Control and estimation of the boundary heat transfer function in Stefan problems
M2AN - Modélisation mathématique et analyse numérique, Volume 30 (1996) no. 6, pp. 671-710.
@article{M2AN_1996__30_6_671_0,
     author = {Barbu, V. and Kunisch, K. and Ring, W.},
     title = {Control and estimation of the boundary heat transfer function in {Stefan} problems},
     journal = {M2AN - Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {671--710},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {30},
     number = {6},
     year = {1996},
     zbl = {0865.65070},
     mrnumber = {1419934},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1996__30_6_671_0/}
}
TY  - JOUR
AU  - Barbu, V.
AU  - Kunisch, K.
AU  - Ring, W.
TI  - Control and estimation of the boundary heat transfer function in Stefan problems
JO  - M2AN - Modélisation mathématique et analyse numérique
PY  - 1996
DA  - 1996///
SP  - 671
EP  - 710
VL  - 30
IS  - 6
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1996__30_6_671_0/
UR  - https://zbmath.org/?q=an%3A0865.65070
UR  - https://www.ams.org/mathscinet-getitem?mr=1419934
LA  - en
ID  - M2AN_1996__30_6_671_0
ER  - 
%0 Journal Article
%A Barbu, V.
%A Kunisch, K.
%A Ring, W.
%T Control and estimation of the boundary heat transfer function in Stefan problems
%J M2AN - Modélisation mathématique et analyse numérique
%D 1996
%P 671-710
%V 30
%N 6
%I AFCET - Gauthier-Villars
%C Paris
%G en
%F M2AN_1996__30_6_671_0
Barbu, V.; Kunisch, K.; Ring, W. Control and estimation of the boundary heat transfer function in Stefan problems. M2AN - Modélisation mathématique et analyse numérique, Volume 30 (1996) no. 6, pp. 671-710. http://www.numdam.org/item/M2AN_1996__30_6_671_0/

[B1] V. Barbu, 1993, Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, New York. | MR | Zbl

[B2] V. Barbu, 1991, The approximate solvability ot the inverse one phase Stefan problem, Internat. Series Numer. Math., 99, pp. 33-43, Birkhauser Verlag, Basel. | MR | Zbl

[BBC] J. V. Beck, B. Blackwell and C. Clair. 1985, Inverse Heat Conduction, Wiley-Interscience. | Zbl

[BDZ] V. Barbu, G. Da Prato, J. P. Zolésio, 1991, Feedback controllability of the free boundary of the one phase Stefan problem, Diff. Integral Equs., 4, pp. 225-239. | MR | Zbl

[BK1] V. Barbu, K. Kunisch, Identification of nonlinear elliptic equations, (to appear). | MR | Zbl

[BK2] V. Barbu, K. Kunisch, Identification of nonlinear parabolic equations (to appear). | MR

[Br1] H. Brézis, 1972, Problèmes unilatéraux, J. Math. Pures Appl., 51, pp. 1-64. | MR | Zbl

[Br2] H. Brézis, 1983, Analyse fonctionnelle, Dunod, Paris. | MR | Zbl

[C] J. R. Cannon, 1984 The One Dimensional Heat Equation, Addison-Weseley Publ. Comp., Menlo Park. | MR | Zbl

[DZ] G. Da Prato, J. P. Zolésio, 1988, An optimal control problem for a parabolic equation in noncylindrical domains, Systems & Control Letters, 11, pp 73-77. | MR | Zbl

[GLS] Gripenberg, S. Londen, and Staffans, 1990, Volterra Integral and Functional Equations, Cambridge University Press. | MR | Zbl

[HN] K. H. Hoffmann, M. Niezgodka, 1990, Control of evolutionary free boundary problems, in Fret Boundary Problems Theory and Applications, pp. 439-450, K. H. Hoffmann and J. Sprekels, eds., Pitman Research Notes in Mathematics 186, Longman, London. | MR

[HS] K. H. Hoffmann, J. Sprekels, 1982, Real time control of the free boundary in a two phase Stefan problem, Numerical Functional Anal. Optimiz, 5, pp. 47-76. | MR | Zbl

[KMP] K. Kunisch, K. Murphy, and G. Peichl, Estimation of the conductivity in the one-phase Stefan problem : Basic results, to appear in Bolletino Unione Mat. Italiana. | MR | Zbl

[La] P. K. Lamm, Future-sequential regularization methods for ill-posed Volterra equations, to appear in J. Math. Anal. and Appl. | MR | Zbl

[Li] J. L. Lions, 1969, Quelques Méthodes de Résolutions de Problèmes aux Limites Nonlinéaires, Dunod, Paris. | Zbl

[PW] H. Proter, H. Weinberger, 1983, The Maximum Principle, Springer-Verlag, Berlin.