
M2AN - MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

FREDERIC ABERGEL

EDUARDO CASAS
Some optimal control problems of multistate
equations appearing in fluid mechanics
M2AN - Modélisation mathématique et analyse numérique, tome
27, no 2 (1993), p. 223-247
<http://www.numdam.org/item?id=M2AN_1993__27_2_223_0>

© AFCET, 1993, tous droits réservés.

L’accès aux archives de la revue « M2AN - Modélisation mathématique et
analyse numérique » implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1993__27_2_223_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


MATHEMATICALMOOaUHGANOHUMERICALAHALYStS
MtTOJSATl(WMATHÉMATKW€ ET ANALYSE NUf^RJQUt

(Vol 27, n° 2, 1993, p 223 à 247)

SOME OPTIMAL CONTROL PROBLEMS OF MULTISTATE
EQUATIONS APPEARING IN FLUID MECHANICS

by Frédéric ABERGEL 0) and Eduardo CASAS (t)

Commumcated by Roger TEMAM

Abstract — This work deals with two optimal control problems associated to the steady state
Navier Stokes équations The state of the System is the velocity ofthefluid and the controls are
the body forces or the heat flux on the boundary In the second case the Navier-Stokes équations
are coupled with the stationary heat équation The control problems consist in minimizing a cost
functional involving the turbulence Some control constraints can be added to the problem
Existence of an optimal control is proved and some optimahty conditions are derived In both
problems the relation control -• state is multi-valued and therefore the dérivation of the
optimahty conditions is not obvions To overcome this difficulty, we introducé an approximate
family of optimal control problems governed by a well posed linear elhptic system, we obtain
the optimahty conditions for these problems and then we pass to the limit The approach
followed in this study can be used in the numencal resolution of the optimal control problem

Résumé — Nous étudions deux problèmes de contrôle optimal se rapportant aux équations
de Navier-Stokes stationnaires V état du système est le champ de vitesses dans le fluide, et les
contrôles sont, soit les forces volumiques, soit le flux de chaleur au bord , dans le second cas,
les équations de Navier-Stokes sont couplées avec l'équation de convectwn-diffusion pour la
température, dans V approximation de Boussinesq On cherche a minimiser une fonctionnelle
caractérisant l'état de la turbulence à l'intérieur du fluide, éventuellement sous certaines
contractiles pottanî ôur lzz> contrôles Nous prouvons l existence d'un contrôle optimal, et
donnons les conditions d'optimalité qui le caractérisent Dans les deux cas, la relation contrôle-
état est multivaluée , nous surmontons les difficultés que cela entraîne en utilisant une famille de
problèmes approchés, qui suggèrent par la même occasion un algorithme numérique adapté à la
résolution de ces problèmes

Keywords — Optimal control, multistate elhptic Systems, Navier-Stokes équations,
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224 F. ABERGEL, E. CASAS

1. INTRODUCTION

In this paper we study two optimal control problems that consist in
minimizing a cost functional involving the vorticity in the fluid. The controls
are the body forces or the heat flux on the boundary. The state is the velocity
of the fluid and the équations relating the control and state are the Navier-
Stokes équations. If the control is the température then the heat équation
must be added to the previous ones.

This type of problems have been studied by Abergel and Temam ; the
time-dependent two-dimensional case can be studied directly [1], whereas,
for three-dimensional evolutionary flows, they obtain partial results [2],
which comes from the fact that the Navier-Stokes équations are not known to
be well posed. For time-dependent problems, one should also mention recent
results by Choi et al. [4], which pertains rather to the problem of
characterizing a feedback control operator.

When the stationary équations are considered, the nonuniqueness of
solution occurs in dimensions two and three. Hereinafter we will deal with
this situation : stationary équations. In order to simplify the exposition we
will only consider the three-dimensional case, however the results and
methods are the same for the two-dimensional flows. The control of the
stationary Navier-Stokes équations has been investigated by Gunzburger
et al. [6], [7]. They derived the optimality conditions for these problems by
using a Iheorem of loffe and Tikhomorov [8] and assuming a property, called
property C, on the feasible control set. We will follow a different approach
which allows us to deduce some optimality conditions of Fritz John type for
any convex feasible control set and dérive these conditions in a qualified
form when the property C is assumed. Our approach provides a numerical
method to deal with these multistate équations and solve the control
problems.

In [2], the authors use a method similar to ours, in order to deal with the
optimal control of the high frequencies for the stationary Navier-Stokes
équations.

In the next section we formulate a distributed control problem that
corresponds to the control by the body forces. We prove the existence of a
solution for this problem and dérive some optimality conditions satisfied by
the optimal controls. To obtain these conditions we introducé a family of
control problems that approximate the initial problem and that are associated
with linear and well-posed state équations. We deduce the optimality
conditions for these problems and then we pass to the limit and dérive the
desired conditions for our control problem. In Section 3 this scheme of work
is repeated for a boundary control problem, the control being the température.
For a précise account of the methods and results of the optimal control
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CONTROL PROBLEMS IN FLUID MECHANICS 225

problems governed by partial differential équations, the reader is referred to
Lions [9].

Before finishing this section let us introducé some notation. The fluid is
supposed to occupy a physical domain fl c R3. We assume that H is
bounded and its boundary /"is Lipschitz, n(x) denoting the outward unit
normal vector to F at the point x ; see Necas [11]. L2(f2) is the space of
square integrable functions and Hl (H ) is the Sobolev space formed by the
real-valued functions which, together with all their partial distributional
derivatives of first order, belong to L2(H). H\(H) is the subspace of
Hl (12 ) constituted by the functions of null trace and H~1(H) is its dual. We
set

Y = {y e (Hl(Ü)f : div y = 0} and Yo = {y e (//J(/2))3 : div y = 0} .

It is weli known that Y and Yo are separable Hubert spaces ; see Temam [1].
Finally $ r will dénote a fixed element of (Hm(F)f, Hm(F) being the trace
space of H1 (II ), such that

<jïr.n = O onf . (1.1)

In Appendix we will prove that for every /JL > 0 we can find an element
$ e Y such that the trace of <j> on F is 4> r and

t [ y>
ij-i Jn

V; *j F 0 . (1.2)

2. A DISTRIBUTED CONTROL PROBLEM

Let us consider a stationary viscous incompressible flow in O ; the
équations of motion are

I - v Ay + 0 . V ) y + VTT = ƒ + Bu in Q ,

div y = 0 in /2, y = <f>r on F ,

where * > 0, ƒ e (H'\ü)f, B e ££(U, (H~\n)f\ u E U, U being a

Hubert space. ;y is the velocity, ?r the pressure, ƒ the body forces and u is the
control that can act over all domain II or only over a part of H or even only in
a given direction of the space. All these possibilities can be treated by
choosing a suitable space U and the corresponding linear mapping B.

It is well known that (2.1) has at least one solution
(y, TT) E (Hl(f2))3 x L2(I2); see for example Lions [10] or Temam [13].
However there is not, in gênerai, a unique solution.
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226 F. ABERGEL, E. CASAS

Now we define the functional / : (H1 (H)f x U -+R by

with N ~zO and

denoting the vorticity of the flow. The physically relevant term in J is of
course

(*
| V x y 12 dx ,

which provides an estimate of the level of turbulence within the flow.
Given a nonempty convex closed subset K of U, we formulate the optimal

control problem as follows :

[Minimize J(y, u)
l(y, M)G (Hl(O)f x ^ a n d (y9 u) satisfies (2.1) for some TT e L2(D).

The first thing to study is the existence of a solution of (PI).

THEOREM 2 : Assumed that N > 0 or K is bounded in U, then (PI) has at
least one solution.

Proof : Let {(yk, w^)}00^ c= (Hl(O))3 x K be a minimizing séquence.

From the définition of J and the assumption of the theorem it follows that
{uk}™_ is a bounded séquence in U. Now using (2.1) we deduce the

estimate

where C2 dépends on <f>r.
Thus we can take a subsequence, denoted in the same way, and an element

G?o, «o) e (H\n)f x £/ such that (?„ uk) - (Jo, «o) i n ( ^ ( ^ ) ) 3 x f/
weakly. Using the compactness of the inclusion /ƒ1 (i7 ) c L6 (f2 ) it is easy to
pass to the limit in the state équation and verify that (y, u0) satisfies (2.1) for
some pressure TT0. Since K is convex and closed, we deduce that
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CONTROL PROBLEMS IN FLUID MECHANICS 227

M0 E K. Finally, from the convexity and continuity of J it follows the lower
semicontinuity of / in the weak topology, which allows us to conclude that

J(y0, M0) ^ lim inf J(yk, uk) = inf (PI ) ,

and thus (y0, uQ) is a solution of (PI). •
We now state the optimality system for Problem (PI).

THEOREM 2.2 : If (y0, w0) e (Hl (ü ))3 x U is a solution of (PI), then there
exista number a 5*0 andsome élémentsp0 e (H1 (O))3 and TTO, Ao e L2(I2)
verifying

«+NI („W-0, (2.2)

VTT0 = ƒ + Buoin O

div J o = 0 /ft Z2 , y0 = <f>r on F ,

j - * A p 0 - C y o - V ) P o + (VJo) r ^o + V A 0 = a V x ( V x y 0 ) Ï/I /2

[div p0 = 0 in f2 , p0 = 0 on F ,

(5*p o + aA^M0, M - M Q ^ & O VueK . (2.5)

Before proving this theorem let us remark that sometimes it is possible to
get (2.3)-(2.5) with a = 1. Following Gunzburger et al. [7] we say that the
control set K has property C at (y0, w0) if f° r a n v nonzero solution
Ö?, 7T)e (Hl{Ü)f xL2(f2) of the system

f- * Ap - (y0 . V)p + (VJofp + VA = 0 in O
[div p ^ 0 i n / 2 , p = 0 o n r ,

we can find u e K such that

( B * p , M - M 0 ) < 0 . (2.7)

Convention will have it that property C is to hold vacuously if there are no
nonzero solutions of (2.6).

COROLLARY 2.3 : If K has property C at (y0, uQ), then there exist
p0 e {Hx{ft)f and TT0, AO E L2(/2) verifying (2.3)-(2.5) with a = 1.

Proof : It is enough to remark that (2.6) and (2.7) implies that
a ^ 0 in (2.3)-(2.5). Then we can replace p0 by p^la and so deduce the
desired result. •

vol. 27, n° 2, 1993



228 F. ABERGEL, E. CASAS

Remark 1 : It is obvious that if U = K = (L2(/2))3 and B = inclusion
operator from (L2(/2))3 into (H~l(n))3, then K has property C at
6>0> «o)-

The rest of this section is devoted to the proof of the optimality conditions
exhibited in Theorem 2.2.

2.1. The problems (P1J

In order to prove Theorem 2.2 we are going to introducé a family of
problems (Ple), whose solutions converge towards a solution (y0, uQ), then
we will dérive the optimality conditions for these problems and finally we
will pass to the limit in these optimality conditions.

First let us introducé some notations. We will dénote by

a: (

and

b: (Hx(n)f x {Hl{O)f x (Hx(n)f

the bilinear and trilinear forms defined by

a (y

and

b(y

9 5) - f] I Vyj.Vzj

3 f f - - -
, z, w) = £ yt dx,zj wjdx = \ (y . V ) z . w dx .

ij = 1 Jn J n

Concerning the trilinear form b, the following properties can be easily
proved for every ( J , z , w ) e F x (Hl(^)f x (H1 (H))3 :

1) 6<j, z, w) — - b(y, w, z) if y . n = 0 on F.

2) b(y, z, 5) = 0 if y . H = 0 on F.

3)

On the other hand it is well known that y e (H{(f2 ))3 is a solution of the
problem

Find y £ Y such that

y = 4>r on Tand (2.8)

va{y, z) + b(y, y,z)= (f + Bu, z) V? e Yö
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CONTROL PROBLEMS IN FLUID MECHANICS 229

if and only if there exists an element (unique up to the addition of a constant)
TT G L2(/2) such that (y, ir) satisfies (2.1) ; see Temam [13]. Problem (2.8)
is the variational formulation of (2.1).

Let us fix a solution (y0, u0) of (PI). For every f > 0 we define the

functional J£ : (w G Y : w = <$>r o n f } x U -• R by

9 u) = J(y(w, u\ w) + -3- £ \ |Vv,(w, u)-VWj
z sj = i Ja

+ | I \yj-yoj\2<
j « i J O,

where y(w, u) is the unique solution of the variational problem

FindJ e Fsuch that

<y = 4>r on Tand (2.9)

va(y9 2) + b(w,y,z) - <ƒ + ^M, Z) V? e Fo .

The existence and uniqueness of solution of (2.9) is a direct conséquence of
the Lax-Milgram theorem and the second property of b stated above.

Now we formulate the problem (Ple) in the foliowing way

IMinimize Je(w9 u)

(w, u ) G Y x K and w = 4> r on F .

We prove that each problem (PI £) has at least one solution and that they form
an approximating family for (PI) in a sense that we make précise.

PROPOSITION 2.4 : For every e >- 0 there exists at least one solution
(w£9 uE) of (Pl£). Moreover if we dénote by yE the solution of (2.9)
corresponding to (w€, ue\ then we have

l i m K - U o l l ^ lim ~ f f | Vy£J ~ VwEJ \
2 dx = 0 , (2.10)

w£ - • y0 weakly inY, ( 2 . 1 1 )

y E -*• % weakly inY , (2.12)

lim Je(we9 ue) - J(yQ, u0). (2.13)
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230 F. ABERGEL, E. CASAS

Proof : The existence of a solution can be proved as in Theorem 2.1. Let
us prove the second part of the theorem. Let {(wÊ, w£)} be solutions of

(Pl e ) . Since y(y0, u0) = y0> we have

Je&e* u£)^Je(y0, u0) = ƒ (50, M0) ,

from where it follows

^ * * (2.14)|

and

\Vy£j-Vwej\
2dx^2 eJ(yo,uo)^O when e -* 0 . (2.15)

From hère and the identity yE = wB= </>r o n f w e deduce the convergence

G e — we) -> Ö strongly in (H1 (Ht))3. Thus there exists e0 > 0 such that

Now let us take <f> s Y verifying that <f> = <^r on Tand (1.2). Let us dénote

zOe = y€ — <f> e Yo. Then we get from (2.9) with z = ZOÊ

e, Z0J = (ƒ

so with (2.14)

Taking JUL in (1.2) such that C2 M < 1/2 and using (2.16) we obtain

II ̂  || ^ <^ H S' H H C || ̂  || H C7 /̂  || ̂  ||

then

therefore

l^l*ll^ll(^))3+ll5o^ll(H'(«))^C5- (2-17)

Then we can extract subsequences and éléments (u, y) e K xY satisfying

ue(k) -+ u inU weakly ,

y£{k)^y in (Z/1 (ƒ2))3 weakly and (2.18)

w£{k) - 4 } in (H1 {Ü )f weakly ,
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CONTROL PROBLEMS IN FLUID MECHANICS 231

with e(k)-+ 0. From these convergences and using the Rellich's theorem,
we can pass to the limit in

*ö(ye(Jk),
 ? ) + b($e(k)> J£(Jt> z) = {f + Bue(h> z)

and obtain

va&z) + b(y,%z)= (f + Bw, 5> V5e70. (2.19)

From (2.19) we deduce the existence of an element ir e L2(f2) such that
(y, TT) and « satisfy (2.1), therefore (y, u) is a feasible point for
(PI). On the other hand, since (yQj w0) is a solution of (PI), we have

Z
 7 = 1 Ji3

^ lim i
ifc-00

which implies that y ~ y0 and u = u0. Thus the whole family

{(WE> y£>
 us)} 0 converges to (yQi yOi u0) weakly in (Hl(f2))3 x

(Hl(f2))3 x U. Now (2.13) is deduced in the following way

J(3o* Uo) ̂  l i m inf Je(We* Ue) ̂  n r ï l SUP ̂ e(^e» Me) ̂  ^(5o> Wo) •
e - O e-O

Finally (2.10) is proved

1 3 f 2 1

^ lim sup [/fi(we, ue)-J(ye9 u£)]

^ lim sup Je(we9 ue) - lim inf J(ye9 ue)^Q . D

The following theorem states the optimality conditions for (Pl e) .

PROPOSITION 2.5 : Let us suppose that (w£, u£) is a solution of

( P I J , then there exist two éléments y€eY, with y£= <f>r
 on F> anà

p£ G Yo such that the following system is satisfied

va(y£,~z~) + b(we,y£,z)= (f + Bue) V ? e 7 0 , (2.20)
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232 F. ABERGEL, E. CASAS

va(pe, z) - b(we, pe, z) - b(z, pe, ye) =

VzeY0, (2.21)= [ (Vx5.).(Vxz)dfc+ £ f (y^-yo^Zj
Jn j=iJn

(B*pe +Nu£ + ue-uQju- u£)v^Q Vw e K . (2.22)

Proof : Let y^ e F be the solution of (2.20) and let us take pee Yo

satisfying

e, z) - è(ivE, pe, z) =

(Vx j j . (Vx 5
/2

; i f (yyEJ (2.23)

Now, given w G YO and u e U w& dénote by z^ and zw the éléments of
Yo verifying

z) + b(w£, z-, z) + b(w, y£, z) = 0 Vz G Yo (2.24)

and

va(zu9 z) + &(wfi, 5H, z) = <#w, 2> V? G Yo (2.25)

respectively.
It is easy to verify that Je is of class C1 and we obtain with (2.23)-(2.25) for

every (w, u) e Fo x £/

a/e r
—7 (wE, ue) . w = \ (V x y e ) . (V x z-) A:

i 3 r 3 r
£ j ^ \ J n j = i Jn

— va{pe, z$) — b{wÊ, /?Ê , z - ) — — > ( ^ g ; — vWe,) v w . o x

^ . x , _ _ ^ ^ 1 i , f
= ^Ü!(z^,, p£) + £?(w , z-, p e ) ) (Vv-, — Vw.,) Vw, dx

p i—i I J V 7
j = 1 J ^

_fo - - i v f
o ^ ^ | •/ J J

j = \ J n

(2.26)

M2 AN Modélisation mathématique et Analyse numénque
Mathemaücal Modelling and Numencal Analysis



CONTROL PROBLEMS IN FLUID MECHANICS 233

and

Ws f
—- (w£, ue).u = ( V x y £ ) . ( V x z H )

= va(pE, zu)- b(ws,p£, zu) + N(ue, u)v + (wÊ - M0, U)V

= va(zu9 pjb + (we, zu, pe) + (A^we + u£ - M0, i/)^

= (fl«, p e ) + (/Vwe -f u£ - M0, M)Ü = ( £ * p e + Â wÊ + w£ - M0, w)f/ .

(2.27)

Since (ive, we) is a solution of (Pl e) there holds

dJ£ _ dJe ^
—- (iveI M.) . w = 0 Vw e y0 and — (we, M£) . (M - M6) ̂  0 Vue K .

These relations together with (2.26) and (2.27) allow us to obtain (2.22) and

F 0 . (2.28)
e j Œ i J /2

Finally (2.21) follows from (2.23) and (2.28). •
It is obvious that the optimality conditions (2.20)-(2.22) can be written in

the following way.

CUKOLLAKY 2.Ó : ïf (we9 u£) is a solution of (Fl£), then there exist
éléments yE9 pe G (Hl(D)f and AeJ rr£ e L2(f2) such that

- v Ays + (wE . V)y£ + VTT£ = f + Bue in 12
(2.29)

div yE = O in O , ye=<j>r on F ,

f- i/ A p e - ( w e . V ) p £ + ( V y j r p £ + V A £ = V x ( V x y g ) + y e - j 0 i « / 2

[div pÊ = O in £1 , p£ = O on F ,

(2.30)

( £ * p £ + 7 V X + « Ê - M0, M-M e )y&0 VueK . (2.31)

Remark 2 : The method described in this section provides an efficient
numerical scheme to solve Problem (PI) ; obviously, the functional
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J£ should be modiiied by removmg the last two terms. Proposition 2.4 may
then fail to be true, but, under the assumptions of Theorem 2.1, it is still
possible to prove that {ue} £ > 0 is a bounded séquence in U and every weak
limit point, when s -• 0, is a solution of (PI). In fact these subsequences
converge strongly in U if N ^ 0. Furthermore ye -> yQ weakly in (H1 (12 ))3

and inf (Ple)->inf (PI).

2.2. Proof of Theorem 2.2

We are going to pass to the limit in the System (2.20)-(2.22) with the help
of Proposition 2.4. In this process the essential point is the boundedness of
{pe} £ Q

 m (H1^))3- First let us assume that {pE} is bounded in
(L2(f2 ))3. Choosing in (2.21) z = pe and remembering the properties of the
trilinear form h we get

= \ (Vxye)-(VxPe)dx+ £ f
Jn , = i Jn

therefore

From the inequality (Temam [13, page 296])

and (2.32), we obtain

which proves the boundedness of {pe} in (Hl(f2)f. Then we extract a
subsequence, denoted in the same way, and an elementp0 e (Hl(O)f such
that/5e -• p0 weakly in (H1 (12 ))3. Now it is easy to pass to the limit in (2.21),
using (2.10) and (2.12), and obtain for every z eY0:

va0o,z)-b(yO9pO9z)-b(z9pQiyo)= ( V x j o ) . ( V x z ) à .
Jn
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CONTROL PROBLEMS IN FLUID MECHANICS 235

From here follows the existence of Ao e L2{ft ) verifying (2.4) with a = 1.
Analogously, we can pass to the limit in (2.20) and dérive (2.3). Finally (2.5)
is easily deduced from (2.22).

If {p£} is not bounded in (L2(/2))3 we set

a. = > 0 when s -• oo
\\Pe\\(L\û)f

and again we dénote a£pE by p£. Then (2.21) and (2.22) turn into

va(pe, z) - b(we, p£, z) - b(z, pe, y£) =

a£ £ f (y£;-y0;)2y

and

respectively. Now repeating the previous argument, we dérive (2.3)-(2.5)
with a = 0. It remains to prove (2.2) or equivalently that p0 # 0. From the
weak convergence pE -+p0 in {Hl{O)f and Rellich's theorem, follows the
strong convergence of \pe] top0 in (L2(f2 ))3, which proves, remember-
ing the redéfinition of p£, that

3. A BOUNDARY CONTROL PROBLEM

It is very important to consider the applicability of the method we present
here to more realistic problems. In this section, the issue of controlling the
turbulence caused by heat convection is considered. We study a boundary
control problem, and the state of the System solves the équations of

- v Ay + (J

- K Ar + y . VT = g in 12 , T3 n

div y = 0 in O , y = <j> r on F ,
T = h on r 0 , 3rtr = w on / ^ ,

w h e r e v, K > 0 , fs (H~l (f2 ))\ p e (L°° ( /2 ) ) 3 , g e L6I5(O ),he Hm(r0\

«ÊL2(A), r = r o ur 1 , ronrl = 0 and o-(r0), (r(f1)>o. The
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236 F. ABERGEL, E. CASAS

reader is referred to [1] for an application of Problem (P2) to the case of a
fluid in a dirven cavity. Hère y, TT and ƒ are the same things as in (2.1), r is
the température inside the fluid and u is the heat flux through the boundary.
The control problem is formulated in the following way

jMinimize/(y, u)
\(y,u)e (Hl(f2))3 x K and (y, u) satisfies (3.1) for some (TT, r ) ,

with J : (H1 (12 ))3 x L2(rx) -> R being defined by

N a= 0 and /C c L2(rx) nonempty, convex and closed. In this problem the rôle
of the control is to cool suitably the fluid from a part of the boundary in order
to minimize the turbulence inside the flow.

Let us remark that the hypothesis g e L6/5(f2 ) is made to give a sensé to the
Neumann boundary condition of (3.1). Thanks to this assumption the term
dnr is well defined and the usual variational formulation of this problem is
equivalent to (3.1) ; see Casas and Fernândez [3]. Now we will analyze the
state équation. We will state the existence of a solution of the coupled system
(3.1) without any restriction on the size of the viscosity v and the diffusion
coefficient K ; see for example Gaultier and Lezaun [5]. However we can not
hope, in gênerai, to have uniqueness, therefore we are dealing with a
multistate équation ; see Rabinowitz [12].

THEOREM 3.1 : Assuming the above conditions, the system (3.1) has at
least one solution (y, TT, r)e (Hl(I2)f x L2(O) x H1 (fl). Furthermore
there exist constants Ml, M2 > 0 such that

where M2 dépends on <fi r and h, being zero when these functions are zero.

Proof : Let us set

T=

Together with the bilinear and trilinear forms a and b defined in Section 2.1,
hère we will need a0: Hl(ft) x H1 (H) - R and

b0: (H
l(n)f x Hl(n)*Hl(n)->R
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given by

= f
Jû

and

= [
To prove the existence of a solution of (3.1) it is enough to state that there

exists an element (y, r)e Y x Hl(I2) satisfying

5 = <l> p on F , T = h on Fo

J/2
(%

u£ do- V£ e T . (3.3)

Since YQ is a separable space, there exists a séquence {w^J °° which is a

Hilbertian basis of Fo. Let Ym be the space generated by the functions
{ivl7 ..., >vm} and let <̂  e Y with trace equal to 4>r and verifymg (1.2). For
each fixed integer m 3= 1 we will prove the existence of an approximate
solution <ym9 rm) e Ym x T of (3.3)

k = 1

, wk) +
J ü

u(da V ( Ê T . (3.4)

Let us prove that (3.4) has at least one solution. First we define the
mapping F : Ym -± Ym in such a way that F (w ) is the unique element
zm that, together with rm e Hl{ü) verifying rm = h on rO ï satisfies

da ,

and l s s j t a s m . (3.5)

r
Jr1

(^ .
J 12
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It is an immédiate conséquence of the Lax-Milgram theorem that this
problem has a unique solution (zm, rm) e Ym x H{(f2), remark that we can
find firstly rm and then zm e Ym. Let us take ft s hl(f2) such that
if/ = h on FQ and dntjf = 0 on Fl9 for example ^ could be the solution of

^ = 0 in H
$ = h on FQ

> = 0 onrl .

Let now pe e D(R3) verifying

. . fi if d(x,F)^e/2
PA%)' 10 if d(xtr)*e.

Given S >- 0, redefining ^ as p e i// and taken e small enough, we can suppose
that

( i 3 ) *s«. (3.6)

Taking 0m = rm- if/ e T and setting f = ^m in the second équation of
(3.5), we deducè with the aid of (3.6) and the identities

bo09 0, 0) = 0 V0 eH\n) and V? G 7 such that J . w = 0 on F ,

5 ^ and V j e F

such that J . n = 0 on F ,
that

Ji3 J T

therefore

and

Analogously from the first équation of (3.5) we get

= </. ?«) + [ (fi • 4 ) dx - vao($, zm) - b{$ + w, $, zm).
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