M2AN. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
- MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

M. D. GUNZBURGER
L.S.Hou

TH. P. SVOBODNY

Analysis and finite element approximation of
optimal control problems for the stationary Navier-
Stokes equations with Dirichlet controls

M?2AN. Mathematical modelling and numerical analysis - Modéli-
sation mathématique et analyse numérique, tome 25, n°6 (1991),
p. 711-748

<http://www.numdam.org/item?id=M2AN_1991__ 25 6_711_0>

© AFCET, 1991, tous droits réservés.

L’acces aux archives de la revue « M2AN. Mathematical modelling and nume-
rical analysis - Modélisation mathématique et analyse numérique » implique
I’accord avec les conditions générales d’utilisation (http://www.numdam.org/
conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=M2AN_1991__25_6_711_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Hot¥49:] MODELISATION MATHEMATIQUE EV ANALYSE NUMERIQUE

(Vol. 25, n" 6, 1991, p. 711 & 748)

!.ll f,’_\r\ MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS

ANALYSIS AND FINITE ELEMENT APPROXIMATION OF
OPTIMAL CONTROL PROBLEMS

FOR THE STATIONARY NAVIER-STOKES EQUATIONS
WITH DIRICHLET CONTROLS (*)

M. D. GUNZBURGER ('), L. S. HouU (?) and Th. P. SVOBODNY (°)

Communicated by R. TEMaM

Abstract. — Optimal control problems for the stationary Navier-Stokes equations are
examined from analytical and numerical points of view. The controls considered are of Dirichlet
type, that is, control is effected through the velocity field on (or the mass flux through) the
boundary ; the functionals minimized are either the viscous dissipation or the L“distance of
candidate flows to some desired flow. We show that optimal solutions exist and justify the use of
Lagrange multiplier techniques to derive a system of partial differential equations from which
optimal solutions may be deduced. We study the regularity of solutions of this system. Then,
finite element approximations of solutions of the optimality system are defined and optimal error
estimates are derived.

Résumé. — On examine quelques problémes de contréle optimal des équations de Navier-
Stokes du point de vue a la fois analytique et numérique. Le contréle est du type condition de
Dirichlet, c’est-a-dire qu’on choisit le champ de vecteurs vitesses sur la frontiére pour minimiser
une fonctionnelle. On considére ici des fonctionnelles de type fonction de dissipation qui
mesurent leffet de la trainée et une distance dans lespace L*. On démontre Iexistence de
solutions optimales et on utilise la méthode des multiplicateurs de Lagrange pour obtenir des
conditions nécessaires d'optimalité. Aprés avoir établi quelques résultats concernant la régularité
des solutions optimales, on définit des approximations par des espaces d’éléments finis et on
présente les majorations d’erreur optimales.
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712 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

1. INTRODUCTION

Let u, p and g denote the velocity, pressure, and control fields,
respectively. Consider the functionals

~

1
J(u,g):ZJ |u—u0|4dQ+£J (|erad,g|* + |g|>) dl  (1.1)
Q T

c

and

~

H@pg) =7 | [(radu)+ (gradu)|? a0
Q

—deivudﬂ— J f-udQ+KJ (lgrad, g]* + |g|>) dC (1.2)
0 Q 2 T,

where grad; denotes the surface gradient operator. The first of these
effectively measures the difference between the velocity field u and a
prescribed field uy,. The use of the L*(Q2)-norm in (1.1) is discussed in
Section 5. Except for the last term, the right hand side of (1.2) is the drag
exerted by the fluid on the bounding surface of Q. For a discussion of the
relation between (1.2) and the drag, see [19]. Note that for incompressible
flows, the term in (1.2) involving p vanishes, so that we could omit it. We
choose to include it because it provides for a slight simplification in some of
the considerations below.

The appearance of the control g in (1.1) and (1.2) is necessary since we
will not impose any a priori constraints on the size of these controls.
‘Reasons for our use of first derivatives of g in (1.1) and (1.2) are discussed in
Sections 3.2 and 4.1. Problems such that the controls are constrained to
belong to closed, convex, bounded sets of the underlying control spaces,
including cases in which the control may be omitted from the functional to
be minimized, are treated in [14].

Control problems in fluid mechanics are also ‘considered by Abergel and
Temam [1], wherein time dependent problems are treated. Their goal is to
minimize the L%*norm, in space and time, of the vorticity ; the controls
considered are of the distributed type as well as boundary velocities or
temperatures.

The optimization problems we study are to seek state pairs (u, p ) and
controls g such that either one of 3(.,.) or £ (., .,. ) is minimized, subject
to the constraints

vdiv ((gradu) + (gradu)”) + u-gradu+gradp =f inQ, (1.3)
divu=0 inQ, 1.4
u=b onl, (1.5)
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CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS 713
and

u=b+g onl . (1.6)

i.e., u, p and g satisfy the Navier-Stokes equations (1.3), the incompressibili-
ty condition (1.4), and the inhomogeneous boundary conditions (1.5) and
(1.6).

In (1.1)-(1.6), Q denotes a bounded domain in RY, d =2 or 3 with a
boundary I'; T, and I, are portions of T' such that T, UT, =T and
I', NI, = & . When finite element approximations are considered, we will
assume that () is a convex polyhedral domain ; otherwise, we will assume
that either Q is convex or I is of class C"!. In (1.3)-(1.6), v denotes the
(constant) kinematic viscosity, f a given body force and b a given velocity
field defined on the boundary. Thus I', and I', denote the portions of T’
where velocity controls are and are not applied, respectively. In (1.3) we
have absorbed the constant density into the pressure and the body force. If
the variables in (1.1)-(1.3) are nondimensionalized, then v is simply the
inverse of the Reynolds number Re. Also note that since the density is a
constant, the boundary conditions (1.5)-(1.6) also specify the mass flux at
the boundary.

Some constraints are placed on candidate controls. Most notably, we will
require that

)

and, if I', has a boundary,

g-ndF:—Jb-ndI‘:O (1.7)
T

c

g=0 on aI,, (1.8)

where 8T, denotes the boundary of I',, the latter viewed as a subset of I'. The
incompressibility constraint (1.4) necessitates the imposition of the compati-
bility condition given by the left equality in (1.7); we impose the right
inequality only for the sake of simplifying the exposition. All our results
hold equally well if the right equality in (1.7) is not assumed. The
relation (1.8) is imposed in order to ensure that solutions of our optimization
problems are « sufficiently » regular.

The only type of controls we allow are the velocity (or mass flux) on the
boundary. Such a situation is common, e.g., one often attempts, through
the suction or injection of fluid through orifices on the boundary, to reduce
the viscous drag on a body moving through a fluid. Control may be effected
in other ways, e.g., through the body force or the stress vector on the
boundary. Such cases are treated in [15] and the results of that paper and the
present one may be combined to deal with problems wherein more than one
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714 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

type of control mechanism is employed. The treatment of the various types
of controls is sufficiently different, both analytically and algorithmically, to
warrant separate discussion.

In practical situations it is likely that the boundary condition (1.5) is
imposed on only part of I',. Thus, for example, one may also want to
consider problems such that on part of I', one specifies the stress force, or
more generally, some components of the velocity and complementary
components of the stress. In principle, there is no difficulty extending the
results of this paper to such cases, provided the necessary existence,
regularity and approximation results for analogous boundary-value prob-
lems for the Navier-Stokes equations are available. For example, for some
combinations of velocity and stress boundary conditions, some care must be
exercised in defining finite element approximations ; see [22]. In any case,
the exposition is greatly simplified if we stick to the boundary con-
dition (1.5).

The plan of the paper is as follows. In the remainder of this section we
introduce the notation that will be used throughout the paper. Then, in
section 2, we give a precise statement of the optimization problem for the
functional (1.2) and prove that an optimal solution exists. In section 3, we
prove the existence of Lagrange multipliers and then use the method of
Lagrange multipliers to derive an optimality system. In that section we also
study the regularity of solutions of the optimality system. In section 4, we
consider finite element approximations and derive error estimates. In
section 5, we briefly consider the optimization of the functional (1.1).

1.1. Notation

Throughout, C will denote a positive constant whose meaning and value
changes with context. Also, H°(2), s € R, denotes the standard Sobolev
space of order s with respect to the set &, where & is either the flow domain
Q, or its boundary T, or part of that boundary. Of course, H(2) =
L*(2). Corresponding Sobolev spaces of vector-valued functions will be
denoted by H'(92), e.g., H(Q) = [H'(£)]% Dual spaces will be denoted by
*.

Of particular interest will be the space

1 _ 2 ay; 2 A
H'(Q) = {v,e L(Q) B—;EL(Q) for j,k=1,..,d
k

and the subspaces
H)(Q) = {veH (Q)|[v=0o0on T}

M?2AN Modélisation mathématique et Analyse numérique
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CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS 715

[om-o]

For functions defined on I', we will use the subspaces

and

Ly(Q) = {q e LA(Q)

1 .
(T',) if I, hasa boundary
w(r) = |9 .
Hy(T',) otherwise

and

H)(T,) N H)(T,) ifT hasa bounda

W, (T) = | (o) ‘ v

H,(T",) otherwise ,

where

H,(T,) = [g e H'(T)

f g-ndl =0,
r{.‘
and, whenever I', has a boundary,

H)(T,) = {ge H'(T,)|g =0 ondl,} .

Norms of functions belonging to H°(Q), H*(I') and H*(T',) are denoted by
f-lle -l and ||.|l, ;. respectively. Of particular interest are the

L*(Q)-norm |.]|, and the semi-norm

d

av |I?
pir= 3 |2
2 1l el
and norm
loll} = 1ol3+ llvlg

defined for functions belonging to 7/'(£2). Note that |v|} + ||v| 3 | defines a
norm equivalent to (|[v||?). Norms for spaces of vector valued functions will

be denoted by the same notation as that used for their scalar counterparts.
For example,

d d

2

“V ” ;,’(Q) = z ” Uj ”;j(g) and "V "% = Z ” vj ”1 3
j=1 j=1

where v, j = 1,...,d, denote the components of v. We note that the semi-
norm |.|,, defined by either

vol. 25, n° 6, 1991



716 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

d
[v]2=Y |y|? or M%:%J |grad v + (grad v)"|* dQ,
j=1 ’ [t}

defines a norm, equivalent to ||. ||, for functions belonging to Hy(Q2). Also,
the semi-norm |.|, ., defined by

|g|irc = f |grad, g|*dl",

rC
defines an norm on Hy(T,) equivalent to ||g|| f r, = |g|f r,+ ||g[|(2)’ P
We define, for (pg) € L'(Q) and (u-v)e L'(Q),

~

(p,q):J pqdQ  and (u,v):Lu.de, (1.9)
Q
respectively, for (pg) e L'(I') and (u-v)e L(I),
@,q)rszqdf and (u,v)r=Ju-vdF, (1.10)
r r
respectively, and, for (pg) e L(T,) and (u-v)e L(T,),

(PaCI)FCZJ

FL‘

pq dr and (w,v), = J u-vdl, (1.11)
rC

respectively. Thus, the inner products in L*(Q) and L?(Q) are both denoted
by (.,.), those in L*T) and L*(T") by (.,. ), and those in L%T,) and
L*(T",) by (., . )r- Since, in general, we will use LZspaces as pivot spaces, the

notation of (1.9)-(1.11) will also be employed to denote pairings between
Sobolev spaces and their duals.
We will use the two bilinears forms

a(u,v) = % J- ((grad u) + (grad u)?):
Q

((grad v) + (gradv)") dQ Vu,ve H (Q)

and

b(v,q):—J gdivvdQ VveH '(Q) and Vpe L Q)
(¢}

and the trilinear form

c(u, v, w) =J u-gradv-wdQ Vu,v,weH(Q).
Q

M?AN Modélisation mathématique et Analyse numérique
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These forms are continuous in the sense that there exist constants
¢, Cp and ¢, = 0 such that

la@, V)| ¢, Jul, V], VuveH'(@Q), (1.12)
b(v,q)| <c VI, llgll, YveH'(Q) and geL*Q) (1.13)
and

le@ v, W sc [lull, vl Iwll, Yuv,weH'(Q). (1.14)

Moreover, we have the coercivity properties

a(v,v);Ca||v||f Yve H{(Q) (1.15)
and
sup b(vv’q)zc,,”quo Vge L), (1.16)
0 #ve H) Q) I ||1

for some constants C, and C, > 0.
For details concerning the notation employed and/or for (1.12)-(1.16),
one may consult [2], [11], [12] and [20].

2. THE OPTIMIZATION PROBLEM AND THE EXISTENCE OF OPTIMAL SOLUTIONS

We begin by giving a precise statement of the optimization problem we
consider. Let g € W, (T',) denote the boundary control and let u e H!'(Q)
and p e L2(Q) denote the state, i.e., the velocity and pressure fields,
respectively. The state and control variables are constrained to satisfy the
system (1.3)-(1.6), which we recast into the following particular weak form
(see, e.g., [3], [11], [12] or [20]):

va,v)+c@@u,v)+b(v,p)— (v,t)y = (f,v) VYVve H'(Q), 2.1)
b(u,g) =0 Vge L}(Q) 2.2)
and

@ s)— (), = (bs)y ¥YseH (), 2.3)

where f € L2(Q) and b € H'(I') are given functions. One may show that, in
a distributional sense,

t=[—pn+v(gradu+ (gradu)’).n];,
i.e., t is the stress force on the boundary.

vol. 25, n” 6, 1991



718 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

Remark : We make some comments on the use, in the weak formulation
(2.1)-(2.3), of the Lagrange multiplier t to enforce the boundary condition
on the velocity. In the first place, there are technical reasons for this choice,
the most important one appearing in the proof of the error estimates for
finite element approximations. We will remark on this point further in
Section 4. From a practical point of view, the introduction of the Lagrange
multiplier t does not introduce any new difficulties. It was shown in [13], in
the context of finite element approximations of solutions of the Navier-
Stokes equations, that one may in fact uncouple the computation of the
multiplier t from that of the velocity and pressure fields. Indeed, one may
devise schemes such that one may solve (a discretization) of (2.3) for the
velocity on the boundary, and then solve for u and p from (discretizations
of) (2.1)-(2.3) by using (subspaces of) H}(Q) in (a discretization of) (2.3).
Subsequently, one may compute (an approximation to) t, if one so desires.
(See [13] for details.) Moreover, since t is the stress on the boundary, this
method provides a systematic mechanism for computing this interesting
variable.

The functional (1.2), using the notation introduced in Section 1.1, is given
by

A (wpg)=sa@u)+bp)- @ u)+sleli,, Q9

(If ' has a boundary we may replace the term (v/2) || g||f r by (v/2)|g |% r)
Optimization problems involving the functional (1.1) will be considered in
Section 5.
The admissibility set Y, is defined by
U= { (u,p,g)e H'(Q) x LEQ) x W,(T,) :
A (u, p,g) < o0, and there exists a t e H ~ *(T") (2.5)
such that (2.1)-(2.3) are satisfied } . '

Then, (4,p,8)€ %, is called an optimal solution if there exists
¢ > 0 such that

H (G, p, &) <A (u,p,g)V(up, g)e U,satisfying
Ju—dll, + o —pll,+ le—2l, . <¢. @6
We first show that an optimal solution exists and prove a preliminary
regularity result.

THEOREM 2.1: There exists an optimal solution (4, p, 8)€ U -
Moveover, any  optimal  solution  satisfies Ge€ H?(Q) and
pe HAQ) N LAQ) and if t € H YX(T') is such that (i, p, g, t) is a solution
of 2.1)-(2.3), then te LA(T).

M?2AN Modélisation mathématique et Analyse numérique
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CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS 719

Proof: We first claim that %,, is not empty. Let g =0 and then let
@, §, t) e H(Q) x L2(Q) x H ">(I') be a solution of (2.1)-(2.3); note
that with g = 0, (2.1)-(2.3) is equivalent to

va(d,v)+c(@, @, v)+b(v, p) = (f,v) Vve H{(Q),
b(i,q) =0 Vge L§jQ),
i=b on T

and
t=[-pn+v(gradi + (grad @)7). n].

Since fe L2(Q) and be H'(T), it is well known ([11] or [20]) that such
@G, 7, t) exists. Moreover, we have A @@, p,0)=<
cdlaf, + 121, + Ifl) Il < oo. Thus, (@, 5,0) € % 4
Now, let {u(k), p®, g(k)} be a sequence in %,,; such that
lim A (u®,p®,g®)y= inf A (wpg).
k- (,p,8)eUy
Then, using (2.4) and (2.5), we have that [g®[ ., [[p®|, and
[u®| , are uniformly bounded. Then, since the first of these defines a norm
on W, (T',) and since |u|, + [lu]|, . defines a norm on H'(Q), we have that
u®, p B g®Y js uniformly bounded in H'(Q) x LI(Q) x W,(T,). Also,
for some t*) € H™2(TI),
va@®,v)+ c@®,u®, v)+b(v,p @) — (v, t®),
=(fv) YwveH!(Q), 2.7
b(u®,g)=0 Yge LiQ) (2.8)
and )
@®, ) — @9, s)r, = (b,s)r VYseH 'A(T). (2.9)

One easily concludes that [[t®] is uniformly bounded. We may then

1/2,T
extract subsequences such that

g¥—~g in W,(T)

u® d  in HY(Q)

® L p in L2(Q

p p mn 0(Q2)
t® ¢ in H-'Y(I)

u® La  in L%2(Q)

u®[p 5| in L3I

vol. 25, n° 6, 1991



720 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

for some (i, g, g, t) € H'(Q) x LZ(Q) x W, (T,) x H "*(I'). The last two
convergence results above follow from the compact imbeddings
H'(Q) c L?*(Q) and H”(I') < L2(I'). We may then pass to the limit in (2.7)-
(2.9) to determine that (a, p, g, t) satisfies (2.1)-(2.3). Indeed, the only

troublesome term when one passes to the limit is the nonlinearity
¢(.,.,. ). However, note that

c@® u® vy= J @® .n)u®  vdar
r

- J u® gradv.u ®do Vve C *(Q).
Q
Then, since u® - 4 in L*(Q) and u® | 5 | in L%(T'), we have that

lim c®,u® v)= J @i.n)a.vdl
r

n— oo

—j i.gradv. 6dQ =c(,d,v) Vve C°(Q).
o

Then, since C®(Q) is dense in H'(Q), we also have that

lim c®,u® v)=c@, i, v) YveH(Q).

k- oo

Finally, by the weak lower semicontinuity of # (.,.,. ), we conclude
that (&, p, g) is an optimal solution, i.e.,

,%/(l‘i,ﬁ, g): inf %(uapsg)-

WP, 8)e U

Thus we have shown that an optimal solution belonging to %,, exists.
Next, note that any optimal solution (i, p, §) satisfies, by definition,

va(i,v)+b(v, p) = (f.v) Vve H(Q), (2.10)
b(ia,q) =0 Vge L3Q) (2.11)
and

5+ b r
a={g+ on e 2.12)

b on I,

where f =f—ii.grad a. Due to (1.7), (1.8) and (2.12), we have that
1‘1|1~ce H!(T'). Moreover, since i € H!(Q), we have that i e L%(Q) and

MZ2AN Modélisation mathématique et Analyse numérique
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CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS 721

ou/ox; € L%(Q) for j = 1,...,d, so that d.grad 4 € L*?>(Q) and therefore
f € L3?(Q). Then, it follows from results of [8] (see also [11] and [20]) that

the solution of the Stokes problem (2.10)-(2.12) is such that 4 € H*?(Q),
pe H'™Q) N L{(Q), and

t=[—pn+ v(gradi + (grad é)") .n]p e L2(T). |

3. THE EXISTENCE OF LAGRANGE MULTIPLIERS AND AN OPTIMALITY SYSTEM
3.1. Existence of Lagrange multipliers

We wish to use the method of Lagrange multipliers to turn the
constrained optimization problem (2.5) into an unconstrained one. We first
show that suitable Lagrange multipliers exist.

Let B, = H'(Q) x L}(Q) x W,(T,) x H" /(') and B, = (H'(Q))* x
L3(Q) x H'(T') and let the nonlinear mapping M: B; — B, denote the
(generalized) constraint equations, i.e., M(@u,p,g,t )= (f,z,b) for
(u,p,g,t Ye B, and (f,z,b) € B, if and only if

va(,v)+cuv)+b(v,p)— (v,t)r=Ev) Vve H'(Q), (3.1)
b(u,q) = (z,9) YqeLjQ) (3.2)
and
(u’ S )r - (g’ S)I'c = (bs S )F VS e H” 1/2(F) . (3‘3)
Thus, the constraints 2.1)-(2.3) can be expressed as
M(Qu,p,g,t )= (f0,b).

Given u € H'(Q), the operator M'(u) € £ (B, ; B,) may be defined as
follows: M'(u). (w,r,k,y )= (f,z,b) for (w,r,k,y)e B, and
(f, z, b) € B, if and only if
va(W,V)+ c(w7u)v )+C(ll,w,v )+b(v,r)_ (VaY)F

=(f,v) VveH! (), (34
b(w,q)=(z,q9) Yge L*Q) (3.5)
and

(w,s)r— (k,s)r, = (b,s)r Vse H "X(T). (3.6)

LEMMA 3.1: For ue H'(Q), the operator M'(u) from By into B, has
closed range.

vol. 25, n° 6, 1991



722 M. D. GUNZBURGER, L. S. HOU, TH. P. SVOBODNY

Proof : It is easily seen, for ue H'(Q), that M'(u) is a compact
perturbation of the operator S € #(B;; B,), where the latter is defined as

follows: S. (w,r,k,y )= (f, z, b) for (w,r,k,y )e B, and (f, Z, b) € B,
_if and only if

va(w,v)+b(v,r)— (v,y) = (f,v) Vve HI(Q),
b(W,g):(E,q) VqELZ(Q)
and

W, s)r — (&, 8)r, = (b,s)p Vse H 'A(T).

The adjoint operator to S can be shown to be a semi-Fredholm operator,
i.e., to have a closed range and a finite-dimensional kernel. Then it follows
that S itself, and any compact perturbation of S, has closed range ; see [18].

|

LEMMA 3.2 : For u € H'(Q), the operator M'(u) from B, into B, is onto.

Proof : Assume that M'(u) is not onto. Then, the image of M'(u) is
strictly contained in B, and, by Lemma 3.1, is closed, so that there exists a
nonzero (p, ¢, 7)€ (By)* = H'(Q) x L3(Q) x H-VX(T") such that

<(f, z,b), (m, b, 7 )> =0 VY (f, z, b) belonging to the range of M’ (u

nyg =

)
7

s

where (.,. ) denotes the duality pairing between B, and Bj; this
equation may be rewritten in the form

(i:a "‘)+ (Z_’ ¢)+ (l—)’T)r
=0 V(f, z, b) belonging to the range of M’ (u).

Then, using (3.4)-(3.6), we conclude that there exists a nonzero
(1, &, 7) € (By))* = H(Q) x L2(Q) x H Y(T) such that

va(w, ) +c(w,u, p ) +c(u,w, 1) +b6(w, )
+(w,T)r=0 YweH!(Q), 3.7

b(m,r)=0 Vre L3Q), (3.8)

(w,y)r=0 VyeH AT (3.9
and

(k,7)r, =0 Vke W, (T,). (3.10)
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CONTROL PROBLEMS FOR THE' NAVIER-STOKES EQUATIONS 723
The system (3.7)-(3.10) is a weak form of the boundary value problem
—vdiv ((grad p) + (grad p)7) + p. (gradu)’ —u. grad p
+graddé =0 in Q,
divp=0 in Q, (3.11)
mw=0 on T (3.12)

T=¢én-—v(gradp+ (gradp)”).n— w.n)p=Cn on T,.

for some constant C. Letting ¥ =7 — Cn and é = ¢ — C, we are easily led
to (3.11)-(3.12) and

—vdiv ((grad p) + (grad w)7) + p. (grad u)?
—u.gradp+grad $ =0 inQ, (3.13)

and
F=¢n—v(gradm + (gradw))-n— (u-n)mw =0 onl, (3.14)

Now, let the domains Q' and £, be constructed as indicated in Figure 3.1,
1e., as a smooth expansion of Q such that 'NI'<I', and
Q,=0U"U (' NT"), where I'" denotes the boundary of Q’. Let
u, denote a fixed extension of u such that u, € H'(Q,). The boundary
conditions (3.12) and (3.14) then allows us to define extensions p, and
b, such that p, = p and ¢, = & on Q, p, = 0 and ¢, = 0 on Q', and such

that the differential equations (3.11) and (3.13) hold (in the appropriate
weak senses) on (,, i.e.,

—vdiv ((grad p,) + (grad p,)") + 1, . (grad u,)”
~u,.gradp,+grad b, =0 inQ,, (3.15
and
divp,=0 inQ,. (3.16)

Furthermore, (3.12) and the facts that p,=p on Q and p, =0 on
Q' imply that

p,=0 on r,, 3.17)

where I, denotes the boundary of Q,. For a fixed domain ,, it is possible
for (3.15)-(3.17) to have a nontrivial solution (p,, J)e), 1.e., for 1/v to be an

eigenvalue of the problem (3.15)-(3.17). However, this problem involves a
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