique et Analyse numérique
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THEOREM 3.3 : Let A^™s(vp
 V2^ dénote the itération matrix of an MGM

(3.13) for a V-cycle with v{ presmoothing, v2 postsmoothing steps and with a
BIM chosen to be a sufficiently strong damp e d Jacobi itération. Then, if
Vj + v2 > 0, the spectral radius of M™s(vp v2) satisfies

where C is a positive constant independent of SL and v,, v2.

4. GENERAL BOUNDARY-VALUE PROBLEMS

In this section, we will present a wavelet-based preconditioned conjugate
gradient method (c#-method) [10] for solving the Dirichlet problem over a
gênerai shaped domain in higher dimensions (hère we limit ourselves to
two-dimensional problems, but the methodology and the algorithm can be
carried over to any dimension in a straightforward manner).

Let œ be a bounded domain in R with a Lipschitz-continuous boundary
dœ. We look for M e Hl(œ), such that

— a Au + u = ƒ , in œ , (4.1)

u- g , on dœ , (4.2)

w h e r e / G L"(co)t g G H2(dœ) and where a is a positive constant.
In order to avoid generating a complex grid matching the geometry of

œ, we instead use the fictitious domain/penalty formulation following the idea
in [15]. For e > 0, let Q be a square containing OJ. We seek a
u e Hx

p(Q), such that

( a Vu • Vv + u v ) dx + - üevds=\fvdx + - \ gv ds (4.3)

for ail v e HX
}{Q), where, in (4.3), ƒ is an arbitrary L2-extension o f / i n Q.

Using gênerai results on penalty methods proved in, e.g. [7], Chapter 1, we can
easily show that u
H' (^ -ex tens ion of th
M e H' , ü = g on dœ,

easily show that u converges to ü in H {Q), where ü is the
H ' (^ -ex tens ion of the solution of the following variational problem:

( aVw • Vü + üv ) dx =
JQ J a

f o r a i l v e Hpt s u c h t h a t y = 0 o n d œ .

vol. 30, n° 6, 1996
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4.1. The Wavelet-Galerkin Discretization

From the analysis in [15], we know that there is a wavelet expansion at level
L for the numerical boundary measure JJL e Xu so that for any gL e XL, one
h as

gL ds = \ jjL gL dx - » g ds
J cW* J Q J düJ

as L —» co. Thereforc, by applying the Galerkin method to (4.3) with respect
to the space XL (3.14), we ot
in compact form as follows
to the space Xt (3.14), we obtain the following Iinear system for u*'L written

a(cL it
 L + u€'LcL) + ue'L + l:jjLxue'L^f + ̂ jjLxgL, (4.4)

where w€'L,/^, gL and JJL are square matrices defined as in (3.7). The opération
A x B is the multiplication of two matrices A, B of the same size obtained
by multiplyïng corresponding entries.

Theoreücally, the boundary measure JJ is supported on doj. At level L, JJL

will have the same support as the gradient oï%u), the characteristic function of
co sampled at levcï L, sce [15]. So geometrically, the support of jaL is contained
in a tubular neighborhood of l)w of width 2 M2L, where N is the order of the
Daubechies wavelets. In our approximation, we set the entry of juL to be 1
where || V/^ | | is not zero, that is, / / acts like the characteristic function of that
tubular neighborhood, since we are going to choose e very small. With this
choice of /A the approximate solution u€'L converges to the exact solution for
the /ƒ'-norm inside co as € —> 0 and L —» ©o. On the boundary dco, we note that
for all L, u*L — g + Ce where the constant C dépends only on the norm of
ll^ll/yi which is uniformly bounded in e, see e.g. [7].

From (4.4) we can dérive an n~{ x n] Iinear system

(4.5)

obtained by rearranging all the expansion coefficients in lexicographical order.
Note that ML representing the numerical boundary measure / / is a diagonal
matrix with diagonal éléments either 0 or 1.

M2 AN Modélisation mathématique et Analyse numérique
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Remark : Because the entries of the circulant matrix cL (3.8) increase with
the factor 5~L

 2 as L gets larger, the discrete penalty formulations (4.4) and (4.5)
are meaningful only if the penalty parameter e is much smaller than Ö2

L :
e < S2

L. From now on we will assume this natura! condition for the penalty
formulation.

4.2. A Preconditioned cg-Method

If one uses a standard multigrid method for solving (4.5) then the error
explodes with the choice of smaîl e. To overcome this divergence one could
try to apply a multigrid method with a block version of a BIM where one block
is formed by the unknowns corresponding to the boundary da>, as suggested
in [8]. However, the implcmentation of this approach dépends strongly on the
shape of the domain œ, a drawback we would like to avoid.

To dérive an efficient solver (in terms of performance and convenient
coding) we study the condition number K of the matrix
AL € :=A L + e~ [ ML because K(AL^) détermines the convergence speed of
the cg-method applied to (4.5), see e.g. [9]. We have that
K(AL e ) = O(8~L

 2 e~ l ) and remembering that we have chosen e <§ S2
L

above, e~ ' affects the condition number most.
In a first step we therefore try to eliminate the influence of e. Since

e <̂  S2
L we consider the limit of the fa mil y { ^ } € > 0 of solutions of (4.5) as

e tends to zero. We will use the maximum norm || • H .̂

LEMMA 4.1 : Let Ue
L = A~L{{FL + e' ' ML GL) be the solution of (4.5),

then the re exists a UL e R"'- suc h that

Moreover, UL is uniquely determined by

(I-ML)ALUL=(I~ML) FL and MLUL = MLGL.

Proof : Without loss of generality we may assume that

Mt = diag (m{ : 1 ^ / ^ n) with /;?v = 1 for 1 ^ / ^ k < n and
mi = 0 otherwise. Here, we set n — n"L. Using Cramer's rule the /-th
component of Ue

L can be expressed by

d e t

vol. 30, n° 6, 1996
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where aL e is the /-th column of AL e. Denoting the identity matrix on R by
Ik we write

h ° \ f^Uk + h efi

with

^ * = { ( A L ) t f : l GiJ^k}, A'Uk = {(AL)u:k+l * ij ** n}

and

Hence, det e4 t 6 = e'1"* P(e ) and P(0) = det A'Lk > 0. With the same
argument we can show that A((ç.) can be written as zf(.(e) = e"~ zT(e).
Therefore the limit ( üL)i := lim ( t/^). = ^.(OyPCO) exists. Both,

P( e ) and 2f.( e ), are polynomials in e of degree 1 at least. Thus,
P{ e ) = P( 0 ) + O{ e ) and 2.( e ) = A.{ 0 ) + O( e ). This implies
| ( ^ ) / - ( £ / L ) / I = O ( € ) .

We multiply (4.5) trom the left with / - ML and with eML to get
(I - ML) ALU*L= (I - ML) FL and

eML AL U\ + MLU*L = eML FL + ML Gv

respectively. Taking the limit as e tends to zero gives the statement. •

Instead of the ill-conditioned system (4.5) we now choose to solve

(I - ML) AL(1 - ML) ÇL = ([ - ML) (FL- ALMLGL) (4.6)

on the range R(I — ML) of I — ML. The limit UL is then given by

where ÇL is the unique solution of (4.6) in R(I — ML).

Remark : The implementation of the cgf-method for solving (4.6) is straight-
forward. Indeed, the c^-iteration has only to be restricted to the subspace
R(I - ML) which can be done easily. Moreover, we do not need to reorder
the unkowns. This is a crucial fact because the system (4.6) can also be written
in compact form, cf. (4.4), which is well suited for an efficient coding.

So far we have gotten rid of the influence of the penalty parameter e. Still,
the condition number of ÂL = (/ - ML) AL(I - ML) on R(I - ML)
increases like O(ö~L

2). So, it makes sense to consider using the periodic

M2 AN Modélisation mathématique et Analyse numérique
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multigrid method presented in Section 3.2 for solving (3.9) as a preconditioner
for the cgf-method acting on (4.6). With the same number v of pre- and
postsmoothing steps the itération matrix of (3.13) becomes
M™g(v, v) = I - WL

 x AL, where WL is symmetrie and positive-definite. The
transformed matrix (I — ML) W~L

 X(I~ML) is also positive-definite on
R(I-ML) and we may write WL := ( ( / - ML) W~L ' ( / - ML))~ ' on
R(I — ML). Now, we solve the symmetrie System (4.7) which is equivalent
to (4.6),

WL
 mÂLWL

 Xl% = FL, £Le R(I-ML)t (4.7)

with FL = W~L
 1/2( I - ML) (FL-ALMLGL ). In using the c^-method to

solve (4.7) only the action of W~L
 l on a vector v has to be computed, see e.g.

[9], which can be realized by one step of the multigrid itération (3.13) with
starting guess zero and right hand side v.

The usual way to obtain an analytic estimate for the condition number of
WL

 U2ÂLW~L
 U2 is to establish an estimate of the type

y WL ̂ ÂL ^ rWL on R(I-ML) (4.8)

with numbers 0 < y ^ F. The notation A ^ B signifies that B - A is
positive semi definite.

At this time we do not know how to prove (4.8) with meaningful bounds.
Two principal difficulties are : a) it is not clear whether the underlying
continuous expression of (4.8) can be used, b) it is not clear whether the
relation (1 — pL) WL ̂  AL =£ WL, where pL is the spectral radius of
M^g(v, v), may be of any help. Nevertheîess, the numerical experiments for
the c0-method acting on (4.7) described in the next section are impressive.

4.3. Numerical Experiments

We consider the boundary-value problem (4.1), (4.2), with respect to two
different geometrie domains, the disk (Example I)

œ x = { ( x , y ) G R 2 : x z + y 2 < 1 /16}

and the disk with re-entrant corner (Example II)

œ2 = {(x9y) e R2 : x2 + y2 < 1/16, y < |x|} .

In both examples the right hand side ƒ is chosen to be ƒ = 1 and the boundary
function g is chosen to be g = 0. One of the numerical difficulties with this
setting is the appearance of boundary layers if a is small compared to 1.
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For the domain w{ the exact solution u is known to have the following
représentation

yo( //Va/4 )
(4.9)

where Jo is the Bessel function of the first kind of order 0.
The boundary-value problem (4.1), (4.2), with the domain co2 has less than

full elliptic regularity. ïn this example we study the dependence of the
preconditioned cgf-method on the regularity of the underlying boundar-value
problem.

We let the fictitious domain Q be the square defined by

Q = {(x,y)e R2 : |x| , |>>| < 1/2}.

Remark : To mini mi ze the number of discretization points in Q — œk>

k= 1,2, one eould use Q = {(x,y) e R2 : \x\, \y\ < 1/4} as smallest
possible box-shapcd fictitious domain. We chosed the larger domain Q for our
computations to visualize more clearly the action of the numerical boundary
measure JLIL as well as the periodicity of the solution on Q.

Table 1. — Example I : necessary numbers of itérations to yield an Eucïidean norm of the residue
smaller than 0.01. The discretization step-size is 1/256.

= 1 a = 0.01 a = 0.0001

CGe

CG
PCG

1 538
781

79

1 219
608

99

136
68
17

In the sequel we will use the following abbreviations : CG€ dénotes the
cg-method applied to (4.5) with e = 10" 8, CG dénotes the cg-method acting
on (4.6) and PCG stands for the cg-method applied to the preconditioned
System (4.7) where WL originates from the multigrid itération (3.13) with one
pre- and one postsmoothing step. The computational costs of one itération step
of CG€ and CG are almost identical, whereas one step of PCG is more
expensive. However, all three methods coincide in the order of their compu-
tational costs which is O(nL). We realized the three methods in the MATLAB
computer System on a Sun Spare 2 workstation and we found that the cpu time
for one step of PCG was about four times the cpu time of one step of CG. In
our experiments each itération is started with starting guess 0 and the under-
lying Daubechies scaling functions always has order N = 3.
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