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ESTIMATION OF THE CONDUCTIVITY
IN THE ONE-PHASE STEFAN PROBLEM :

NUMERICAL RESULTS (*)

by K. KUNISCH (*), K. A. MURPHY (2) and G. PEICHL (3)

Communicated by R. GLOWINSKI

Abstract. — In this paper we develop an itérative algorithm to estimate the time dependent
diffusion coefficient from boundary data in a one-phase Stefan problem. It uses a boundary
intégral représentation of the solution of a f ree boundary value problem. Convergence of this
algorithm is established and numerical results are included.

Résumé. —Dans ce travail, nous développons une méthode itérative pour Vestimation d'un
coefficient dépendant du temps dans un problème Stefan d'une phase utilisant des dates aux
frontières. Cette méthode utilise la représentation aux frontières de la solution d'un problème de
frontière libre. La convergence de Valgorithme est prouvée et des exemples numériques sont
inclus.

1. INTRODUCTION

We continue our study of the estimation of an unknown time-dependent
conductivity coefficient in the Stefan problem :

ut = a(t) uxx 0 < t =s T , 0 < x < s (t),

a(t)ux(0, t) =

w(x, 0 ) = <f>(x) O^x^b ,

s(t) = -a(t)ux(s(t),i) 0 < f ^ 7 \

$(0) = b. { ' }
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614 K. KUNISCH, K. A. MURPHY, G. PEICHL

Here we concentrate on the numerical solution of the inverse problem,
building on the basic results presented in [8]. We assume that the initial value
b ;> 0 and the functions g and <f> are known. We shall suppose throughout that
the functions g and <f> satisfy :

g G C [0, T] , with g (r) «s 0, t e [0, T] ,

<f> e Wl>°°(p9 b), with <f>(b) = 0, <£ (* )> 0, xe [0, è ) ,

<£ ' continuous at x = b ,

and that the coefficient a belongs to the set :

sé = {öeC[0J]|0<^a(f)^/i,fe [0,

where ^ and JJL are given. The forward problem consists of determining, for
a e jaf, s ( a )e C [0, T] and w(fl)e C(Üa) where /2a = {(x, O|0<=x<
5(r ; ̂ z), 0 -< r < r } , such that the pair s, w is a (classical) solution of (1.1),
(1.2). In the inverse, or parameter estimation problem, we suppose that we
have observed the system modeled by the above équations to obtain (perhaps
only partial) information about s and/or w, and wish to détermine the
coefficient a.

We treat the parameter estimation problem in the setting of output-least-
squares. Let Z be a normed linear space (the observation space), and let
&a : C [ 0 J ] x C (&a) •-» ̂  be the observation operator. We assume that we
have an observation z EL Z, corresponding to the solution of the Stefan
problem evaluated at the « true » coefficient a *. The least-squares functional
is given by

J(a)= \0>a{$(a\ u(a))-z\2
zJ

with (s(a), u(a)) the solution of the Stefan problem corresponding to the
parameter a. The détermination of the unknown coefficient is based on the
nonlinear least-squares problem :

(ID) min/(a) over a e sé

where Jé is a compact (in C [0, T]) subset of $#'. We discuss several
examples of the cost functional / below.

As the problem (ID) is infinité dimensional, we are interested in replacing
it by a finite dimensional discretized version. Then we may iterate on the
unknown parameter, at each step solving the discretized version of the Stefan
problem.

In [8] we laid the theoretical groundwork. In order that this paper be self-
contained, we summarize the relevant results in section 2, referring the
interested reader to [8] for details and proofs.
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CONDUCTIVITY IN THE ONE PHASE STEFAN PROBLEM 615

In section 3 we present an algorithm for the numerical solution of (ID),
based on the discretization of an equivalent intégral représentation of
équation (1.1) combined with an itération on the boundary function. We
analyze this algorithm rigorously in section 4. Finally, in section 5, we
discuss the implementation and in section 6 we present numerical examples
and an alternative method to solve (ID).

2. SUMMARY OF THEORETICAL RESULTS

Here we summarize some facts concerning (1.1), (1.2) that were estab-
lished in [8], supplementing them with a few results necessary for the
analysis of the numerical approximations to be discussed below. We note
that while the one dimensional Stefan problem has been well studied (see,
e.g., [5] and [6]), earlier work has not focused on the conductivity
parameter, and in fact this coefficient is often assumed to be 1 ; we have
established a priori estimâtes for the solution of (1.1) and (1.2) uniformly in
a.

2.1. Equivalent intégral formulation

We express the solution of System (1.1) in terms of intégral équations.
First we study équations (1.1) independently of équations (1.2). For this
purpose, we define for given K > 0 the set

S?TiK= {se Wu">(0, T)\0^s(t)^K for SL.B.. te [0, 7 ] , s(0) = b} ;

we shall fix K below. For each (a, s) e $$ x £f T K we can solve (1.1) to
obtain u. We emphasize that we are now considering u as a solution of (1.1),
for fixed but arbitrary s e 6^TK, so that the pair («, s) is in genera! not a
solution of the Stefan problem. For the reformulation of the problem in terms
of intégral équations, we define the fundamental solution F :

6 X P ( "- « (r))

a (t) :=
Jo

with a (t) := a(r) dr and the Green and Neumann functions (depending
J

on a) :

G(x9t;g9 T ) = T ( x , t;€, T ) - F ( - X , f ; f f r ) ,

NQc,t;€, r) = r(x, f ; f, r ) + r ( - j c , f ; f, r ) .

It was shown in [8] that for each (a, s) G sé x Sf TK, solving équation
(1.1) for u is equivalent to solving the following intégral équation for v
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616 K. KUNISCH, K. A. MURPHY, G. PEICHL

-v(t ;a9 s) =

= f
Jo

G(s(t\ t ;f,

+ f Nx(s(t\ f ; J ( T ) , r)a(r)v(r;a,s)dT ,
Jo

(2.1)

and then evaluating M according to :

f
o

u ( x , t \ a 9 s ) = f
Jo

C, r ; ^
Jo

I N(X, t ; 5 ( T ) ,
Jo

T)fl(T)»(T)dT. (2.2)

Let us write équation (2.1) in the form

(3 - j f (a, j)) Ü(U, 5) =

where for each (a, s) e <$/ x &* TK, we set

, r ;f, O ) 0 ' ( f ) d f

- 2

and JT (a, J ) : C [0, 7 ] -^ C [0, 7] is defined by

K(t, T ; a, s)x(r)dr ,
Jo

(2.3)

[Jf(a,s)x] (0 =
0 , r = 0 ,

with

, r ; a , 5) .= ), r ) .

PROPOSITION 2.1 : {Jtr(a9s)\(a9s)ejfx£fTtK} is collectively com-
pact in C[0, T].

Proof : It suffices to show that
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CONDUCTIVITY IN THE ONE PHASE STEFAN PROBLEM 617

is equicontinuous. Without loss of generality, choose 0 < t < t =s T and
consider

Jo

, s)f](t)- [JT(a,s)fUt)\ *s

I [K(t, r;a,s)- K(t, r ; a, s)] ƒ ( r ) | dr +

+ f' \K(t, r;a,s)f(r)\ dr

, t;s(r), T) -Nx(s(t),f,s(r), r)\dr

where we used (2.15) in [8]. We split the first term

\Nx{s(t), t ;S(T), r)-Nx(s(t), t;s(r), r)\ dr «

— f'(a (t) - a S(T)) e

For each r e [O, 71], define gT(f ), for ? e [O, T] by

= ƒ + ƒ ƒ .

r ^ r

T ,

and observe that there is a constant CL, independent of r, f,
(a, s)e st x S?TtK such that

* C, r e [O, T] .

vol. 27, n° 5, 1993



618 K. KUNISCH, K. A. MURPHY, G. PEICHL

Hence we infer

77 1
-t).

Term / is dealt with as follows

( < * ( ? ) - a ( r ) ) - 3 / 2 ~ ( a ( O - a ( r ) ) " 3/2 | \s(t ) - s ( r ) \ dr +f'
Jo

P
Jo

4(o(0-a(T»

= 71 + 7 2 + 7 3 .

For any (a, s) e se x £f'T K one obtains the bound

7 2 ^ 2 v~zaKÇt - t)m .

The mean value theorem implies

(7 „ \~ 1/2
« ( O - < * O ) a ( F ) -

Using an argument similar to the one used in the discussion of // one
concludes the existence of a constant C3 independent of (a, s) e sé x £f r K

such that

Applying (3.18) in [8] to 71 one eventually arrives at

71
,9/2

_ 0 P ( ? - O 2 + ( r - T ) 2

Jo (f - r)1/2(7 - r)3/2((r - r)3/2 + (F - r )3/2)

,9/2

0 ( f _
dr

- r)lu((t - Çt -
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CONDUCTIVITY IN THE ONE PHASE STEFAN PROBLEM 619

As to the last intégral, we argue

' (t-T)dr

0 (f - r)m(t - r)m((t - r)3/2 + (t - rf2)^

(?-O"1/2 f -
Jo (t~r)m(t - r )

1/2

+ [ ' l ' - * ) " 1 dr

Jo \ J-T I (t-r)m+ (t -r)m

= / l l + / 1 2 .

Hölder's Inequality gives (/? « 2)

2 \ ^ / 2

Introducing the new variable of intégration £ = in 712 results in
1 - T

f 1/2/1 £\-1/2 r 1( 1 V 1/2
)o 1 + iiU

Combine the above estimâtes to obtain

7 1 « C 4 ( F - r ) 1 "

for some constant C 4 > 0 independent of (a, 5) e s$ x <S^r A-. •

lt was shown in [8] that lim \&(a,s)\ U)~ 4>'(b) for any

(a, s ) e jrf x 6^ TK, so that we may continuously extend & (a, s) to t = 0,
and hereafter consider ^ (a , s) e ^ [ 0 , 71] for each (a, s) e jtf x Sf TK. We
shall later make use of the following result.

PROPOSITION 2.2 : Let Jé be a compact subset of sé. Then the set

l&(a, s)\ (a, s) e Jé x S^TtK\ has compact closure in C [0, T],

Proof : We consider &(a, s) = @x(a, s) + &2(
ai s) i° t w o parts, with the

following définitions :

and

vol. 27, n° 5, 1993



620 K, KUNISCH, K. A. MURPHY, G. PEICHL

Let us begin with ^2- From estimâtes in [8] (see proofs of Lemma 3.3,
3.7) it follows that for any alt a2 e sé and sl9 s2 e SfT>K we have

where C is independent of al and s{. As sé x SfTK is a compact subset of
C [0, T] x C [0, T], this gives the desired resuit for &2.

Next we argue that the set [&l(a, s ) | ( f l , s ) 6 j ? x ^T,K] i s uniformly
bounded and equicontinuous, so that the Ascoli Theorem will give the result
for <SV The uniform boundedness was shown in [8]. As to the equicontinuity,
we fix tu and show that \&i(a, 5)(^) - <&i(a, s)(t2)\ <: e whenever
\t} - t2\ < 8, independently of a and s. In [8] (following (2.14)) it was
shown that lim &x(a9 s)(t) = <f>'(b) with this limit uniform in

(a, s) e sé x Sf TK, so that we defined <$x(a, s)(ö) = <f>'(h) ; this estab-
lishes the desired estimate for the case tx = 0. Now consider tx >> 0. Let us
write &x(a, s)-.= *&n(a9 s) + ^n(a, s), with the décomposition defined in
the obvious way.

We have that

•. exp

+

(ƒ + II + ƒƒƒ).

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis
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With a change of variables (in both terms), we obtain

621

dV

e~v~dv

r^Wi)-1'2

J iU(h)-b)a{txT
m

dV

e~v~dt)

Next we see that

(s(t2)-ï)
2

a{t2)

vmt]nt2 4

We estimate III as

III ^ b I 1

'«('i) Va('2)

a ( r 2 ) - a

+

As a conséquence of the mean value theorem one infers the existence of a
constant C > 0 independent of (<a, 5) G «a/ x 5^ r ^ such that

\9l2(a9 sKtO- 9i2(a9 s)(t2)\ ^ C \tx - t2\

holds. Combining the above estimâtes it is clear that equicontinuity holds for
any tx => 0, and this complètes the proof of the proposition. •

We state the following result from [8].

THEOREM 2.3 : For each (a, s) e srf x Sf T^ K équation (2.3) has a unique
solution v(a, s) G C [0, T] satisfying

| » ( Ö , J ) | 0 0 = | ( 3 - j r ( a , s))-1 9(a, s)\œ

« | ( 3 - X (a, s))~l

where K and k are independent of a and s.

vol. 27, n° 5, 1993



622 K. KUNISCH, K. A. MURPHY, G. PEICHL

2.2. The Stefan Problem and ID

Now we discuss the itération on the boundary function s. Let K > 0 be a
given constant, fix a e se\ and define T?(a, . ) : S?Tt K — WU " (0, T) by :

Ï(T)V(T ;a, s)dr , (2.4)

where u represents the solution of équation (2.3). Fir s e W l o o (0 , T), let

| s | = | s (0) | 4- ess sup ( | i ( r ) | e~pt),
f e [0, T]

and note that for any (3 > 0, this is equivalent to the W1>00(0, T) norm. Let
W^îCO(0, r ) represent the space WliCO (0, T) equipped with this weighted
topology. The following results can be found in [8] (Lemma 3.2, Corol-
lary 3.6, and a modification of Corollary 3.8).

THEOREM 2.4 : With the définitions above,

(i) There exists K >• 0 (depending only on v, /JL, \4>t\aa* IG I ^ b> T) such
that TS(<2, . ) leaves S^TK invariant ;

(ii) |TS(ÛÎ, S) — ¥>(a, s)\ ^ y {($ )\s — s\ for s, s e 6^T K, a e s$, with

y(/3) independent of a, y (f3 ) > 0, and y(/3)^>0 as j8 -> oo ;

where L is independent of s e £fTjK.

Since ^T,K ^S closed in the | . L topology (for any ̂ 0 > 0), this theorem
indicates that for appropriately chosen K and p (from now on, we fix K and p
at these values), 15 (a, . ) is a contraction mapping in the /3-weighted
topology on the set 5^ r K. Moreover, this contraction map is Lipschitz
continuous in the parameter a, uniformly with respect to s G $f T K. We
therefore obtain the following resuit :

COROLLARY 2.5 : For each a e se, T>(a, . ) has a unique fixed point
s (a) in ^r,K- The fixed point dépends Lipschitz continuously on a s se.
Moreover, let v(a) = v(a, s(a)) be the corresponding solution of (2.1), and
ïï(a) = M (a, s (a)) be the corresponding solution of équation (2.2) ; then the
pair (s (a), ü(a)) is the solution of the Stefan problem corresponding to the
parameter a.

Given Theorem 2.4 and Corollary 2.5, we express the solution of the
Stefan problem for the given parameter a e sé as follows ; first solve the
coupled équations below for s (a), v(a, s (a)) :

(3-JT(a, s(a)))v(a, s (a)) = 9 (a, s (a)),

s (a) = 15 (a, s (a)) with 15 (a, . ) as defined in (2.4) .
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CONDUCTIVITY IN THE ONE PHASE STEFAN PROBLEM 623

Then obtain ü{a) as
ü(a) = u{a, ${a)) with u as defined in (2.2) . (2.6)

Remark : From now on the following notation will be used : for any
(a, s) e $$ x STK, v(a, s) will designate the solution of (2.1), and
u(a, s) will designate the solution of (2.2) obtained with (a, s) and this
v (a, s) ; in gênerai, this is not a Stefan solution. If for a given a, it is the case
that s is such that (2.5) also obtains, we designate this Stefan s (a) by
5 (a), and the corresponding Stefan u by û(a) = «(a, s (a)).

The preceeding discussion suggests the following algorithm for the
solution of the forward problem, with fixed a e s/. Begin with s0 E SfT K

(s0 == b is a good initial guess in the absence of further information). Iterate
on the équation :

(for each k we solve (2.3) to obtain v (a, sk)). In the limit as k -> oo, we obtain
5 (a\ and the corresponding M (a). The discretized Stefan équation is based
on this itération map, combined with a discretized version of the intégral
équations (2.3).

From Lemma 2.6 and Lemma 3.9 of [8], and using the fact that the /3-norm
is stronger than the L°°-norm, we obtain the following continuity resuit :

THEOREM 2.6 : Given any su s2 e SfTtK, let

Ù » {(x, OlOssjc^max (MO, s2{t)% 0 ̂  t ^ T} .

For any ai9 a2 e j / , let u(ai9 s,) represent the solution of (2.2),
f^, 5() r/ze solution of (2.1), /or z* = 1, 2. T/zere ejc/5tó p > 0 independent of
( a , 5 ) E «s/ x <S^T,K such that

\u(al9 sx)-u(a2, s2)\LtO(n)s* p (\ar -a2\^ + \ s 1 - s 2 \ 0 ) .

Finally, we obtain Lipschitz continuity of the Stefan solution on the
parameter. The proof of the first statement below follows from Theorem 2.4,
and the définition of s (a ). The second statement is proved in [8]
(Theorem 3.5).

COROLLARY 2.7 : Let a, a e sé, and let s(a\ s(a\ and ü(a), ü(a)
represent, respectively•, the corresponding Stefan boundaries, and solutions
of the Stefan problem (1.1). Then there exist constants k, k independent of a,
a such that

\s(a)-

\ü(x, t ; a) — ü(x, t ; a)\ ^ k\a — a\

uniformly in (x, t) e { (x, t)|0 ^ x ^ max (s(t ; a), s(t ; 5)), 0 =s t
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624 K. KUNISCH, K. A. MURPHY, G. PEICHL

We now return to the parameter identification problem. In terms of our
intégral formulation, the parameter estimation problem can be equivalently
stated as :

(ID) Min7(a) = | &a(s (a\ u(a)) - z |~ ,
a e s&

where (s (a\ ü{a)) is the solution of (2.5), (2.6).

From our continuity results and the compactness of si 9 we immediately
obtain.

THEOREM 2.8 : Assume 0>a is continuous in a. Then Problem (ID) has a
solution.

We shall consider two spécifie cost functionals. In all cases, we take the
compact constraint set to be sé = si n [a e WUco(0, r ) | |a (^ *s Ka}.

As a first example, suppose that we have measurements, denoted
{z,-}, of the température u at the fixed end, x = 0, at a set of positive times
{tij, with ï — 1, 2, ..., m. For this case, Z = IRm, and @a (independent of a,
and thus trivially continuous) is the opération of selecting the w-component
of the Stefan solution pair, and evaluating it at the set of points
(x, t) - (0, tt\ for i = 1, 2, ..., m. We define

m

J\(a)= £ \zi — w(0 , tt ; üt) |
i = i

where ï ï ( . , . ; a) represents the solution to the system of équations (2.5),
(2.6), corresponding to the parameter a. We emphasize that while only
ü appears in the cost functional / l , in fact a solution of the Stefan problem
for a given a e sé consists of the pair of functions ü and s~. The
corresponding estimation problem is

(ID1) Min 71 (a) .
a e $2

For the second example, suppose the measurements {z,} correspond to
observations of the boundary location s at the times {?,}. For this case,
Z = Wn and â?a (again independent of d) represents the opération of selecting
the s-component of the Stefan solution pair, and evaluating it at the set of
points t = ti9 i = 1, 2, ..., m. Here we define

m

7 2 ( f l ) = £ \z, -s(t, ;a)\2

i = 1

where s ( . ; a ) represents the solution of équation (2.5) corresponding to the
parameter a ; notice that for this cost functional there is no need to evaluate
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CONDUCTIVITY IN THE ONE PHASE STEFAN PROBLEM 625

équation (2.6). Our estimation problem is

(ID2) Min 72 (a) .

3. NUMERICAL SOLUTION OF THE INVERSE PROBLEM

To approximate the forward problem, we must discretize équation (2.3). It
is this discretization of the intégral équation on which we would like to focus
hère, and thus we shall assume that the intégrations necessary for the
évaluation of <§ {t ; a, s\ [7S(a, s)] (t), and (2.2), can be performed exactly.
We replace the intégral operator JT (a, s) by an approximation (involving a
quadrature rule), to obtain J>fh(a, s) : C [0, T] -> C [0, T] for each
(<a, s) e sé x £f T K. The resulting approximation for équation (2.3) will then
be written as

( 3 - J T A ( a , s ) ) v h { a , s ) = 9 ( a , s ) . (3.1)

We shall discuss a spécifie choice for X*h in section 5. Hère we consider any
discretization technique which satisfies the following hypothesis :

(H) (i) lim \jrh(a, s) f - J f (a, s) ƒ 1^ = 0 for each ƒ e C [0, T], uni-

formly in (a, s) e s$ x £fT^K, <s$ a compact subset of s&,

(ii) & := {jfTh(a, S ) | O < / Z ^ / Ï 0 , ( 0 , 5 ) 6 ^ x 5 ^ 7 - ^ } is collectively
compact for some h0 > 0,

(iii) \je~h{al9 s{)- M~h(a2, s2)\ ^ C (\ax -a2\aa + \s{ - ^ l ^ ) , where C

is independent of (au s}), (a2, s2) e se x £f T K.

T H E O R E M 3.1 : Suppose that jf h is defined so that (H) holds and let

se be a compact subset of se\ Then there exists ho>O such that for any

0<h<hQ.

(i) Equation (3.1) admits a unique solution vh(a, s) for each
(a, s) e sé x SfTtK.

(ii) There exists a constant v such that \vh(a, s)\ ^v, uniformly in h,

(a, s) G sé x S?TtK.
(iii) lim \vh(a, s) — v(a, s)\ = 0 holds uniformly in

(a, s) e sé x S?TtK.

Proof : Using Lemma 5.1 of [1], we have that the convergence of
statement (i) of (H) is uniform in ƒ in compact subsets of C [0, T]. We can
then use Theorem 5.1 and Corollary 5.2 of [1] to obtain

\(Jfh(a9 s)- Jf(a9 s))Jfh(a, s)\ ^ 0 as h -> 0,

uniformly in (a, s) G sé x £f T K.

vol. 27, n° 5, 1993



626 K. KUNISCH, K. A. MURPHY, G. PEICHL

Since (see Theorem 2.3) we have | (3 — 3f (a, s))~ {| ^ K, for a constant
K which is independent of (a, s) e sé x ^TjK, we can argue that, for
sufficiently small h,

1
) \

for all (a, s) e

Now we use Theorem 7.1 of [1] to conclude that (3 - JTh(a, s)) 1 exists for
all h sufficiently small, and is bounded independently of h, a, s ; this
establishes part (i) ; letting, if represent this bound, we immediately obtain
statement (i) with v = <£klK (with the notation of Theorem 2.3). The same
theorem also ensures that, for any ƒ e C [0, T] :

,s)Ylf- Q-3ér(a,s)Tlf\œ^ \ (3 - Jt (a, s)y 11 x

\jfTh(a,s)f- jr(a,s)f\m +

| ( f l , s)- JtT(a, s))jrh(a, J ) | | ( J - J f ( a , J ) ) - 1 /

1 - | ( 3 - j T ( a , 5 ) ) " 1 ! \(JfTh{a9 s) - Jf (a, s)) Jf h(a7 s)\

This shows that lim | (3 - Jf h(a, $))~{ f - (3 - J f (a, 5))" ! ƒ | = ° u n i "

formly in (a, 5) e j / x «5^r>Jf, for any ƒ e C [0, T].
Now recall that

\vh(a, s)-v(a, s)\œ =

= | (3 - JT A ( a , s))"1 » ( * , * ) - ( 3 - J T ( a , j ) ) - 1 » ^ , 5 ) ^ ,

which, together with Proposition 2.2, establishes (iii). •
We now present a computational algorithm for the parameter estimation

problem. It essentially consists of iterating on the map IS (a, . ), solving (3.1)
for vh(a, s)to use for the évaluation of lo (a, . ). In our theoretical analysis, it
will be important to know that each s we obtain in the itération process
belongs to SfT% K ; while Theorem 2.3 guarantees that Sf T K remains invariant
under TS(a, . ) in case we use v a solution of équation (2.3) in the évaluation
of TS(<2, . ), we have no such guarantee using the approximate intégral
équation. Thus we must change the définition of the update map for s slightly
in the approximation scheme.

Let ƒ e C [0, T] be given. Define p[f ] e C [0, T] by :

[0 if / > 0
Pif] - ƒ if -K^f^O

[-K if f^-K
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and note that p satisfies the following properties :

/>[ƒ]=ƒ if - « " « / « O , ( 3 2 )

|p[/"I]-p[f2]|oo<|/i-/2lao forany ƒ „ f2 e C [0, 7] .

Using that map, we now define an approximation to the fixed point itération
on Î5(a, . ) by :

Fix a e jtf, h and AT. Set s^ = b e 9> T K.

For k = 1, 2, ..., N :
Solve the approximate intégral équation (3.1)

(3-^ A ( f l ,4" 1 ) )Mû.4" 1 ) = » ( ^ ^ " 1 ) ; (3.3)

Update the boundary :

[sk
h(a)](t) = b- \ p{a{r) vh(r ; a, sk

h~
l{a)))dr .

Jo

It is straightforward to check that the set [sk
h{a)) obtained in this way

belongs to £fT K for any h, k, a e <sé'. Notice that our approximation has two
levels ; we choose h corresponding to the grid size for the intégral
approximation (the quadrature in the approximation to Jf) , whereas TV
represents the number of itérations to be performed to approximate the fixed
point of the mapping IS (a, . ). For a given a e s/, we shall write
s%(a\ vh(a, s%(a)) to designate the approximate solution of the forward
Stefan problem, Le., the resuit of iterating on équation (3.3) with the given
parameter a e $#, The corresponding approximation to M, designated by

£(a, s%(a))9 is then obtained by evaluating équation (2.2) using a,

We define approximate cost functionals in terms of this approximation to
the solution of the Stefan problem. To approximate 71, we define

J\N
h{a)= £ |z , . -n î f (O, t,;a, ^ ( a ) ) | 2

i = 1

where u^ is obtained from équation (2.2) with s% (a), vh(a, s%(a)) the resuit
of itération (3.3).

To approximate /2 , we define
m

J2»(a)= £ | z , . - ^ ( f , ; « ) | 2

i = 1

where $N
h(a) is the resuit of itération (3.3).

The approximate parameter estimation problems are then :

Min J\N
h (a)
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or

(ID2£) M i n J2N
h ( a ) .

a e s&

In order to implement either of the above problems, we also need to
discretize the set JU?. The necessary modifications of our analysis below are
straightforward, but technical, and we shall not pursue this.

4. CONVERGENCE OF THE ALGORITHM

We can prove convergence of the algorithm presented in section 3 by
exploiting the fact that each of the cost functionals 71^ and 72^ involve the
solution of an approximate Stefan problem, in which the approximations are
defined in such a way as to be convergent uniformly in the parameters and
the boundary functions. We present these results here.

PROPOSITION 4.1 : Assume that (H) holds. Then J\% and Jl^ are
continuons in a e sé.

Proof : In the second part of the proof we shall verify the continuity of the
mappings

û ^ ^ ( f l ) : C [ O , r]->W^°°(O, T)

and

a -> vh(a9 sN
h(a)) : C [0, T] -> C [0, T] . (4.1)

Once this is shown, continuity of J2% is an immédiate conséquence. As to the
continuity of 71^ one first uses techniques of handling singular kernels
similar to those in [8] to show that (2.2) and (4.1) imply that
a H-> wjf (0, t ; a, s%(a)) is continuous from C [0, T] -+ C [0, T].

Now we turn to the vérification of (4.1). We first prove that the map
(a, s) - vh(a, s):C[0,T] x W£°°(0, T) -» C [0, T] is continuous ; we ar-
gue as in the proof of Theorem 3.1 that

\vh{au sl)~vh(a2,

+ | (3 - JT*(ai, sx)y
l &(a2, s2) - (3 - JTA(a2, s2)T \m

The estimâtes derived in [8] (see proofs of Lemma 3.3 and 3.7) can be used
to obtain

, s 2 ) \ m * z C ( \ a } ~ o 2 | œ + \ s } - s 2 \ 0 ) 9
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