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MATHEMATICA!. MODELLING AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 29, n° 6, 1995, p. 629 à 655)

FINITE ELEMENT APPROXIMATIONS OF LANDAU-GINZBURG'S EQUATION
MODEL FOR STRUCTURAL PHASE TRANSITIONS IN SHAPE MEMORY

ALLOYS (*)

by K.-H. HOFFMANN 0) and JUN ZOU (2)

Communieated by G. STRANG

Abstract. — This paper deals with finite element approximations of the Landau-Ginzburg
model for structural phase transitions in shape memory alloys. The non-linear evolutionary
system of partial differential équations is discretized in time by finite différences and in space by
very simple finite éléments, that is, the linear element for the absolute température and the
Hermite cubic element for the displacement. Thus both the displacement and the strain are
obtained directly. Error estimâtes for the fully discrete scheme are derived.

Résumé. —Dans cet article on présente des approximations par éléments finis d'un modèle
de Ginzburg-Landau pour les transitions de phases dans des alliages à mémoire de forme. Le
système non linéaire est discritisé en temps par une méthode de différences finies et en espace
par des éléments finis très simples, linéaires pour la température, cubiques de type Hermite pour
le déplacement. On obtient des estimations d'erreur pour le schéma discrêtisê.

1. INTRODUCTION

Recently much attention has been paid to mathematical models for ther-
momechanical phase transitions in shape memory alloys. For the survey of
physical backgrounds and theoretical investigations on these models, we refer
to two detailed introductory papers [2, 7]. There have been in the literature a
great deal of theoretical results on the well-posedness and the optimal controls
of mathematical models for the description of the phenomenology of shape
memory alloys, but only a few références which deal with their numerical
simulations. [1, 12] have made many numerical experiments, but no theoreti-
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630 K.-H. HOFFMANN, JUN ZOU

cal analyses to their numerical schemes were given there. In [6] a discrete
approximation to the Landau-Ginzburg model was constructed by the Galerkin
method, and convergence was proved. The finite dimensional subspace for the
approximation to the displacement was constructed in [6] by using the
eigenvalue functions of the 4th order ordinary differential équation, and the
functions of the resulting discrete subspace were then infinitely smooth.
Therefore the techniques for getting a priori estimâtes in continuous cases
could be repeated for their discrete system, and finally the compactness
arguments led to the convergence of the discrete problem. Recently, the
authors were notified by Prof. Sprekels that the error estimate was obtained in
a recent work [5] for the discrete scheme proposed in [6],

The more effective and practical discretizations for these problems are
obviously finite element methods. In our present paper, we approach the
Landau-Ginzburg model by a very simple finite element, thus very practical
for the applications. With our simple element the discrete subspace possesses
only a very low smoothness. Not so many a priori estimâtes as for the original
continuous problems, or as in [5,6], could be obtained in the present case.
Nevertheless, these a priori estimâtes are enough for us to attain error
estimâtes for the fully discrete finite element approximation. To our knowledge
it is the first time to obtain error estimâtes for the finite element approxima-
tions to such highly nonlinear shape memory alloy models.

The paper is arranged as follows. In Section 2 the Landau-Ginzburg
mathematical model is introduced and their finite element problem is con-
structed in Section 3. Section 4 is devoted to a priori estimâtes, the uniqueness
and existence of solutions of the discrete System. In Section 5 we dérive error
estimâtes for the finite element approximation.

2. LANDAU-GINZBURG MODEL

In this paper we consider the following Landau-Ginzburg model arising
from modelling the dynamics of solid-state phase transitions in shape memory
alloy s :

putt -(ax(0-0x)ux-a2ul + a3 u5
x)x + yuxxxx =ƒ(* , f) , in QT , (2.1a)

co °t ~ Kexx ~ a i Oux uxt = 0O> O . i n QT (2Ab)

with the boundary conditions

K(0, t) = uxx(Q, t) = Uxx{ 1, t) = u( 1, t) = 0 , (22a)

0X(O, f ) = 0 x ( l , f ) = O (2.26)
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APPROXIMATIONS OF LANDAU-GINZBURGS 631

and the initial conditions

u(x% 0) = uo(x) , M,(JC, 0) = ux(x) , (2.3a)

0(JC,O) = 0O(JC) (2.36)

where Q, = -Q x (0, t), 0 ^ t ^ Ty Q = (0, 1 ). Throughout the paper,
we let

p(0,e) = y/E(0, e, ex) = ax(0 - ^ ) £ - a2 e
3 + a3 e

5

with e = ux denoting the shear strain. The unknown functions u and 0 in
(2.1a, b) represent the displacement and the absolute température, and y/
dénotes Helmholtz free energy which is assumed in the Landau-Ginzburg form

y/ = y(0, c, ex) = ^ o(0) + £°(0, e) + \t\ (2.4)

with £° and y/Q expressed by (the solution 0 is a positive function, as we see
later)

, y/o(0) - co(0 - Ölog 0/02) , (2.5a)

) = - 5 a t ö, £2 - ^ a2 £
4 + ^ a3 e

6 (2.5b)= i a, ö ,

which are capable of reproducing the developments observed in real materials
under thermomechanical activations. Equations (2.1a, b) represent the balance
laws of linear momentum and energy, respectively. The material is assumed as
a wire of unit length, simply supported at both ends, and thermally isolated at
both ends (only for simplicity. For more gênerai nonhomogeneous conditions,
e.g., as in [6], our results hold with little modification). In our context, the
quantities appearing in (2.1a, b) have the physical meanings : /?-mass density,
/-volumetric load, co-specific heat (per volume), 7C-heat conductivity, tf-rate of
distributed energy sources. The coefficients K, av a2, a3, 0V 02 and y are
assumed to be positive constants. For the physical background and a dérivation
of équations (2.1a, &), we refer to [8] and the références therein.

Under the appropriate regularity assumptions on the given functions/, gf,
M0, ux and ö0, e.g., the following ones (2.8a, b, c, d), the System (2.1)-(2.3) has
a unique classical solution (w, 0) with 0 being always positive, see [8]. For
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632 K.-H. HOFFMANN, JUN ZOU

our later finite element error estimâtes, we make the following assumptions on
the regularities of the solution (M, 0), which are a little stronger than the
regularity results stated in Theorem2.1 in [8] and those derived from their
proofs :

we H\0, r;//4(*2))n//2(0, T • H2(Q)) n H3(OyT \ L2(Q)) , (2.1a)

WG L~(0, T',H5(Q))9 utte L~(0, T\ Hl(Q)) , (2Jb)

0 G L~(0, 7; H3(Q)) n Hl(0, T;H2(Q)) (2.7c)

and on the given data

ƒ a e H\OiT;Hl(Q))Jn,gxx^L\O,T;L\Q)), (2.8a)

(2.8c)

0oeH3(Q), 00(x)>0or\JÏ and g(x,t) & 0 on QT- (2-8^)

Furthermore, we can assume, by Sobolev extension theory [9], that the
solution u defined on Q x [0, T~\ can be extended for some constant
T0 ^ T such that u is well-defined also on Q x [— T0, T] and

uia e L~( - T0, r ; L\ Q ) ) , ultxx and «m G L2( - r0, T ; L2( fl ) ) . (2.9)

Since these extensions can be constructed such that they depend only on the
initial conditions (2.3a), we can even get extensions with higher regularity on
(—r0, T] provided the initial conditions are smoother.

Throughout the paper we utilise | . | and || . || m to dénote the seminorm
and the norm of the usual Sobolev space Wm'p(Q). But we write
| - L = I - L . „ . H - l l m = l l - I L , p and Hm(Q) = Wm'"{Q), if p = 2;
|| . || = || . || 0 if m = 0. Constants C are independent of mesh size h and
time step T.

3. A FULLY DISCRETE APPROACH TO THE SYSTEM (2.1)-(2.3)

In this section we propose a fully discrete finite element scheme to Landau-
Ginzburg model (2.1)-(2.3). To avoid the non-essential technicalities, we take
0l = 0, and all constants c0, /c, a p a2, av y in (2.1)-(2.5) are normalized to
unity, i.e. our équations can be rewritten as

u„ -(0ux-ul + u5
x)x + uxxxx = f(x, t), in QT,

ö, - O**-0ux uxl = g(x,t), in QT.
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APPROXIMATIONS OF LANDAU-GINZBURGS 633

We shall use the différence scheme to discretize the system in time. Let
T = T/M be time step size with M a positive integer. For any
n = 1, 2, ..., M, we dénote f = nt and In = (tn~\ tn]. For a given séquence
{ } f 2 we define

For a continuous mapping u: [0,T] —> L2(Q), we define un = u{ . , n r ) ,
0 ^ n =£ M.

In space we utilize the linear finite element approximation to the absolute
température ö, and the Hermite finite element to the displacement u. Suppose
for h —> 0 we have been given a family of quasiuniform partitions = ?fh of
Û = [ 0 f l ] :

Let Al
h = ( xh

t_ 1, x*], ^ = max ^ with /if. = xf - JC*_ j . By quasiuniform
we mean that there is a constant a such that hlhi ^ cr, for any
1 ^ / ^ TV.

Define the finite element spaces

<9A = {9 G C{Q) ; Q\jh is linear, for all A\ e 3"A} ,

V̂  = {t; G C*( ̂ 2 ) ; u|^( is a polynomial of degree ^ 4, for ail Al
h G 2Tft}

Hère we may choose as the degrees of freedom the nodal value, the first-order
derivative at each node and the midpoint value. In the subséquent sections, we
always use un and 0y to dénote the standard interpolations of any function
u e C\Q) and 0 e C{Q) or u : [0, T] -> CX(Q) and 0 : [0, T] -> C(Q)
related to subspaces V^ and @h, respectively, see [10, 11].

For simplicity, we let

i , e 2 ) = ' ' ; , ' 2 . (3.1)

vol. 29, n° 6, 1995



634 K.-H. HOFFMANN, JUN ZOU

It is easy to check that

p(Ote) = ye(O,efex) = E?3
a(d9e)9 (3.2a)

P(09 ev e2) = \ 0(ex + e2) + Q(EV e2) (3.2è)

with

Q(EVE2) = -\(E] + e\) (EX+ E2) +±(e] + E\) (E] + E,E2 + e?2) . (3.3)

Now we give a fully discrete finite element scheme for the System (2.1)-
(2.3) :
(FEP): For n = 1, 2, ...,M, find (uh, ff'h) e V°h x Qh such that

f 2 "
jjruhvdx

+ f « ) „ vxxdx=\ f'vdx, Vi)€V;, (3.4a)

f aTfrhr,dx+\ (0'h)xr,xdx-

f / y i - l n - 1 / 2 . B T f - r t j w ^ si A 1 \
— \ Vu £h oEhr\dx— q rjdx, Vwe 6>, , (3.4c>)

i tl n t / i ' I

with

1 f * « 1 f
J f" V ƒ"

and de£°(ö£~\ £^) denoting the finite différence

(3.6)

4. A PRIORI ESTIMATES, EXISTENCE AND UNIQUENESS OF THE SOLUTIONS TO THE
DISCRETE SYSTEM (3.4a, b, c)

Except for the uniqueness of solutions which was not given in [6], our way
of getting a priori estimâtes and the existence of solutions to (3.4a, b, c) in this
section is almost the same as the one used in [6].
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APPROXIMATIONS OF LANDAU-GINZBURGS 635

THEOREM 4.1 : Under the assumptions (2.8a, b, c, d)y there exist positive
constants Cx and C2 independent of h and r such that if r and h fulfill the
condition

ft'/6<T^CIf (4.1)

then for each n, 1 =S n ^ M, the discrete problem (FEP) has a unique
solution ( u"h, &l ) which satisfies the a priori estimâtes

ff'h(x) 3= O, 0 =£ x =S 1 , O =S n =S M , (4.2a)

Xl|2+l«:i2+Kll.,~)^C2, (4.26)

M M

O ^'n'k'M " " n " •". ' A ' 1 - " n /i H O, oo ' 2 *
n = 1 n = 1

As in [6] we prove Theorem 4.1 by induction. By the définition of ö°,
0°h ̂  0 on £?. Suppose that solutions {( wJJ, 6^)}^ = 0 of the problem (FEP) have
been constructed for some & e {0, 1,...,M}, and Ö (̂̂ c) ^ 0 on Q,
0 ^ n ^ k. We prove the required results by the following three steps, from
which Theorem 4.1 follows immediately :

a) There exists a constant C2 > 0, independent of h, x and k such that the
estimâtes (4.2a, b, c) hold with M replaced by k ;

b) For h /6 < T> (3.4a, &, c) has a unique solution (uk
h
+ ,(^h

+ ) for
n = k+1 ;

c) There exists a constant Cx > 0, independent of h, r, and k such that
ö£+1 ^ 0 on Ö, provided that z ^ Cv

To prove a), we first notice that by the standard interpolation theory of flnite
element method we have

R « ° l l = l l (« 1 ) n l l « C , | « 2 | 2 = | ( « o ) n l 2 « C , (4.3)

then with (4.3), part a) can be proved in the same way as in proving
Lemma 3.2 and Lemma 3,3 in [6].

Now we prove b). Rewrite (3.4a) with n = k+ 1 as

{F(uk
f;

l),v)= ifvdx, Vue V̂  (4.4)

vol. 29, n° 6, 1995



636 K.-H. HOFFMANN, JUN ZOU

where F(uk
h
+l) e (Vh) = dual space of vh. The dual pairing of V°h and

(V°h)* is { . , . ) . Then F : V°h -> ( V^)* is defined by

w - 2 uk,+ u l

^'l-?*'*'-) dx (4.5)

with £ = ux. We check by using 6^ ^ 0 and the proved result a) and Young1 s
inequality that

«ll SA xr\

(4.6)

Therefore

(F(u)-F(uk
h),u-uk

h)
as II u - u. —» + oo , Vw G V.

i.e. F is coercive with respect to uk
h. Moreover, F is continuous on V°h. Thus

by Standard theory, see [4], we know that (4.4) has a solution uk
h
+l. And more,

from (4.4) and (4.6) we have

a
(4.7)

a
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To prove uniqueness, it suffices to show the uniqueness of the solution
uk

h
+} to (3.4a), since obviously the solution é^+ i of équation (3.4b) exists

uniquely. Let uk
h
+l and w*+1 be the solutions of (3.4a) and

u = uk
h
+ï -uk

h
+\ From (3.4a) it follows that u e V°h satisfles

T~
 2 uv dx + uxx vxx dx = - £ &h ux vx dx +

+ [ (QCek
l
+\4)-Q(ek

h
+\ek

i))vxdxi Vu e V°h (4.8)

with QC^j , ^ ) deflned by (3.3). Taking u = w in (4.8) and noticing
(f, ^ 0, we obtain that

- 2. u\\^ f (Q(?h
+\sk

h)- :eî+I.^))«x&. (4.9)

But

and from (4.2Z?, c) and (4.7) one gets

u k + 1 i il 2 *^ s~*

Thus it follows from (4.9) and above that

By Nirenberg's inequality [8] we get

\U\\ *k C( ||Mx MI f « C( ||M|

so if T is small enough, we have u — 0, i.e.} (3.4a) has a unique solution
k 1k+ 1

uh .
vol. 29, n° 6, 1995



638 K.-H. HOFFMANN, JUN ZOU

Now the same as in [6], we can show that there is a positive constant
independent of h9 z and k such that if h216 < r ^ Cv then

1
5= 0 on Q. That complètes the proof of Theorem4.1.

5. ERROR ESTIMATES FOR THE FULLY DISCRETE SCHEME (3.4a, b, c)

In this section we dérive error estimâtes for the fully discrete finite element
approximation (3.4a, b, c) to (2.1)-(2.3). Our main results are stated in the
following theorem :

THEOREM 5.1 : Suppose that («£,#£) is the solution of (3.4a, b, c) and
(u,0) the solution of (2A)-(2.3). Then there is a constant independent of h
and z such that

max (||0"-0;||2+ \u-un
h\ + K - 3 X I | 2 ) +

M

Let Ch = ffl
h ~ ö? and pl = un

h-u
n
n, 1 ̂  n ^ M. Here

)J and Mri
==(M( - ' r t T ) )n- Before proving Theorem 5.1 we

flrst introducé the a priori bound of the solution (u, 0) of (2.1) :

o || u g r ( | | W | | 5 + | | « , | | 3 + | | M J | 1 + H Ö I I 3 + \ \ 0 t \ \ x ) ^ C . ( 5 . 1 )

This constant dépends only on the given data (2.8a, b, c, d), see [8]. And also
we cite some standard finite element interpolation results, see [10, 11] :

\\w~wn\\ ^ Ch2\w\2i \/weH2(Q), (52a)

\w- wn\x + h\w-wu\2 ^ Chm~l\w\m,\/we Hm(Q) , m = 3, 4, 5 , (5.2b)

\\w~wj +h\w-wl\l ** Ch2\w\2, Vwe H2(Q) . (5.2c)

Furthermore, we give here a few a priori bounds and inequalities needed later.
For n = 1, 2,..., M, there exists a constant C such that

II6? II ! * £ C , K I I 2 * S C , I K ^ U ^ C , (5.3a)

li (5.36)

^ o , 2 | £ | , . (5.3c)
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(5.3a, b, c) follow from (5.2a, b, c), (4.2&, c), Nirenberg's inequality [8] and
the following inequality :

w ( x ) | ^ |W(JC)| dx+\ \wx(x)\ dx, Vw e Hl{Q) .
JQ JQ

To start the proof of Theorem 5.1, we first multiply (2.1a) by function
dT pn

h G V°h, integrate it then over Q x In by parts, and by means of conditions
(2.2a), (3.5) and the définition of p(0, e), we dérive that

f (dxu
n
t-d

2
ru

n)vdx+ \ d2
xu

nvdx + ± \ f p(0,ux)vxdxdt
ia JQ X JI"JQ

Q

with v = pn
h- pn

h~
X above. Subtracting this équation from (3.4a) and using

(3.6), we obtain

f afövdx* f (pn
h)xxvxtdx= f {d2y-d]un

n)vdx+ f (dzu
n

t-&
2

Tu")vdx
ÔQ JQ JQ JQ

~ L ( "n }" V™ dx]dx dt

+ T

* • = 1

Note that in (5.4) u 1 = U ( . , - T ) , uu
l = (M( . , - r ) ) n if n = 1, so

we have utilized the extension of u onto [ - T , 0 ] .

By the f act that ab ^ a212 - b2 /2, for any real a and b, we get from (5.4)

^M^HC^I^lHl^!^ § , (5.5)

voh 29, n° 6, 1995



640 K.-H. HOFFMANN, JUN ZOU

Similarly, multiplying (2.1b) by function xCh e ®h, integrating it then over
Q x In and subtracting the résultant équation from (3Ab) we have

f d&qdx+l (Ox*lxdx=\ (d^-atfïq
JQ JQ Jn

uxl rjdx j g
(5.6)

with t] = x£,nh above. Again by the fact that ab > a212- b212, for any real
a and b, we get

3

\ \\Cht-\ \\Ch-
]\\2 + r\Ch\

2 ̂ ^(II)r (5.7)
/ 1

Thus, for error estimâtes, it suffices to estimate the terms (/),- and (II) i in (5.5)
and (5.7) which will be done in a number of following lemmas.

LEMMA 5.2 : We have

' 4 P }un\\dt, (5.8)
f" 2

C/»4 P
v f

±T2 f' luldxdt, (5.9)

|(/)3I ^ TllôXIl' + C r ^ + iT 2 f f « L ,, (5.10)

Proof : Recall the previous notation v = pn
h - pn

h~ \ then by (5.2a) and the
Standard arguments it follows that

f \u,\\dt,
Jt"-2

M2 AN Modélisation mathématique et Analyse numérique
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and

n/2

To evaluate (7)3 , we rewrite

= f f (»
= : * + * .

By Green*s formula and boundary conditions (2.2a),

f \u-un\4dt

while by (5.2a) and the inverse inequality of FE theory we get

so (5.10) follows from above.

LEMMA 5.3 : We have

+ ̂ '

vol. 29, n° 6, 1995



642 K.-H. HOFFMANN, JUN ZOU

Proof: We rewrite (7) 4 as

C>4 =

= [ f («X
J ƒ'V Q

2̂
1 = 1

(5.12)

We remark that by deE°( . , . ) we dénote the différence quotient with respect
to the second variable, like (3.6), e.g.,

From (2.5a) we know
Green* s formula we have

e - e
n - 1

e) - E°€((7
l~\ e) = e(0 - OJ" ! ), thus by

f f

f
(5.13)

M2 AN Modélisation mathématique et Analyse numérique
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Combining the triangle inequality with (5.2c) gives

ir

Analogously, we get

tfdxdt
rJn

f J

Therefore from (5.13)-(5.15) and Young's inequality, we dérive

n M 2

z iria

To treat 7?4, by (2.5a) and Taylor's formula one can express

1^) (e" - e)da

643

(5.14)

CrlU. (5-15)

(5.16)

5.17)

with £n = e + a(e" - e), then by Green's formula we obtain

(5.18)

vol. 29, n° 6, 1995
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Thus from (4.10&) and the a priori estimâtes in Theorem4.1 it follows that

f f |a
JI"JQ

AW f \u-un\ + 2\ffl
h-'\x)dt. (5.19)

By using l ^ " 1 ^ ̂  l ^ " 1 ] ! 4 " ^ a n ^ Young's inequality, one deduces

l*îl ... «.

(5-2°)

Similar to (5.17), to evaluate the term R \ in (5.12), we first use Taylor's
expansion to get (with ( en = en ~] + a( en - en ~l ) )

1 - CL) {0l
h'

 1 - 3 7n + 5
o

the same way as in the dérivation of (5.18)-(5.20) shows

j J ^ l z;
2. (5.21)

M2 AN Modélisation mathématique et Analyse numérique
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Now we come to the key estimate R4 for ( / ) 4 . Again from the définition (2.5a)
of E°(07 Ê) we can write

= : r, + r2
(5.22)

with ö( •. • ) defined by (3.3b). Substituting (5.22) into R\ and using Green's
formula, we obtain

(5.23)

Note that

(5.24)

Using (5.26), (5.3a) and the fact \u" - u"h\l

[)Un-en.)dx

\u" - u"h\2 one cornes to

îll ICI

î - 1 !? )* 2 . (5.25)

vol. 29, n° 6, 1995
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The same as deriving (5.25), we get

JQ

Ï - ] I

Furthermore, from (5.3), (4.2c), (5.2b) and the inverse inequality
l^"1!, ^ Ch~x\\ffl

h~x\\ it follows that

Q

Czh\\dj>nJ \SU

(5.27)

The same dérivation as to (5.27) gives

/y i — 1 / n — 1 n

JQ

— 1

. (5.28)

Thus the sum of (5.25)-(5.28) implies

^ f MX
1 - 1 I

• (5-29)
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To analyse (r2)x, by the définition of Q( . , . ) and Taylor's formula one gets
(in = £« + a(e«-£«))

then the a priori estimâtes for un
h and u lead to

| |(r2)2 | | ^ C{\un - un
h\2+ \un - un

h\,

^C{\un-un
n\2+\pn

h\),

so (5.26) and Schwarz's inequality imply

\pn
h{ r2 ) x dx

The same arguments show that

C\un - un
hh\2

T d pli rs ) dx

Therefore it follows from (5.29), (5.31) and (5.32) that

(5.30)

±r\pn
h-

 l\2
2+Czh2+ Cx || drp

n
h \\

2 . (532)

+ T A 2 + ( T | Ö J - I | Ï ) A 2 ) . (5.33)

Now Lemma 5.3 is a conséquence of (5.16), (5.20), (5.21) and (5.33).
In the remainder of the section we turn to the estimation of all three terms

(/Op (//)2 and (/ /)3 in (5.6) and (5.7).
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LEMMA 5.4 : We have

f f ÖL
JI"JG

2 f f O^ (535)

Proof: It follows immediately by (5.2c) and Young's inequality that

;\\ h f f ^ )
J

4[ f Oldxdt,

and

K")2|

that complètes the proof Lemma 5.4.
The key estimate for the right-hand side of (5.7) is the term (H)y To

estimate (//)3, we first rewrite it as follows

= - f f ?
= - ( f e

- f \
J I" J Q

-rf

h P2 + y?3 + # , . (5.36)

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



APPROXIMATIONS OF LANDAU-GINZBURGS 649

Now we estimate all four terms ƒ?,, one by one.

LEMMA 5.5 : We have

Cx\\Ch\\
2 + hUn

h~
X\\2 + CxhA + \x2 f \ éfdxdt. (5.37)

(5.38)

(5.39)

+ Th4+(T\(rh-'iï)h*). (5.40)

Proof : It is easy to see from (5.36) and (5.1) that

so (5.37) follows from (5.14) and Schwarz's inequality.
To analyse fiv we rewrite it into two parts

The first part of fi2 is easily treated by (4.2c) and the fact that
I H - 1 / 2 I ^ - i n - 1 / 21

|« « 1 =S | « M |

n - -
Iu — ul 2\2dt

F"JQ ' i/r

) rv Q
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The estimate of the second part of /?2 follows from (5.3) and Taylor's
expansion :

if f elffl
h-leH-kel-Bre

n)dxdt\

we have proved (5.38).
Now we consider /?3. (4.2c) and (5.3) yield

^ ï ^ ^ l ^ l ' + ar| |^| |2+T| / , ' /: |^ + T|/,r1|2 + ̂ 2 ) . (5.41)

Finally we estimate /?4 in (5.36). By Green's formula we rewrite y?4 as

a

{%• (5.42)
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By (5.2a) and (4.2b) we dérive

\fi\\ ^ x || dT( ii" -u"n)\\ U?HPh-
1 e"-hj

From (5.3c) and (4.2c) one gets

and

where for the term ^ 2 | ^ ~ 1 | 1 | ^ | Ï / 2 we have used Young's inequality twice.
And analogously, we deduce

\P\\^^AQ\ + ̂ AQ-'\\^C(rUl\\^^ + (z\ffl^\\)h'). (5.43)
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As above we obtain

X(II^" 1 HO,-K:I .+ WO\o,~\(rh~1\>+ l l^ lk- l l^ ' l la - ) . (5-44)

From (5.3c) one comes to

where for the term x || dxp
n
h || |Ch\ x \Ch~

X \ \ ' 2 we have used Young's inequality
twice and (5.3). Furthermore

and

1
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where we have utilized (5.3) and

From (5.44) and above we obtain

C ^ X ^ r 2 . (5.45)

Now (5.40) follows from (5.43) and (5.45).
So far we have finished all the estimations of (/),., z= 1,2,3,4 and

(ƒƒ),., i= 1,2,3 in (5.5) and (5.7). We can now prove Theorem5.1.

The pro of of Theorem 5.1 : Summation from n = 1 to k =S M in (5.5) and
using Lemma 5.2, Lemma 5.3, (4.2c) implies

n= 1

n = 1

with

Here in (5.46) we have used

where the last inequality is just a conséquence of Taylor's formula and FE
interpolation results for the extension of u on ( - T, 0) , see (2.9).
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By taking the sum of (5.7) from n = 1 to k ^ M and using Lemma 5.4
and Lemma 5,5 we obtain

\ II^

k

+ Ch2 + C(T 2 + h4) B2(u, 0) + ̂  X TK*|2 (5-47)
rt = 1

with

Now noticing the assumptions (2.1a, b, c) and (2.9), from the sum of (5.46)
and (5.47) and the discrete Gronwall's inequality it foliows that

M

« (||aXII2+Kl2+ll«H2) + S
n = 1

Combining this with the triangle inequality and (5.2a, b, c) and the expression

implies the conclusions of Theorem 5.1.
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