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ANALYSIS AND FINITE ELEMENT APPROXIMATION OF
OPTIMAL CONTROL PROBLEMS

FOR THE STATIONARY NAVIER-STOKES EQUATIONS
WITH DIRICHLET CONTROLS (*)

M. D. GUNZBURGER ('), L. S. Hou (2) and Th. P. SVOBODNY (3)

Communicated by R. TEMAM

Abstract. — Optimal control problems for the stationary Navier-Stokes équations are
examined from analytical and numerical points ofview. The controls considered are of Dirichlet
type, that is, control is effected through the velocity field on (or the mass flux through) the
boundary ; the functionals minimized are either the viscous dissipation or the L4-distance of
candidate flows to some desiredflow. We show that optimal solutions exist and jus t if y the use of
Lagrange multiplier techniques to dérive a System of partial differential équations from which
optimal solutions may be deduced. We study the regularity of solutions of this system. Then,
finite element approximations of solutions of the optimality system are defined and optimal error
estimâtes are derived.

Résumé. — On examine quelques problèmes de contrôle optimal des équations de Navier-
Stokes du point de vue à la fois analytique et numérique. Le contrôle est du type condition de
Dirichlet, c'est-à-dire qu'on choisit le champ de vecteurs vitesses sur la frontière pour minimiser
une fonctionnelle. On considère ici des fonctionnelles de type fonction de dissipation qui
mesurent Veffet de la traînée et une distance dans l'espace L4. On démontre l'existence de
solutions optimales et on utilise la méthode des multiplicateurs de Lagrange pour obtenir des
conditions nécessaires d'optimalité. Après avoir établi quelques résultats concernant la régularité
des solutions optimales, on définit des approximations par des espaces d'éléments finis et on
présente les majorations d'erreur optimales.
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712 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

1. INTRODUCTION

Let u, p and g dénote the velocity, pressure, and control fields,
respectively. Consider the functionals

f ( |grad5g|2+ |g|2)^T (1.1)

and

«,p, g ) = ̂  | | (grad u) + (grad u ) r | 2 dQ,
z Ja

C CC
pdïvudn- f.urfft+^

Ja Ja JTC

( | g r a d , g | 2 + \g\2) dT (1.2)

where grad5 dénotes the surface gradient operator. The first of these
effectively measures the différence between the velocity field u and a
prescribed field u0. The use of the L4(ft)-norm in (1.1) is discussed in
Section 5. Except for the last term, the right hand side of (1.2) is the drag
exerted by the fluid on the bounding surface of ft. For a discussion of the
relation between (1.2) and the drag, see [19]. Note that for incompressible
flows, the term in (1.2) involving p vanishes, so that we could omit it. We
choose to include it because it provides for a slight simplification in some of
the considérations below.

The appearance of the control g in (1.1) and (1.2) is necessary since we
will not impose any a priori constraints on the size of these controls.
'Reasons for our use of flrst dcrivatives of g in (i.ï) and (1.2) are discussed in
Sections 3.2 and 4.1. Problems such that the controls are constrained to
belong to closed, convex, bounded sets of the underlying control spaces,
including cases in which the control may be omitted from the functional to
be minimized, are treated in [14].

Control problems in fluid mechanics are also considered by Abergel and
Temam [1], wherein time dependent problems are treated. Their goal is to
minimize the £2-norm, in space and time, of the vorticity ; the controls
considered are of the distributed type as well as boundary velocities or
températures.

The optimization problems we study are to seek state pairs (u,p) and
controls g such that either one of 3(.,. ) or JT(. , . , . ) is minimized, subject
to the constraints

v div ((grad u) + (grad u)7) + u - grad u + grad/? = f in O , (1.3)

divu = 0 in ft, (1.4)

u = b onTH (1.5)
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CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS 713

and

u = b + g o n f c (1.6)

Le., u,/? and g satisfy the Navier-Stokes équations (1.3), the incompressibili-
ty condition (1.4), and the inhomogeneous boundary conditions (1.5) and
(1.6).

In (1.1)-(1.6), H dénotes a bounded domain in Md, d = 2 or 3 with a
boundary F ; Fw and Tc are portions of F such that Tu U Tc = f and
Fw n Tc = 0 . When finite element approximations are considered, we will
assume that Q is a convex polyhedral domain ; otherwise, we will assume
that either Cl is convex or F is of class C1'1. In (1.3)-(1.6), v dénotes the
(constant) kinematic viscosity, f a given body force and b a given velocity
field defined on the boundary. Thus Fc and Fw dénote the portions of F
where velocity controls are and are not applied, respectively. In (1.3) we
have absorbed the constant density into the pressure and the body force. If
the variables in (1.1)-(1.3) are nondimensionalized, then v is simply the
inverse of the Reynolds number Re. Also note that since the density is a
constant, the boundary conditions (1.5)-( 1.6) also specify the mass flux at
the boundary.

Some constraints are placed on candidate controls. Most notably, we will
require that

f g.nrfT = - b .n^T = O (1.7)
JTC Jr

and, if Fc has a boundary,

g - O on 3FC, (1.8)

where 6FC dénotes the boundary of Fe, the latter viewed as a subset of F. The
incompressibility constraint (1.4) nécessitâtes the imposition of the compati-
bility condition given by the left equality in (1.7); we impose the right
inequality only for the sake of simplifying the exposition. All our results
hold equally well if the right equality in (1.7) is not assumed. The
relation (1.8) is imposed in order to ensure that solutions of our optimization
problems are « sufficiently » regular.

The only type of controls we allow are the velocity (or mass flux) on the
boundary. Such a situation is common, e.g., one often attempts, through
the suction or injection of fluid through orifices on the boundary, to reduce
the viscous drag on a body moving through a fluid. Control may be effected
in other ways, e.g., through the body force or the stress vector on the
boundary. Such cases are treated in [15] and the results of that paper and the
present one may be combined to deal with problems wherein more than one
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714 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

type of control mechanism is employée. The treatment of the various types
of controls is sufficiently different, both analytically and algorithmically, to
warrant separate discussion.

In practical situations it is likely that the boundary condition (1.5) is
imposed on only part of Tu. Thus, for example, one may also want to
consider problems such that on part of Tu one spécifies the stress force, or
more generally, some components of the velocity and complementary
components of the stress. In prineiple, there is no diffïeulty extending the
results of this paper to such cases, provided the necessary existence,
regularity and approximation results for analogous boundary-value prob-
lems for the Navier-Stokes équations are available. For example, for some
combinations of velocity and stress boundary conditions, some care must be
exercised in defining fïnite element approximations ; see [22]. In any case,
the exposition is greatly simplified if we stick to the boundary con-
dition (1.5).

The plan of the paper is as follows. In the remainder of this section we
introducé the notation that will be used throughout the paper. Then, in
section 2, we give a précise statement of the optirnization problem for the
functional (1.2) and prove that an optimal solution exists. In section 3, we
prove the existence of Lagrange multipliers and then use the method of
Lagrange multipliers to dérive an optimality System. In that section we also
study the regularity of solutions of the optimality System. In section 4, we
consider finite element approximations and dérive error estimâtes. In
section 5, we briefly consider the optimization of the functional (1.1).

1.1. Notation

Throughout, C will dénote a positive constant whose meaning and value
changes with context. Also, Hs{2), s e IR, dénotes the standard Sobolev
space of order s with respect to the set S , where S is either the fïow domain
O, or its boundary F, or part of that boundary. Of course, H°(@) =
L2(@). Corresponding Sobolev spaces of vector-valued functions will be
denoted by HP(0), e.g., H^fï) = [Hl(Sl)]d. Dual spaces will be denoted by
( . ) * •

Of particular interest will be the space

j ^ forj\Jfc=

and the subspaces

Hj(fi) = {veH l(O) |v = 0 on T}

M2AN Modélisation mathématique et Analyse numérique
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CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS 715

and

For functions defïned on Fc we will use the subspaces

Hj(rc) if Fc has a boundary

and

where

Hj(rc)=

Hj(Fc) otherwise

JHJ(F C ) O Hj(Fc) if Fc has a boundary

otherwise ,

g.ndT =

and, whenever Fc has a boundary,

Hj(rc)= {geH1(rc)|g = o onarc}.

Norms of functions belonging to ^ J ( f i ) , ^ ( F ) and HS(TC) are denoted by
• L ' l l ' L r an<^ II* L r ' respectively. Of particular interest are the

L (n)-norm ||.||0 and the semi-norm

d

1 u

and norm

l»llï= MÎ+IMI2

deflned for functions belonging to Hx(ü). Note that | v \ \ + || v \\2
 r defines a

norm equivalent to ( || v ||2). Norms for spaces of vector valued functions will
be denoted by the same notation as that used for their scalar counterparts.
For example,

I I N I L - O » ) a n d « v l l i = E l l ü / l l i '

where Vj, j = 1, ..., d, dénote the component s of v. We note that the semi-
norm | . | , , defïned by either

vol. 25, n° 6, 1991



716 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

et

j = i ' ^ Ja

(gradv) r |2Jfl ,

defînes a norm, equivalent to ||. || p for functions belonging to HQ(O). Also,
the semi-norm |. |, r , deflned by

| g | î r - |grad,g| '«fl\

defînes an norm on Ho(Fc) equivalent to ||g|| 2 r = |g |2
 r + || S H o r •

We defme, for (pq) e L \Cl) and (u . v ) G L l(ü,)y

(/>,$) = pqdVt and (u, v ) = u \ dil, (1.9)

Ja Ja

respectively, for (pq ) € L ! ( F ) and ( U - V ) Ê I ^ F ) ,

r r
(P, q)r = pq dT and (u, v )r = u • v dT , (1-10)

Jr Jr
respectively, and, for (/?# ) G L l(Tc) and (u • v ) G L l(Tc),

(P,q)rc= i pqdT and (u, v \ = f u . v dT , (1.11)

respectively. Thus, the inner products in L2(Q) and L2(H) are both denoted
by (., . ), those in £2(F) and L2(F) by (.,. )r, and those in £2(FC) and
L2(FC) by (.,. )Fc. Since, in gênerai, we will use L2-spaces as pivot spaces, the
notation of (L9)-(l.ll) will also be employed to dénote pairings between
Sobolev spaces and their duals.

We will use the two bilinears forms

a(«. v ) = ~ ((grad u) + (grad u) r) :
z Ja

((grad v) +

and
b(y9->Ç) = - | qdivydO, VveH^ft) and

Jn

and the trilinear form

(u, v, w) = u • grad v • w dû, Vu, v, w G H1 (Ü) .
Ja

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS 717

These forms are continuous in the sense that there exist constants
ca, cb and cc => 0 such that

x \\y\\x V u . v e H 1 ^ ) , (1.12)

| 0 V v e H 1 ^ ) and q e L 2(H) (1.13)

and

|c(u,v,w)| ^cc Hu H1 M v H1 ||w ||t Vu .v .weH ' lÛ) . (1.14)

Moreover, we have the coercivity properties

a{v,y)^Ca\\y\\\ Vv e Hj ( f l ) (1.15)

and

SUP ^7 i f^ C * l l4 l lo V«eL0
2(fl), (1.16)

II II

for some constants Ca and Cb > 0.
For details concerning the notation employed and/or for (1.12)-(1.16),

one may consult [2], [11], [12] and [20].

2. THE OPTIMIZATION PROBLEM AND THE EXISTENCE OF OPTIMAL SOLUTIONS

We begin by giving a précise statement of the optimization problem we
consider. Let g e WM(FC) dénote the boundary control and let u G H ^ O )
and p e LQ(CI) dénote the state, i.e., the velocity and pressure fields,
respectively. The state and control variables are constrained to satisfy the
System (1.3)-(1.6), which we recast into the following particular weak form
(see, e.g., [3], [11], [12] or [20]) :

va(u,v) + c(u,u,v ) + * (v 9 j p) - (v,t) r = (f, v) V v e H ^ f t ) , (2.1)

b(u,q)=0 V^eL0
2(H) (2.2)

and

(u, s ) r - (g, s )Tc = (b, s ) r Vs G H" ^ ( D , (2.3)

where f e L2(fl) and b e H l(F) are given fonctions. One may show that, in
a distributional sense,

t = [-pn + v (grad u + (grad u )r) . n ] r ,

i.e.} t is the stress force on the boundary.

vol. 25, n 6, 1991



718 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

Remark : We make some comments on the use, in the weak formulation
(2.1)-(2.3), of the Lagrange multiplier t to enforce the boundary condition
on the velocity. In the flrst place, there are technical reasons for this choice,
the most important one appearing in the pro of of the error estimâtes for
fini te element approximations. We will remark on this point further in
Section 4. From a practical point of view, the introduction of the Lagrange
multiplier t does not introducé any new diffîculties. It was shown in [13], in
the context of fînite element approximations of solutions of the Navier-
Stokes équations, that one may in fact uncouple the computation of the
multiplier t from that of the velocity and pressure fields. Indeed, one may
devise schemes such that one may solve (a discretization) of (2.3) for the
velocity on the boundary, and then solve for u and p from (discretizations
of) (2.1)-(2.3) by using (subspaces of) HQ(O) in (a discretization of) (2.3).
Subsequently, one may compute (an approximation to) t, if one so désires.
(See [13] for details.) Moreover, since t is the stress on the boundary, this
method provides a systematic mechanism for computing this interesting
variable.

The functional (1.2), using the notation introduced in Section 1.1, is given
by

(If Tc has a boundary we may replace the term (v/2) || g || 2 r by (v/2) | g | \ r .)
Optimization problems involving the functional (1.1) will be considered in
Section 5.

The admissïbility set %ad is defined by

*«rf = { (u,/>, g ) e Ul(iï) x L0
2(") x W„(rc) :

ÏÏ (U>P? § ) < °°> a n d t n e r e e x i s t s a t e H ~ l/2(F) (2.5)
such that (2.1)-(2.3) are satisfïed } .

Then, (û, p, g) G °Uad is called an optimal solution if there exists
e > 0 such that

& (û, p, g) ^ Jf (u, P, g ) V (u, p, g ) G %ad satisfying

| | u - û | | 1 + \\p-p\\0+ l | g - g | | l f r e ^ B . (2.6)

We first show that an optimal solution exists and prove a preliminary
regularity resuit.

THEO REM 2.1 : There exists an optimal solution (û, p, g) G °U ad.
Moreover, any optimal solution satisfies û G H3^2(fl) and
p G Hl/2(ft) n L0

2(n) and ifi G H~ 1/2(r) is such that (û, p, g, t) is a solution
of(2A)-(2.3), then t G L 2 ( r ) .

M2AN Modélisation mathématique et Analyse numérique
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CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS 719

Proof: We first claim that %ad is not empty. Let g = 0 and then let
(ü,^, t ) e H\il) x Ll(JSX) x H"1/2(r) be a solution of (2.1)-(2.3) ; note
that with g = 0, (2.1)-(2.3) is equivalent to

va(n,v)+c(u,u,v) + 6 (v , / ) = (f,v) V v e H j ( n ) ,

b(ü,q)=0 VgeL0
2((l),

ü = b on T

and

t = [- pn + v (grad ü + (grad ü) r) . n ] r .

Since f e L2(fl) and be H 1 ^ ) , it is well known ([11] or [20]) that such
(ü, /?, t) exists. Moreover, we have Jf~ (ü, p, 0 ) ===

ll^ ||/||0+ llfUIN^oo. Thus, (0,^0)6*^
Now, let {uik\p{k\g{k)} be a séquence in %ad such that

lim JT(u ( / c \ p w , g(/c)) = inf J f (u , / ? ,g ) .

Then, using (2.4) and (2.5), we have that | g ( / ° | i r , \\p{k)\\Q, and
\u^\ { are uniformly bounded. Then, since the first of these defines a norm
on W„(FC) and since | u 11 + || u || 0 r defmes a norm on H1 (ft), we have that
(u{k\p(k\ g(k)) is uniformly bounded in H^fl) x L0

2(fl) x W„(rc). Also,
for some t(/° e H" 1/2(F),

va(u(fc), v) + c(u(/c), u^5, v ) + b(y,p (fc)) - (v, t ^ ) r

= (f,v) V v e H ^ f t ) , (2.7)

and
(u(fc), s) r - (g(k\ s)Fc - (b, s ) r Vs e H" l / 2(r) . (2.9)

One easily concludes that ||t(/c)||_ is uniformly bounded. We may then
extract subsequences such that

g( f c)^g in W r t(rc)

u^fc^ —>• û i n

pW->p in

t<*>->t in H-^2(r)
u w -• û in L2(f2)

u ( f c ) | r -^n | r in L2(F)

vol. 25, n° 6S 1991



720 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

for some (û, p9 g, t) e H1 (ft) x Z,£(ft) x WB(rc) x H" 1/2(r). The last two
convergence results above follow from the compact imbeddings
H1 (ft) c L2(ft) and H1/2(F) <= L2(T). We may then pass to the limit in (2.7)-
(2.9) to détermine that (û, p9 g, t) satisfies (2.1)-(2.3). Indeed, the only
troublesome term when one passes to the limit is the nonlinearity
c(. , . , . ). Ho wever, note that

c(u (* ),u ( fc)
9v)= | (u ( k ) .n)u ( * ) . v dT

Jr

- | u(fe). grad v . u (fc) dü, Vv e C œ(Ù) .
Ja

Then , since u{k) - • û in L 2 ( f t ) and u(k)\r - • u | r in L 2 ( T ) , we have that

lim c(u(k\ u ( / c ) , v ) = ) ( û . n ) û . v r f T

- û .g radv . û /̂ft = c(û, û,v) Vv e C °°(ft) .

Jn

Then, since C°°(ft) is dense in H^ft), we also have that

lim c{xx{k\ n{k\y) - c(û, Û;v) V v e H ^ f t ) .

Finally, by the weak lower semicontinuity of JT ( . , . , . ), we conclude
that (û, p, g) is an optimal solution, Le.,

Thus we have shown that an optimal solution beionging to <%tad exists.
Next, note that any optimal solution (û, p, g) satisfies, by définition,

vf l (û ,v ) + 6 (v , p)= ( f , v ) V v G H ^ ( f t ) ; (2.10)

6 ( û , ^ ) = 0 V ^ G L O 2 ^ ) (2.11)

a n d

( i + b ° n î> (2.12)
b on rH

 v }

where f = f - û . g r a d û . Due to (1.7), (1.8) and (2.12), we have that
l ^ ) . Moreover, since Û Ê H 1 ^ ) , we have that û G L6(ft) and

M2AN Modélisation mathématique et Analyse numérique
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CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS 721

j e L2(£>) for j = 1,..., d, so that û . grad û G L3/2(H) and therefore

f e L3/2(O). Then, it follows from results of [8] (see also [11] and [20]) that
the solution of the Stokes problem (2.10)-(2.12) is such that û G H3/2(fi),
peHXj%£l) CiL^O,), and

t = [-/n-h v (gradû + (gradû)7) . n ] r G L 2 ( r ) . •

3. THE EXISTENCE OF LAGRANGE MULTIPLIERS AND AN OPTIMALITY SYSTEM

3.1. Existence of Lagrange multiph'ers

We wish to use the method of Lagrange multipliers to turn the
constrained optimization problem (2.5) into an unconstrained one. We first
show that suitable Lagrange multipliers exist.

Let Bx = H1 (H) x L0
2(H) x W t t(rc) x KT1/2(r) and B2 = (H1 (£!))* x

LQ(CL) X H1/2(F) and let the nonlinear mapping M: BX^B2 dénote the
(generalized) constraint équations, i.e., M(u,p, g, t ) = (f, z, b ) for
(u,/*, g, t ) G Bx and (f, z, b ) G B2 if and only if

va(u,v) + c(u,u,v ) + b(y,p)- (v,Or=-ftv) V Y Ê H 1 ^ ) , (3.1)

b(u,q)= (z,q) VqeLfon) (3.2)

and

(u, s ) r - (g, s )Tc = (b, s ) r Vs G H" 1 /2(r) . (3.3)

Thus, the constraints (2. l)-(2.3) can be expressed as
Af(u, p, g, t ) = (f, 0, b ).

Given u G H ^ I l ) , the operator Mf(u) G £?(BX ; B2) may be defined as

follows : M'(u) . (w, r, k, y ) = (f, z, b) for (w, r, k, y ) G BX and

(f, f, b) G B2 if and only if

va(w, v ) + c (w, u, v ) + c(u,w,v ) + è ( v , r ) - (v, y ) r

= (f ,v) V v e H ^ f t ) , (3.4)

b(w9q)=(z,q) VqeL2(n) (3.5)

and

(w,s ) r - (k,s)rc = (b, s) r VsGH~1/2(r) . (3.6)

LEMMA 3.1 : For U G H ^ O ) , the operator M'(u) from Bx into B2 has
closed range.

vol. 25, n° 6, 1991



722 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

Proof \ It is easily seen, for U G H (fl), that M'(u) is a compact
perturbation of the operator Se ££{BX\ B2), where the latter is defmed as
follows : S. (w, r, k, y ) = (f, z, b) for (w, r, k , y ) G BX and (f, z, b) G B2

if and only if

vfl(w, v ) + b (v, r ) - (v, y ) r = (f, v )

b (w, q ) = (f, # ) V ^ e L

and

( w , s ) r - (k,s)re= (b,s) r V S G H

The adjoint operator to S can be shown to be a semi-Fredholm operator,
Le., to have a closed range and a fmite-dimensional kernel. Then it follows
that S itself, and any compact perturbation of S, has closed range ; see [18].

LEMMA 3.2 : For U Ê H ^ O ) , the operator M'(u) front Bx into B2 is onto.

Proof\ Assume that Af'(u) is not onto. Then, the image of Af'(u) is
strictly contained in B2 and, by Lemma 3.1, is closed, so that there exists a
nonzero (|x, <)>, T ) G (B2)* - Hl(CL) x Lj>(ft) x H~ 1/2(r) such that

/(f, z", b), (|JL, <j>, T )) = 0 V (f. z. b) belonging to the range of Af' (u) ,

where ( . , . ) dénotes the duality pairing between B2 and B2* ; this
équation may be rewritten in the form

(f, |x) + (z, 4>) + (b, T) r

= 0 V (f, z, b) belonging to the range of Af' (u ) .

Then, using (3.4)-(3.6), we conclude that there exists a nonzero
(|i, <(>, T ) G (B2)* = Hl(ü) x L0

2(O) x H" 1/2(f) such that

va(vr, fx ) + c(w9 u, |i ) + c(u, w, ̂  ) + b (w, 4> )
^ (3.7)

= 0 VrGL0
2(Ü), (3.8)

^O V y e H - ^ r ) (3.9)

and

(k,T)Fc=:0 VkeW„(rc). (3.10)
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The system (3.7)-(3.10) is a weak form of the boundary value problem

- v div ((grad ji) + (grad \x)T) + JJL . (grad u ) r - u . grad |JL

+ grad <f> = 0 in Q ,

divfx = 0 in Ü, (3.11)

jut = 0 on T (3.12)

and

T = $n - v (grad JJL + (grad |x)r) . n - (u . n ) |x = Cn on T c.

for some constant C. Letting f = T — Cn and <|> = 4> — C, we are easily led
to (3.11)-(3.12) and

- v div ((grad |x) + (grad |x)r) + | i . (grad u)T

- u . grad jji + grad <j> = 0 i n ( l , (3.13)

and

T = (fin — v (grad |x + (grad fJL)r) . n — (u • n ) |x = 0 on T c. (3.14)

Now, let the domains H' and fle be constructed as indicated in Figure 3.1,
Le., as a smooth expansion of Q, such that r n r ' c F c and
fle = n U n' U ( P O T ) , where V dénotes the boundary of H'. Let
ue dénote a fixed extension of u such that u ^ e H ^ I Î J . The boundary
conditions (3.12) and (3.14) then allows us to defïne extensions \ae and
<j>e such that |xe = |x and §e = <jp on Q, |xe •= 0 and <|>e = 0 on O', and such
that the differential équations (3.11) and (3.13) hold (in the appropriate
weak sensés) on He, i.e.,

- v div ((grad |ie) + (grad ji-e)
r) + Ve • (grad uef

- ue . grad \ke + grad $e = ° inftei (3.15)

and

div|xe = 0 inH e . (3.16)

Furthermore, (3.12) and the facts that |xe = |x on fl and \ke = 0 on
Cl' imply that

^ = 0 on Te9 (3.17)

where Te dénotes the boundary of Cte. For a fixed domain Cle, it is possible
for (3.15)-(3.17) to have a nontrivial solution (iie, ^>e), i.e., for 1/v to be an
eigenvalue of the problem (3.15)-(3.17). However, this problem involves a

vol. 25, na 6, 1991



724 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

G

Figure 3.1. — The domains H and ft' • T = ABCDEFA ,

Fc = ABCDE, T„ = EFA, F' = BGDB, T e = ABGDEFA.

compact perturbation of the Stokes operator, and thus its spectrum is
discrete. Then, by appropriately choosing the extended domain fte, we can
guarantee that 1/v is not an eigenvalue of (3.15)-(3.17), and that therefore
these homogeneous, linear équations have only the trivial solution
|xe = 0 and <j>e = 0 in fte. (Note that from (3.15)-(3.17), we first conclude
that §e = constant, but since <j>e = 0 on ft' we can then conclude that this
constant vanishes.) It then follows that |x = 0 and <|> = C in ft. But <)> has
zero mean over ft, so that necessarily C = 0, and therefore § = 0 in O. It
then follows that T = 0 on F. This, of course, provides a contradiction, and
thus the operator M'(u) from Bx into B2 is onto. •

For fixed f e l / ( f l ) and given u e H1 (ft), p e Z,£(ft), and g G H ^ r j , we
have that the operator JT'(u,/?, g ) e =éf (Bx ; IR) may be defmed as
follows : Jf '(u, p, g ) . (w, r, k, y ) = a for (w, r,k9y)eBl and Û G R if and
only if

VÛE(WS u ) + b (w, p ) + b (u, r ) - (f, w )

+ v(grad,g, grad,k)Fc + v(g, k)Fc - a . (3.18)

Let (û, p, g) e H1 (ft) x W„(FC) dénote an optimal solution in the sensé
of (2.8). Then, consider the nonlinear operator N : Bx -> R x B2 defîned by

Then, for (u,p, g ) G H^ft) x L0
2(ft) x H1/2(rc), the operator N'(u9p, g )

from Bx into M x B2 may be defmed as follows : N' (u, />, g ) . (w, r, k, y ) =
(a, f, z, b) for (w, r , k , y ) e 5 1 and (a, f, z, b) G R x ^ 2 if and only if

(u, r ) - (f, w) +v(grad5g, c

fl, (3.19)
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