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DISCRETE SOBOLEV SPACES AND
REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES (*)
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Abstract. — This paper is concerned with the regularity of elliptic finite différence schemes
wit h respect to discrete (fractional order) Sobolev spaces. For schemes arisingfrom discrétisations
that are from the same « type » at the boundary as in the interior, it proves the discrete equivalent
of Necas' regularity theoremfor differential operators on Lipschitz régions. A differentproof was
given by Hackbusch. However, the proof her e is shorter and more transparent. In case of a
curved boundary, usually different discrétisations are applied in points near the boundary. For
schemes of this kind, it is shown by using Necas ' theorem for the corresponding « unperturbed »
scheme, thaï «minimal» regularity implies the stronger regularity from Necas' theorem.
Finally, conditions suffïcient for minimal regularity are given.

Résumé. — Dans cet article on s'occupe de la régularité des schémas de différences finies
elliptiques relativement à des espaces de Sobolev discrets (d'ordre fractionnaire). Pour des
schémas provenant de discrétisations qui sont du même « type » à la frontière que dans l'intérieur,
on démontre l'équivalent discret du théorème de régularité de Necas pour les opérateurs
différentiels sur les domaines à frontière Hpschitzienne. Une démonstration différente a été
donnée par Hackbusch. Toutefois, la démonstration donnée ici est plus courte et plus
transparente. Dans le cas d'une frontière courbée, d'habitude on utilise des discrétisations
différentes aux points près de la frontière. Pour les schémas de ce type on démontre, en utilisant le
théorème de Necas pour le schéma « imperturbé » correspondant, que la régularité « minimale »
implique la régularité plus forte du théorème de Necas. Enfin, on donne des conditions
suffisantes pour la régularité minimale.
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608 R. STEVENSON

1. INTRODUCTION

In this paper, we defîne spaces of grid fonctions, which are discrete
versions of the Sobolev spaces Hs{Md) and HQ(Q,) respectively. We study
finite différence discrétisations Lh of the homogeneous boundary value
problem

Lu=f ueHgiil),

where

L= £ ( " l ) | a | Daa^D^
I «I .1 PI ««

is an strongly elliptic differential operator of order 2 m. We are interested in
regularity properties of Lh with respect to the « discrete Sobolev spaces »,
which are uniform with respect to the mesh-width h. « Discrete regularity »
of Lh is a useful property, for instance, to give sharp error estimâtes for the
solution uh of the discretized boundary value problem {cf. [5], [9] § 9.2) or to
prove convergence of multi-grid methods to approximate uh {cf. [4, 5], [8]
§ 6.3.2.2).

For fl a « Lipschitz domain » and Lh arising from discrétisations which are
from the same « type » at the boundary as in the interior, a very important
regularity resuit has been proved by Hackbusch in [5]. In this proof, he
mentions and uses rnany results for the discrete Sobolev spaces.

The purpose of our paper is to give
• a shorter and more transparent proof of Hackbusch's theorem in [5]
• a more systematic and complete account of properties of the discrete

Sobolev spaces
• easy-to-check conditions for the regularity of « gênerai Lh », Le. L h

arising from discrétisations which are possibly of a different type at the
boundary as in the interior

• easy-to-check conditions for the regularity of « scaled » gênerai Lh ; the
nature and purpose of this scaling will be explained in § 3.5.
The paper is organized as foliows. In § 2. we define the discrete Sobolev

spaces and show a number properties of these spaces, most of them being
équivalents of well-known properties of the continuous Sobolev spaces. The
properties proved in this section can also be found, possibly in slightly
different forms, in the existing literature ([5] mainly, [12], [13], [14]), but
there the results are either less gênerai or stated without (satisfactory)
proof. In particular, the author has never found proofs of the lemmas 2.4
and 2.6 (for s ̂  N) in the literature. Lemma 2.10 generalizes lemma 2.2 (ii)
in [5]. Moreover, the proof\ of that lemma given in [5] does not cover all
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REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES 609

situations which have been considered there. The proof of theorem 2.12
(given in § 4) is based on [5], but two errors have been corrected.

In § 3, we concentrate on the question of the regularity of Lh. It is well
known that, under very weak conditions concerning the smoothness of the
coefficients, for the (generalized) L, it holds that

(L + KI yl : Hm(n) -• H$(£l) is bounded

for K 5= 0 large enough (Gârding inequality). Necas ([10]) has proved that,
for Cl a Lipschitz domain and for « sufficiently smooth » coefficients, it even
holds that

(L + Kiyl :H-m + \n)^H%l + \£l) is bounded,

the so-called m + 0 regularity of L + KI, for all |6 | < 60, 60 =s 1/2 small
enough (précise formulations in § 3.1). These problems are often called
«less regular», because for smoother coefficients and for Cl e C2m or Cl
bounded, convex and m = 1, it holds that

(Z, + X/)-1 :L2(n)->/*7(ft) n / / 2 m ( ü ) is bounded

(the « standard » 2 m regularity), while even for still smoother problems the
operator

can be proved to be bounded for s > 0 (« higher order » 2 m + s regularity).
In §§ 3.2-3.3, we consider only Lh arising from discrétisations which are of

the same type at the boundary as in the interior. We prove two regularity
results, namely discrete versions of theorems of Gârding (§ 3.2) and Necas
(§ 3.3). Our discrete version of Gârding's theorem is a generalization of a
resuit obtained by Stummel in [12]. A quite different proof of the discrete
Necas theorem can aiready be found in [5]. Howevcr, in contrast with [5],
our proof makes use of the m + 0 regularity of the corresponding
L + KI. This technique has been developed by Hackbusch in [7] to prove
standard and higher order regularity for a number of « smoother problems ».

In § 3.4, we consider gênerai Lh. We prove that m regularity of
Lh + KIh in combination with m + 0 regularity of the operator induced by
Lh + KIh without the « discrétisations of the different type » at the boundary
(discrete Necas applies) implies m + 0 regularity of Lh + KIh. For given
Lk, the reduced problem of checking m regularity is much easier to solve
than pro ving m + 0 regularity in the more direct manner of [5]. It will turn
out that we are able to take X = 0 in all above regularity results if
Lh is stable with respect to the Euclidian norm.

In § 3.5, we discuss the regularity of « scaled » gênerai Lh. We give some
easy to check conditions suffîcient for the m regularity of scaled and
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610 R. STEVENSON

unscaled versions of Lh. Finally, as an illustration, we use the obtained
results to investigate regularity of two popular discrétisation schemes.

Notations 1.1. ü is a domain (i.e. open and connected) in IR**,
F = dü, = Ù\O,. For any q e N of interest, we equip both Cq and
Uq with Standard basis { e j ^ . ^ , where e( = (0, ..., 1,..., 0 ) G IR*, and

/
norm M = ^ Z KI

q Al/2

h e (0, h0] is the mesh-width of the grid HZd. The constant h0 is always
assumed to be « small enough ». We consider families of grids (nA)Ae (0 h^
with the property that there exists a D > 0 such that for all h e (0, ho]

{x e hZd : dist (x, Rd \H) ̂  Dh } c £lh a {x e hZd : dist (x, H) ^ PA } ,

where for A cz IRd, dist (x, ̂ 4 ) = inf { | x - y \ : j ; G A } . An example of such
a family is ( a n Ö ^ 6 ( O j y .

In this paper, we investigate operators, grids etc., which depend on the
mesh-width h. In most cases, the obtained results are only significant since
they hold « uniformly in h ». In order to reduce the number of clauses as
« uniformly in h », « for ail h » etc., we use in this paper the convention that
c, c', C etc. stand for positive constants not necessarily the same throughout
the text, but which are always independent of h e (0, Ao]. Furthermore in
the sequel, we also use notations as Lh, Q,h etc., where formally seen
(Lh)h*{o,ho]> (ft*)*c(o,fto]

 e t c ' w o u l d b e m o r e correct.
For A a Md, T\ > 0, we dénote {x G Rd : dist (x, A ) < T\} by A (TI). For d-

d

tuples a G f̂ ld, we put | a | — V j ai |. Ail inequalities for matrices should be
/ = i

understood in terms of their éléments.
For n € N 0 = NU {0}, Cn(Ù) is the space of complex valued functions

u with uniformly continuous and bounded derivatives D01 w( |a | =s n) on H,
with norm

is denoted by C°°(Ö).

For X G (05 1], we defme

where
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REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES 61 1

and

Finally, we put Cn>\ü) = C"(ft) and || . ||c„o(n) = || . ||c„ (n).

2. DISCRETE SOBOLEV SPACES

2.1. Définitions and basic properties

In this subsection the discrete counterparts of H\Rd) and HQ(Ü>) are
defined. For the notation of the spaces Hs(Rd) and HQ(CI) see, for instance,
[1], For each h G (0, hQ], we consider the space G(hZd) of complex valued
grid functions uh on hZd with Y | uh(jh) | -< oo. G(ZzZ )̂ is a Hubert space

with the standard scalar product

(uh,vh) ^hd £ uhijh)^Jh),
jeZd

which defînes the norm

II «A II o = V <"*»
In order to define an s-scalar product on G(hZd) corresponding to the

scalar product of i/J(Rd), we use the discrete Fourier transform

( 1

with back transformation formula

Note that (uh, vh) = hd(uh, vh)LJ ^ (Parseval relation).

We define for s G R

and

vol. 25, n° 5, 1991



612 R. STEVENSON

For s e M, it holds that

H 1 7 *
(2.1)

For each h, ail s-norms are equivalent, but the équivalence does not hold
uniformly in h.

Note that for j < *, || . \\t*sc(t-s) h*-'\\ -||,.
The above définition of the s-norm is natural since for s = n = 1 it

corresponds to the usual définition

E » | | ; ) (2.2)

| a\ ff '

where

aÂ = 3?i-3^(aeNg), Tl=Tl\...Tl'd (y e Zd) ,

3^- = A" ! ( / , - r^ ] ) and ThJ uh(x) = uh(x + ejh)9

while for gênerai n = s eNQ, c, C > 0 exist with

c | | . I i ; * | | . « „ « C i l . | |*. ( 2 . 3 )

We novv consider discrete analogues of 77^(0). For each h e (0, &0], let
G(OA) be the space of the grid functions uh on ü,h (cf. notation 1.1) with
£ \uh(x)\2 <: oo. Defme coA : G (iîA) -+G(hZd) as the extension with

zero. G(HA) becomes a Hubert space with the scalar product

We define norms on G(flh) by

II " A I I , , 0 =
and

Note that || . | | ^ 0 ^ ||CÛA . \\_s (unless ïlh = hZd).

Remark 2.1 : Sometimes, we will apply norms || . \\s and || . || ̂  0 (s e R )

also to non-grid functions. In that case, || . \\s stands for the norm on

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES 613

Hs(Ud) and || . \\sQ for the norm on ff{5(ft) (or Hs(ü) = (HQS(Q,))\ if
s < 0).

2.2. Further properties

For the discrete Sobolev spaces we state a couple of properties, which,
except for lemma 2.10, have well-known équivalents in the corresponding
continuous spaces.

LEMMA 2.2 : For any h>0, t > 0, { ( G (hZd), < . , . ) s ) : - t *zs *zt}, with

pivot space (fG(hZd), ( . , . ) ) , is a so-called Hilbert scale (cf. e . g. [8]
§ 1A4).

Proof : Define

sth = f h - £ ThJ (dhJ f : G (hZd) -+ G (hZd) . (2.4)

For any h >0, ^ is bounded, and because of (3?)* = ( - l)1 a | ^ J
(7^f)* = r^01, self-adjoint and positive defînite, so sir

h exists for all
r G R. One can verify that

which implies the Hilbert scale property. D

Remark 2.3 ; The Hilbert scale property makes it possible to use
«interpolation» (cf. [8] § 1.4.4).

LEMMA 2.4 : Vp, 4, r e IR, wzY/s /? < ^ < r ató e => 0 tóere z*5 a C(e)

ll«*ll^e||MA | | r + C(8)||tiA||^ fortdluheG{kZd).

Proof:

The répétition of this argument at most a finite number of times will
complete the proof. •

DEFINITION 2.5 : For uh e G(hZü), we define
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614 R. STEVENSON

LEMMA 2.6 : Vs > - 3c(s) such that

IIUft II oo ^ c (s^ IIUfî II s for a^ u h G ^ (AZrf) « discrete Sobolev inequality » .

Proof : From the back-transformation formula and the Schwarz inequality
it follows that

For given /Ï, define the continuous function ƒ by ƒ (x) = 1 for x e [- /Ï, /Z ]
and f(x) = h~2x2 for x e T\[- h, h ]. VÇ e rd, it holds that

d ( d Z \ / 2 \

^ ƒ (gy) ^ c 1 + 4 A"2 ^ sin2 ± , where c = max ( d, ^- ). It follows
7 = 1 \ 7 = 1 2 / \ 4 /

from this inequality that for s => J/2

An

which gives the proof of the lemma. D

LEMMA 2.7 ([14] lemma 2.4) : For ft c [a, *] x Rd~ \ p e Mo,
a,/? ) such that

I «I =/»

« Discrete Poincaré inequality ».

DEFINITION 2.8 : For every h e (0, h0], let Ah be a subset of hZd. Then
Ah (more exactly the family (Ah)he (o,/ÏQ]) is said to have the discrete cone
property, hereafter abbreviated by d.c.p., if

VkeN 3 M > 0 , / i 1 e ( 0 , y VA G ( 0 , hx]9 x G A h 3 a £ Z r f , | a | « J k f

with { X + CXA + Ô / Ï I Ô G Z ^ | 5 | <k) czAh.
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REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES 615

DEFINITION 2.9 : For îsN, we dénote {x e Slh : dist (x, hZd\fi,h)
by r»(f ).

We define yh(() :G(ft*) ->G(n4) by

= 0 x e nA\r*(f ) .

The following lemma plays a crucial rôle in many of the proofs given in
sections 3 and 4.

LEMMA 2.10: Let üh such that hZd\Q,h has the d.c.p.. Then for all f,
k eM, there exists a c > 0 such that

te [ - * , * ] .

; Since 3c such that || . ||̂  0 =s chq~p || . ||̂  0 for all g,
G [- A:, A: ],p > ^, it holds that

Furthermore because yh(t)* - yh(t), \\yh(l)ILfc(O^o,o e q u a l s

|| yh {Î ) || 0 0 ̂  A (1 ), so it suffices to give the proof of the lemma for the case
s = k and f = 0.

Now let /zb M as in définition 2.8, h e (0, AJ, MAeG(ftA) and
x G rA(£). There exists an a G Zd

9 with | a | =s f + Af, such that

{x + o* + 8A : 8 G Z rf, | 5 | < /c} c= /Ï

(') For any fïxed h e (0, Ao], j , t 6 DX and any linear operator CA on G(OA), bounded with
respect to an || . || r 0-norm, it holds that || Ch \\ t^sJS = \\ C£ || _5 0 ^ _ f 0 - This follows from
the following observations : Since all || . || r 0-norms are equivalent (h fixed), the vectorspace
of bounded linear functionals on G(HA), denoted by G(Clhy, does not depend on
r. Moreover fh 6 G (HA)' can be written as fh = ^ . , R /,(ƒ/,) ̂ >, where Rh is the Riesz operator
with respect to the Standard inner product. It holds that Cf = RhC^ R^x where
C£ : G (£lhy ~* G (fty,)', the dual of Ch. The Hahn-Banach theorem implies that the operator
norm of C% : (G(Hh), || . || t 0 ) ' -> (G(ilh), || . || s 0 ) \ with respect to the dual norms, equals
|| Ch || . Finally, from the définition of the || . || r 0-norm, we find that
Rh : ( G ( n A \ || . ||r 0 ) ' - , (G(nA ) , || . |LF ( 0) is an isomorphism for aü r e U.

(2) The proof of [5] lemma 2.2 (ii), a lemma which corresponds with our lemma 2.10,
requires a = a( et. Also for the more restrictive class of flh considered in [5], this is clearly not
always possible.
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616 R. STEVENSON

Firstly we assume that a. = a(x) =2= 0. We state the discrete Taylor formula
(cf. [14] lemma 2.1):
There exist constants ra^y, with indices p, 7 e Nj,, such that

\ y \ * l « l - k

where (jj) := (*j) ... (j£). Consequently

uh(x) = Th
 a <öh uh(x + ah) = h £ rap7 Th

 y d% ioh uh(x + ah) .
I PI =k

\y\ « | a| - *

It is clear that for a $ O a similar relation can be obtained. For example for
a ^ 0, write 7)7" = (Ih + hTh 3A)"«.

Since every y( = x + (a — y) h) e hZ.d is involved only in at most fmitely
many (only dependent on 2 and M, and thus on f and A:) of such sums and
|| . || k and || . || * are equivalent norms, one can now conclude the proof by
summing over x e Th(£) and applying the Schwarz inequality. D

Remark 2.11 : Let Clh such as always be related to H as explained in
notations 1.1. Then if R^\ft has the cône property (c.p.) (cf [1] p. 66),
h1_d\Clh has the d.c.p. The converse of this statement does not hold. This
can be seen by noticing that the « discrete cônes » shrink if h goes to zero.

We will now state the theorem that, for Cl with « sufficiently smooth »
boundary, the || . \\s 0-norms on G(ftA) are equivalent to the corresponding
norms of a Hubert scale (cf. lemma 2.2). The proof of this theorem 2.12,
which is rather lengthy and technical, is not given until section 4.

THEOREM 2.12 : Let Cl have the strong local Lipschitz property (see
définition 2.14 below) and let kef*à be given. Dénote «s/* by â8hs where

J*h = Sh~ t TKi (dhJ f (see (2.4)), and coA* £h <oA : G (ftA) - G (flA) by

Bh. Then c, C > 0 exist with

c\\uh\\sO^\\Bfkuh\\oo^C\\uh\\sQ forallse [- k, k], uh e G ( f t , ) .

(recall that, by convention, c, C are independent of h).

Remark 2.13 : Since Bh is bounded (fixed A), self-adjoint and positive
deflnite, one can verify that for any h => 0
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REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES 61 7

with pivot space (G(nA) , { • > • ^ ), is a Hubert scale (<ƒ. proof lemma 2.2).
Consequently interpolation can now also be applied to the || . \\s 0-norms.

This result is not needed in the remainder of this paper, but can be used
for example for proving the so-called smoothing property (cf. [8])
( f l ^ ' S * ! 0 0 ^ j](v)h-a with a = (2-p + q)m>0) for two(multi)-

grid methods applied to différence schemes if ot < 2 m (cf. [8] § 6.2.4.4, [4]).
We will be interested in this case when dealing with multi-grid methods

applied to « less regular » différence schemes, such as considered in
section 3,

The définition of the strong local Lipschitz property is given in [1]
chapter IV. Since we will refer to constants which appear in the définition
we recall this définition here :

DÉFINITION 2.14: A domain Cl has the strong local Lipschitz property
(hereafter abbreviated by s.l.L.p) provided there exist positive numbers h and
L, a countable open cover {Uj} of T = dCl, and for each Uj a real-valued
function fj ofd~\ real variables, such that the following conditions hold :

(i) For some finite R, every collection of R + 1 of the sets Uj has an empty
intersection.

(ii) For every pair of points x, y G F (S) (3) (cf. notation 1.1) such that
| x — y | < 8 , there exists j such that

x,ye Vj = {x G Uj : dist (x, dUj)>b} .

(iii) Each function fj satisfies a Lipschitz condition with constant L :

\f(£\, -A d-\) ~ f(T\\, ->t\ d-\)\ s s ^ K Ê i - T h , . . . , Ç d _ , -T)d-\)\ •

(iv) For some Cartesian coordinate System (^:>1, ..., £ y d) in Uj the set
II H Uj is represented by the inequality

Remarks 2.15 : If H has the s.l.L.p., then fl (and Rd\£ï) has the c.p. For
bounded H, Cl has the s.l.L.p. if and only if each point x e dû, has a
neighbourhood U such that the set U H Cl is represented by the inequality
îd < ƒ (Si? •-•> ê d-1) f° r some Cartesian coordinate System, where function
ƒ satisfies a Lipschitz condition.

Remark 2.16: In the proof of theorem 2.12 we use the following
property : Let Ci be a domain with the s.l.L.p. Then there is an
r\0 > 0 such that for ail T| G (0, TI0], fi('n) has the s.l.L.p. with the same « L »
and « R » as Cl has.

(3) In [1], condition (ii) is imposed for x, j / e r ( ô ) PiO only. We have adapted this
définition slightly in order to make the s.l.L.p. symmetrie in the sense that if O has the s.LL.p.,
then R r f \ n also has this property.

vol. 25, n° 5, 1991



618 R. STEVENSON

3. REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES

3.1. Introduction

In this section, we study the regularity of différence operators
Lh : G (Cih) ->G(ftA). In doing so, we will have to distinguish between
(gênerai) Lh arisiiig from discrétisations which are possibly of a different
« type » at the boundary than in the interior (§ 3.4) and Lh arising from
discrétisations which are of the same « type » everywhere on £lh (§§ 3.2-
3.3). Hereafter, différence operators of the second kind will be denoted as
L'h.

For L'h, we will prove discrete versions of the Gârding inequality (theorem
3.1) and Necas' theorem (theorem 3.3) stated below ; these theorems
concern the homogeneous boundary value problem Lu = f, u E H™(Cl).
These results for L'h will be used to show regularity of gênerai Lh. Finally in
§ 3.5, we discuss the regularity of a scaling of a gênerai Lh ; the purpose of
the scaling being to keep the coefficients of the corresponding « différence
star» &(h~2m) also at the boundary. Furthermore, in this subsection we
discuss two examples.

THEOREM 3.1 (Gârding inequality) : Let

| a| , | P! «m

with meN, aa p€L< x >(a) for all a, p, a^eCQ(ù) (ihus uniformly
continuons) for \ a | = | p | = m, and L strongly elliptic, which means

3e > 0 with Re
a\ = | P| = m

3=8||Ç||2m for all £, eUd,xe il.

Then the sesquilinear form associated with L is H™(£ï)-coercive :

5 0, c > 0 VM e

Re
I

X f aap(x)BVu(x)B«u(x)dx^c\\u\\2
m-\4ufQ.

, I p| mm ^ H

The proof of this theorem can be found in every textbook about elliptic
partial differential équations (4).

(4) In many monographs the condition Q, bounded is added. However, this condition is not
needed because one can adapt the proof such that the Poincaré inequality has to be applied
only to functions with uniformly bounded support, also in case H is unbounded.
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COROLLARY 3.2 : Since the sesquilinear form is bounded too, it follows
from the Lax-Milgram lemma that

VX 3= Xo (L + X7)-1 : H-m(£l){= (HJ?(Cl)y)-*H${a) bounded,

THEOREM 3.3 (Necas [10] théorème 3) : Consider the situation of theorem
3.1, but now let ft be bounded and have the s.LL.p.

Put a = sup {x|Vc*, P H = m,a^eC0

where by convention sup 0—0.
Then there is a 0O e (0, 1/2], such that for all

e e ( - o o , e o ) n ( - T , a ) u {0} ,

there exists a \ 0 ̂  0 with

VX ̂  Xo (L + X/ ) - 1 : £ T m + e(fl) -4 H^ + 6(n) bounded.

If a^ + a^ is a re al-value d for | a | = | P | = m, */œ theorem holds with
% = 1/2.

Remark 3.4 : In § 3.4, it will turn out that we are able to take
Xo = 0 in the discrete analogues of the above theorerns, if || Lj^ 11| ^ c

3.2. The différence operator L'h and the discrete Gârding inequality.

DEFINITIONS 3.5 : We consider différence operators ££h on hïd of the form

&*= E I C " 1 ) 1 " 1 a ï 7 î c a M ( . , A ) 7 Î 3 g , m e l M ,
J a| , | p| « « 7 , 8

with for a, (3 e NQ, 7, ô e Zrf, caP7S bounded fonctions o« Rd x [0, Ao], Ö /
which finitely many are non-zero (5).

. Consider a discrétisation of J5? of the(5) Le t 5£ = J ] ( - l ) 1 a | 2>Œû a P(
I «I . I PI < m

form

X ( - 1 ) 1 ö| ^A«p ^A«P «Aap ,
t a| , | Pf s m

with finite différence operators ^ A a P = * - ! « ' X ^ P ^ ) rif» ^ « P = Z ^ ^ ( * ^ ) ^ a n d
M- M-

^/zap
 = ^ " | P | X r t " » P ^ ^ r f * which are consistent discrétisat ions of D*, ö a p ( . ) 7 a n d

Z)p respectively. Assume that p ^ e C | a | ~1'1 ( ( 0 , /z0)) if a ^ 0, / 7 ^ p b o u n d e d o n [0, Ao] if

« = 0, ^^ap bounded on IRd x [0, h0], r ^ G C ! p | " u l ( ( 0 , A 0 ) ) if p ^ 0, r ^ p b o u n d e d o n

[0, h0] if P = 0. L e m m a 2.2 of [14] shows tha t such a discrét isat ion can b e wr i t ten in t h e fo rm of

J2V with £ C.P*(*'°) = **(*)•
7,8
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Corresponding to an JSf̂ , we define

(a) &P = £ £ i~ !>' a' *ffl'*•*(. ,h
| a | = | p | = m y, 8

(6) JS?Jr) = S£h - $e$\
(c) for x e Rd,

^ifi = E I (- l)1 a| OT *.**(*, 0) Tl
| a | = I PI = m 7 ) 8

15, JSf̂ p) «frozen at» (x, 0).
r/ze symbol

l a | = I p | = m 7 . 8 7 = 1

(e) Lj£ = oaf <£h &h a différence operator on Vth.
L*h is said to be strongly elliptic if 3s > 0 such that

d t . \ m

Rep(x,ê)^e ( Y 4sin2^ ƒ or all xeft,

THEOREM 3.6 (discrete Gârding inequality) : Let L'h be strongly elliptic,

Then L'h is (G(HA), ||. ||m0)-coercive :

R e {Lf
huh,uh} ^c\\uh\\

2
m0 - A 0 | | M J 0

ƒ« particular, for all \ ^ Xo || (L; + X/A)~ 11| ̂  Q ̂  _ ̂  Q ^ l/c.

Bef o re pro ving this theorern, we state two lemmas in order to treat
variable coefficients using a partition of unity. Except for the trivial part b of
lemma 3.10, these lemmas are special cases of lemmas in [5] and proofs can
be found there.

LEMMA 3.7 : (a) Let {9k)kEH <= C^(Ud) be a séquence of'functions with
the following properties :

(1) For all K>0, there is an N(K) > 0 such that for all x* G Ud at most
N(K) functions ar not identically zero on the bail

SK(x*) = {xeRd: | |X- JC* | | ^ K}.

(6) In fact, it is suffïcient if there is an r\ z> 0 such that for | a | = | (5 | = m, cap^Ss restricted
to.ft(iï) x (0, T)0), is an element of Co(n0n) x (0,/i0)). However, by [11] Ch. VI § 2, for all
open sets A c IR", neNQ, \ e [0,1], there exists a bounded extension
ê : C M ( i ) - > C"'X([R"). (Analogous remarks hold for proposition 3.14 and theorem 3.15).
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(2) The diameters of the supports of the gk are uniformly bounded by a
p >0.

(3) V/> e No, 3q(= cx(p)) withfor all kf | | ^

k

(b) If in addition to the properties (l)-(3), a séquence has also the property

= C({gk},p))9

DEFINITION 3.8 : A séquence {ejt}k6N <= Co°(Rd) with the properties (1)-
(4) of lemma 3.7 & called a partition of unity.

Remark 3,9 : For each p > 0, there exist a partition of unity {ê .} with
sup{diam (supp (ek)) : k e N } « p (see e.g. [1] theorem 3.14).

LEMMA 3.10. Va e Ni a # 05 3C such that for all uh eG(hZd)

(a) \\g dfuh - n(9uk)\\ö^ c\\g\\cl al - U ^ I I M A I I , ^ _!

Proof of theorem 3.6 : Consider a partition of unity {^k}ke^- Dénote
sup {diam (supp (ek)): keN) by p. Choose {gk} keH,$o that it satisfïes the
conditions (l)-(3) of lemma 3.7, and such that there is a ô > 0 with
VkeN, gk=l on {xelRrf: dist (JC, supp (ek)) ^ Ô } . Furthermore select
for those k for which dist (supp (ek), O) <: p an xke O, with
dist (supp (ek), xk) < p. By summing over these k only (hö « small
enough ») we get

A) (")
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622 R. STEVENSON

k »* «*. ek <oA «A> (c)

For (a), straightforward calculations give

Re j;(j2?^^«*M*,e f c<oA«*) =

= Re£*-2" l"+rf f
k JT

C / d t .

^ (Z-;stronglydliptic) 2 , EH l 2, 4 S m Ö"

If we take p {cf. remark 3.9) and h0 « small enough », the uniform
continuity of cap7§ for | a | = | p | = m implies that we can majorize the

absolute value of {b) by - V Y || d%ek a>h uh || (h e (0, h0]).
k \a\ - f f l

For {d) and (Z?) conibined, we thus have

Re ( . . . ) >

-^ 2 2J 2^ \\öhek°yhuh\\0
:^ (lemma 2.7, c/. footnote 4) e ^ || ek ^h uh \\ m

k | a| =m k

& (lemma 3.7(b)) g l lM*IL,o *

By writing out (c) we get

E Z I

- 1)1-1 a ï7Zc a „„( . , A ) (efc 7 j ag - 7Î 3fe t) gfc <oA «», ek uh uh) }

1
fc | a |

Tl bl - Tl i\ek) Qk <o„ uh , ca p ,8 ( . j A ) r A
a " ) }
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By lemma 3.10, the absolute value of this expression can be majorized by

^ c' II wfc II m o II uh IL - ï o ̂ e Schwarz inequality and lemma 3.7 (a)) .

Finally, because the caP7Ô are bounded, (d) can be estimated on
cIMm,olKIL_i,<r

By combining the results for (a)-(d) we get

Re <Li «»,«»> - S i ^ C - ^ K U . I ^ I L . L a -
Using lemma 2.4, the desired inequality can now be obtained easily. D

3.3. Discrete version of Necas' theorem

In order to prove a discrete version of Necas' theorem, we will make use
of the results of (the continuous version of) Necas' theorem (theorem 3.3).
For this purpose, we will need restrictions and prolongations between the
discrete and the continuous Sobolev spaces (cf. définitions 3.11 and 3.13).

DEFINITIONS 3.11 : For a e Nj}, we define <j%, ofa : C^(Ud) -> C^(Ud)
by

» = i i = i

where o^, crfe* are given by

= [ t, (crfM)(x)= [ u{x +
- i Jo

For seU, we dénote (s, ..., s ) e Ud by (s).
For a e Ni we define 31% \ C0°°(IR

rf) -+G(hZd) by 31% = 9t\vl, where
is given by (St^u)(jh) = (o-^ u) (jh).

Since the proof of the following lemma is straightforward, it is left to the
reader (except (9)).

LEMMA 3.12 : It holds that

(3a) al' De> = D*> cr£ = dK, (3b) <rf« Z>e' = .De' aA*e' = TK t 9A,,-
(4)

(5)

Because of (1), (2), ^A
a can be extended as a map L2(W) -+G(hZd) and

(xA*e' : L2(W) -> L2(Rrf) both with the préservation of norm.
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D É F I N I T I O N 3.13: For a e Ni we define 0>fx\ G(hZd) -> L2(Rd) by

Where <^(0) is defined by (0>f>uh)(x) = uk(jh) if
jh — (1)/z < x ===7/2.

LEMMA 3.12 (continued) : For ail a G N$, it holds that
(6) («j?)* = 0>î
(7) Ml and &>% are local, Le. 3c such that

supp (M%u) c {x G hZd: dist (x, supp (M)) ^ch} (ue C o ° ° (^ ) ) ,

supp (&hUh) cz {xeRd: dist (x, supp (uh)) < c/z} (MA G G(AZd)) .

From (3) and (6), it appears that for a G NQ> ^ G Z with (s) ^ a,
^ a can be regarded as a bounded map H~s(Ud) -• (G(/zZrf), || . ||_ ̂ ), and

0>î as a bounded map (G(hZd), || . ||5) -> if s(Rd) . By applying lemma 2.2

and an interpolation theorem (e.g. [8] lemma 1.4.3), one can obtain the
same results in case s e I

L E M M A 3.12 (continued) :
(8) VaGN^, seU with (s)^a, 3c such that

(9) V / C G N 0 , 3C, V J , / G [k~l,k] \\ ®f"> 0>f]- Sh\\s^t « ch

Proofof(9) : It holds that || ̂ | 0 ) 9^ - Jh \k^k ^ c. So by interpolation

it is sufficient to show that || M{0) &f} - Jh \\ k _ {^_ k =s cA. ^ ( 0 ) ^ f } can be

written as ^ a^ 7]f, in which finitely many «^ are non-zero and

£ <ẑ  = 1, and thus also as / A - A £ Z>P7 7^ 9^, in which finitely many
M- | PI = 1,7

&p7 are non-zero ([14] lemma 2.1). This last notation directly yields the
desired estimate. D

PROPOSITION 3.14 : Consider an L'h oftheform given in définition 3.5 (e).
Let G G R such that for ail a, p, 7, ô, for which

s := max { | a | - m + 0, | p | - m - e } > 0 ,

there exist n e NOî -x- G [0, 1 ] with n + \ 35 s if s eN and n + \ > s if
s$N, such that ca^h( . , h ) G Cn>x(Rd), with norm which is uniformly
bounded in h E (0, /z0].

Then C(6)

Proof : It is easy to verify that it suffices to show that V^ ;> 0,
« G No , \ e [0, 1 ] with n+K^s if seN and n + \ > 5 if 5 £ N, 3c such that

„,W)|K||f (uheG(hZd),geC"'\Rd)). (3.1)
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Since C*lt\W) is contimiously embeddable in Cn2>k2(Wd% whenever
nï + X| 5= n2 4- X2 and nx s= n2 (

see e*S- [1] theorem 1.31), it suffiees to show
(3.1) for n = 5 - 1, X = 1 if s e N and for n = [s], X e (s - [s]5 1 ] if

For 5 G N , n — s — 1, X = 1, (3.1) follows directly from lemma 3.10(a).
Now let s £ N, n = [s] and X e (s - [.yj, 1 ]. Write s = /z + <o. There exist

c(= c(n)% C(= C(»)) > 0 with

where

( | : ) 1 / 2 ( c / . (2.3))
1 a|

For ge Cn>k(Ud), write

Since for | a | « « 5 M a , rA"p a|~pg G C 0 * X ( Ï P ) , with

it is sufficient to show (3.1) for se (ö5 1).
Finally, let se (0, 1) and ke (s,l ]. For any g e CO>X(SP), dénote the

map G(/iZ^) -+G(h]ld) : uh -> guh by ^A and the map
Cg°(Rrf) -* €^(05^) :u-»gu by g. It is well-known that 3c sxich that

^ ^ ^ ^ (see e.g. [15] Hilfsatz 4 3 and 4.5 ) .

Write

By lemma 3.12 (8), (5), (9), it follows that

I L , il^llc^W) and II«*
and thus

||^|t^s^c||9r!|co.x (1Rd) (^e C 0 ^ ^ ) ) . D

THEOREM 3.15 (discrete Necas theorem) : Consider the situation of
theorem 3.6, but now let O be bounded and have the s.LL.p.
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Put
| V a , p , 7,8 |ot| = m , cap7 8e C°>x(Ud x (0, * 0))}

and
T = sup {x|Va, p,7, ô | p | =m,c^lhe C°>x(Ud x (0, Ao))} ,

by convention sup 0 = 0 .
is a 90 G (0, 1/2], such thatfor ail

0 e ( -eo ,eo ) n ( _ T ) a ) u { 0 } ,

there exists a Xo 2= 0 with

J or \a\ = | p | = m , f/ze theorem holds with
7,5

e0 = i/2.

Proof : The proof consists of the steps (a)-(e).
(a) Since

and

( M

it sufflces to prove the theorem for 0 ^ 0 .

(P) Put
j ~ / ( l ) i ^ l \"^ ^ ^ / i "XI Ot I r\ CL 'T'y fj-fh *\ B

« x / j / j V / h h otp"y5 w «

and LlP = L'h - L'h
{l\ Then | | i i ( 2 ) | |_m + t 0^m 0 ^ c. By the discrete

Gârding inequality (theorem 3.6) 3\ 0 with

• K1h) II ^ c *

Suppose tha t for certain 9 => 0, 3X1 with

h)~l\\m + Q0^_m + B0 ^ c ( = c ( 6 , X ) ) . (3.2)

= C' II A il », n . ™ : o n ^ C a n ^
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we see that (3.2) implies that

627

Therefore, without loss of generality, we can assume hereafter that
cap7g =~& whenever | a | ^ m.

(7) Define o) : Co°(fi) -+ C0°°(Rrf) (both spaces with Z,2 scalar products)
as the extension with zero,

2= £ ( - l )1 a | i ) a a a p £ » p ,
I a | , | P| * m

where aa(3 = . , 0 ), and L = <o* i?a>.
7,8

The strong ellipticity of Z,j< implies the strong ellipticity of L, so the
(continuous) Necas theorem (theorem 3.3) is applicable to L.

Now let G e (0, 60) n (0, <r) U {0}, where 60 is taken from theorem 3.3.
It follows from the theorems 3.3 and 3.6, that there is a \ 0 s= 0 such that

l (3.3)

(3.4)

Let X === Xo be fixed. Using (3.3) and (3.4), we will show that

For notational convenience, we assume that X = 0 ; if X ̂  0, consider
coooo — ^ instead of c0000. Since we have assumed earlier on that ca^yb = 0
whenever | a | # m, c0000 is now a constant.

(Ô) Put R% = (oA* gtliù and PI = o>* ̂ t^h ( a e Nd
0) {cf. définitions 3.11

and 3.13) and write

We will show that

(c)

Because of (3.3), (3.4) and

\L'h IL ^ °

(interpolationerror) .

m^ ^ch~\ (a)-(d) imply
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The properties (à), (b) and (d) follow easily from lemma 3.12 (7), (8), (9),
(6). In order to demonstrate the type of arguments, we show (à) and leave
the proofs of (b) and (d) to the reader. Write

Since #A
(0) is local ((7)), it holds that

supp (&P<au) cz O,'k -.= {x e hl_d : dist (x, £1) < ch} (we Cg°(ft)) .

Now remark 2.11, lemma 2.10 (applied to O )̂5 and (8) show that
(<j>h w f — <fh) M^ o || =s c. This result and the estimate

In (E), we will show (c') :

From (c') and lemma 3.12 (7) (8), (c) follows easily.

(e) In order to prove (c'), we have to show that 3c such that

,vh)\^ch«\\u\\m + 9 \\vh\\m

<...,... > i « i I K K - 1 ) 1 " 1 afriep->h)Tt
I a) = m, (ï y, S

By using lemma 3.12 (8) (5 = 0), (4) and interpolation, one can estimate the
second part on the right by che || u || e || vh || 0. We now consider one term of the

double sum of the first part and write d instead of ca^ltl :

I < { . . . } U, Vh)\ = (lemma 3.12 (3) a )

Write

+ d(.,0) ®im)-a-Mtin)-'1d<<., 0 ) .
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It holds that

\\1h *^h t
io«-e

by lemma 3.12 (4) and interpolation,

because of d = ca^8 eC°'*(R* x (0,*0)) ( I « I = « ) , and fmally

by lemma 3.12 (5) and again the smoothness of d.
All the above estimâtes together show (c')s with which the proof is

completed. D

3.4. Regularity of LhJ the gênerai différence operator

So far we have discussed the regularity of L'h(-\- \ / ^ ) . In our définition of
L'h9 we have assumed that the coefficients caP78 are bounded. To obtain
regularity results, we had to impose some additional conditions concerning
the smoothness of the ca^yh, Because of all these restrictions on the
ca^yh3 the regularity theorems concerning L'h are for instance not applicable
to différence operators arising from discrétisations which, at points near the
boundary, depend on certain distances between these points and the
boundary (see examples 3.28). Since such operators are quite familiar, we
will introducé in this subsection a class of more gênerai différence operators
Lh and formulate sufficient conditions for the regularity of such Lh, which
make less severe demands upon the underlying discrétisations at points near
the boundary.

DEFINITION 3.16: We consider Lh : G (Jih) -• G(HA) of the foliowing
genera! form :

with b^(x, h ) = 05 ifx $ HA or x + |x/z $ OA, and with an M e N , independent
ofh, such thatb^.,. ) = 0 if |fx| >Mand {Ih- lh(M))(Lh - L'h) = 0,
for some Vh of the form given in définitions 3.5 (e).

The two propositions below give sufficient conditions for the m + G
regularity of Lh.
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PROPOSITION 3.17 : Let hZd\£lh have the d.c.p. and let

(L'h induced by Lh as indicated in définition 3.16).
Then II (Lh + XIh)-

1II n ^c(7).

Proof : As in the proof of theorem 3.15, we can take 0 =s= 0 and
X - 0 .

Since Lh(h - yh(2 M)) = L'h(Ih ~ lh{2 M)\ we have

L'h - Ih) 7 A ( 2 M) L\-X .

The assumptions concerning L^1 and L'h~
x together with the estimâtes

^m + ̂  ^ the rcsult D

PROPOSITION 3.18 : If II (Lh + \Ih)~ Ml A ^c for a certain k
J II v n h/ llm + e ^ ^ - m + e.o J

and II Lh 'Jl o, o ̂  o, o * c ( s t a b m y ) -then II Lh ' I L + 9 i 0 ̂  _ m+e, o « c.
Proof: From the identity

r • + \L

it follows easily that II Lü ' II « c. Hence

k(Lh

Remark 3.19 : For the démonstration of the m regularity of Lh + XIh {cf
proposition 3.17) in some situations, we refer to [7] theorem 2.4 step 1, [9]
Lemma 9.2.7, Satz 9.2.8, 9.2.9 or remark 3.23 below in combination with
the examples 3.28.

Remarks 3.20 : We now discuss the condition of stability in proposi-
tion 3.18. Only in some special cases where Lh = L* can the eigenvalues of
Lh be computed and therefore || L^11| . In many other cases, where

C7) In [5] section 2.5, which corresponds to this lemma, it is not used that the différence
between Lh and L'h is located at the boundary. As a resuit much stronger conditions concerning
Lk are needed there. (In the notation of [5], it suffices for our lemma that (ƒ + th Ljt

l)~^ :
3^l~m -» Jf?Q~m is bounded for 9 = 0 only.) Moreover in contrast to criterion 2.1 in [5], we
achieve m + 9 regularity of Lh for the same 9 as is assumed for L'h.
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with respect to the canonical basis of G(ftA) we have diag (Lh) === 0 and
Rh = diag (Lh) - Lh 5= 0 (i.e. all entries s= 0), the boundedness of
Il^/T1! icf- définition 2.5) and ||Z,;f " ^ can be shown using the

concepts of « irreducibility » and « M-matrix » (see e.g. [9] §§ 4.3, 4.4, 4.6,
4.8, 5.1.4). Then using 1^%^,^ « V | | _ J l ^ ' | L _ , the
desired stability follows.

Conversely, if ü is bounded and m s= d/2, then II Lü 1II is

bounded for every 0 in some neighbourhood of 0 only if II Lüi II and
11| are bounded. Indeed, the boundedness of ü, implies

O - O O ^ ' lemma 2.6 gives ||//I||ÛO^m + e 0 «s c if 9 > 05 and so

" 11|
6<0.

The result || Lj* " 11| ^ c is obtained by using the m + 6 regularity for a

3.5. Regularity of scaled différence operators

There are (gênerai) différence operators Lhi with

for 6 small enough, while || Z,A || _ m e0+_w + e 0 ^ o e s n o t have a bound that is
uniform in h e (0, h0] : The coefficients of the «différence star» of
Lh at the boundary multiplied by h2m are unbounded (see the examples in
this subsection). The unboundedness of | | ^ | | _ m + e O_m + Q 0 ^s undesirable,
since it hinders a number of applications of the regularity result (see e.g. [4]
example on p. 431).

In this subsection, we scale such an Lh using an operator Dh in order to
obtain || Dh Lh || _ m e 0 ̂ _ m e 0 ^ c. Moreover, for some rather usual situ-
ations we will show that this can be done whilst the m + 6 regularity of
DhLh is retained. Although, in view of a consistent discrétisation, the
construction of Dh Lh seems to be unnatural, there are useful applications.
For instance in [9] § 9.2, it appears that regularity of Dh Lh can be used to
prove an « optimal » error estimate for the solution uh of the discretized
boundary value problem Lh uh = fh.

Notations 3.21 : Write S£h = diag ( J ^ ) - 01 h9 L'h - diag (L'h) - R'h and
Lh — diag (Lh) - Rh, with respect to the canonical bases on G(hZd) or
G(HA) respectively. We assume that (diag(L^))"1 exists and define
JDA= (diag (Lh))-

{ diag
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Remark 3.22 : If hZd\£lh has the d.c.p., \\Dh Lh\\Q Q^Q Q ^ ch~2m and

P r o P o s i t i o n 3-14) (Lh induce'd by Lh\ thenlemma Z 1°)-
Remark 3.23: If hZd\flh has the d.c.p. and | |/>A | |0 0 ^ 0 0 =£ c, then

m + G regularity of £>A Z,A implies m + G regularity of Lh. Indeed, write

L~h
x= (DhLhy

lDh= (DhLky
l {Ih + yh{2M){Dh~Ih)} ,

then

gives the resuit.
Dh Lh can be considered as a special différence operator of the form given

in définition 3.16. Therefore, to prove m + G regularity of Dh Lh for ail G
small enough, the propositions 3.17 and 3.18 can be applied to DhLh. In
order to check the desired stability of Dh Lh {cf. prop. 3.18), the reader is
referred to the discussion foUowing that proposition and to footnote (8).
The two foUowing propositions give suffïcient conditions for the m
regularity of Dh Lh+ klh {cf. proposition 3.17).

PROPOSITION 3.24: Let L'h9 induced by DhLh, be (G(ftA), | | . | | m 0 ) -
coercive {cf. theorem 3.6), ca(37Ô constant if a = 0 or (exclusive) p = 0,
Y, coo-vs ̂  0, diag {L'h) s= 0, $,h === 0 and — r)R'h^ Dh Rh^ R'h for some

T| <: 1, independent of h e (0, hQ].
Then DhLh is {G{Clh), \\.\\mQ)-coercive. In particular, there exist

\ 0 ^ 0, c > 0 such that

Proof:

Re {DhLkuh,uh} ^ l ^ Q R e {L'huhiuk} +

+Re {{4^diag

Since ——— => 0, it suffices to show that the real part of the second inner

product on the right is non-negative. This non-negativity follows from
Gershgorin's circle theorem applied to the Hermitian part of the matrix in
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combination with the following observations :
Because of the assumptions concerning the coefficients capyh, the row- and
column-sums of J£h are non-negative and so by Sth ^ 0, the same holds for

L'h; diag (Z,J) s* 0 ;
2

R'h-DhRh h (8).
•

Remark 3.25 : Since Dh Lh is coercive is equivalent to

- {{Dh Lh)* + Dh Lh) is coercive, the conditions of proposition 3.24 can be

relaxed to corresponding conditions on - ((DhLh)* + DhLh).

For gênerai JS?A, i.e ; without the assumptions of proposition 3.24
concerning the ca$yb, we use the following notations :

Notations 3.26: Write &h = J^ (1 ) + J£?i2), where JS?A<
2> is of the form

given in définitions 3.5 with « ca^yh » = 0 i f | o t | + | P | = 2 « t . Similarly,
write L'h = L'h

{x) + L'h
{2) and LA = LA

(1) + LA
(2). If (diag ( Z , ^ ) ) - 1 exists,

define DA
(1) = (diag {L^))~l diag ( ^ ( 1 ) ) .

PROPOSITION 3.27 : Let hZd\Q,h have the d.c.p.,

•< <?/ï ~ 2 m + ^

for some TI => 0 and D^l) L^ (G(IIh) , ||. ||m 0)-coercive (<ƒ. prop-
osition 3.24).
Then DhLh is (G(HA), | |. | |m 0)-coercive.

Proof : We can assume TJ ̂  1. Write L//2^ = L'h^ + L'h^
4\ where

Lr
h^(L'h^) does not contain coefficients « cap^8 » if | a | = m ( | p | = m).

Since

{Dh Lh - DP LP - L'„m} 7A(2 M) + L'h^ + L'h^ ,

\\yh(M) {DhLh-DPLP-LF) yh(2 M)\\_m^ , 0 _ >0 ^

(use lemma 2.10),

||LI(3)|| ^ c and ||L[(4)|| ^ c, the result follows by
II « II - m + 1,0 <- m, 0 " " - m, 0 <- m - 1,0 ' J

applying lemma 2.4. •

(8) The proof shows that, under the conditions of the proposition, strong (G(n ; j), ||. || m 0)-
coercivity of L'h, i.e. Re ^L'h uh, uh^ ^ c \\ uh || ̂  Q, implies strong (G(n ; i), ||. || m Q)-coercivity
of Lh and so || L^ l \\ m Q ̂ _^ ^ l/c (thus certainly || L£11| ^ l/c, c/ proposition 3.18).
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Examples 3.28 : d = 2, H bounded, Cïh = Ü Pi HZd
9

dxx
 lV } dxx 6x2

 2K } dx2 '

m = 1, fli5 8 > 0 o n f l ( / = 1, 2),

is elliptic (and has consistency order 2 if the a/s are sufficiently smooth).
From theorem 3.6, it foliows that L*h is (G(nA), ||. ||m 0)-coercive if

at G C°(IR2). Because of the boundedness of fi and lemma 2.7, direct
calculations show that even without the assumption at e C °(IR2)

Re iL'huhiuk} ^ c\\uh\\
2

mJ)(strong (G(Üh), ||. || ̂  0 >coercivity) .

We will now investigate the m regularity of the scaled versions of two
différence operators, which both coïncide with L\x in the interior of
OA, but differ from L'h at the boundary.

(I) In the (generalized) Collatz discrétisation, for an x e ftA, for which
x + se heu x — ss he2, x - sw hex, x + sn he2 e O, U F for some se, ss, sw9

sn G (0, 1 ], with se. ss. sw . sn < 1, the équation

( = h-z^a^x + 1/2 hex) + fll(x - 1/2 fet) + a2(x + 1/2 he2)

+ a2(x - 1/2 he2)) uh(x) -ax(x- 1/2 hex) uh(x - hex)

-ax(x+ 1/2 hex) uh(x + /îe^ - a2{x - 1/2 ̂ 2 ) uh(x - he2)

- a2(x + 1/2 he2) uh(x + he2)} ) = «fh(x) » (the right-hand side)

is replaced by the sum of zero order interpolation formulas in both
directions. These formulas are chosen such that the resulting Lh is
symmetrie.

If se = 1, sw =s= 1 (similarly if se *s 1, sw = 1), the formula in the
xx -direction is chosen as

~ax(x+ l/2hex)uh(x

uh(x-swhex)\ - 0
J
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and if se, sw < 1, we take

h~2((ax(x + 1/2 hex) + ax(x - 1/2 hex))/2) x

e + sw i i ]
uh(x) uh(x-swhex) uh(x + sehex)\ = 0 .

Note that in the last case, the formula is a linear (first order) interpolation
formula. In the first case, this is only true if ax is a constant (that is why we
called the method generalized Collatz discrétisation). Ho wever, if
ax e C°'l(Ù) the extra error as a conséquence of non-constant ax is of the
same order as the interpolation error if ax is constant.

In the j^-direction we use simiîar formulas. The ultimate équation for
uh(x) is the sum of the appropriate formulas in both directions (cf. [9]
§4.8.2 (4.8.16)). After eiiminating the boundary values in the obtained
équations, we get a symmetrie Lh, which meets the conditions of prop-
osition 3.24. From footnote (8), it appears then that Dh Lh is strongly
(G(flA), ||.||m0)-coercive and thus

(II) As a second example, we discuss the Shortley-Weller discrétisation.
In this discrétisation 9^iai(* - V2 hex) dAj xuh(x) is replaced by

{-ax(x + 1/2sehex) (uh(x + sehex) -uh(x))jseh

/

(se + $w) h
2

{ 2 ax(x+1/2 sehex) 2 ax(x - 1/2 sw hex) \

\ s (s + s ) + s (s +s ) )

2ax(x~\/2swhex) 2 ax(x + 1/2 se hex)

YTs ^— "* "Sw r ^— u + Se

(if se. sw < 1) and the same procedure is used in the ^-direction.
For #1=^2=1 (Poisson équation), it holds that 0 =s Dh Rh ^ R'h (cf.

proposition 3.24) and so || (Dh Lh)~
 x || ^ l/c.

For ajaz - 1 and ax(= a2) e C°(U2), 0 ^ Dh Rh ^ R'h + o ( l ) ^~2m,
whereas in the interior as always Dh Rh = R'h. From this, it follows that

R e 4,DhLhuh,uh} S S C | | M A | | ^ 0 - o(l) h-2m\\yh(2 M) uh\\
2
Q

and thus [[ (Dh Lh)~
11| ^l/c (h0 small enough), if HZ.d\£lh has the

d.c.p. (<:ƒ. lemma 2.10).
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For arbitrary alfa2, Dh Rh === R'h can not be expected even if ax and
a2 are constants. However, if we neglect a possible part of [R^\H between
neighbouring points of Clh while setting up the discrétisations,
Re 4iDhLhuh,uh^ =SC| |MA | |^0 and thus the boundedness of

|| (Dh Lh)~
 11| _ can be proved in the same way as in [7] (theorem 2.4

step 1) if a, G C°(R"2), - < û̂ /afe < M-, with

ix= (2 V3 + 3+ (1 + 73) V/2 + 2 v
/ 3 / 2 - 1 6 5 ,

and if hZd\Ctk has the d.c.p.
We finally note that using the same sort of analysis, it can be proved that

\2
m ö<{Lh uh9 uh^ ~z c\\uh\\
2

m ö without conditions concerning aj

4. PROOF OF THEOREM 2.12

Before giving the proof we state three lemmas. First we formulate an
interpolation lemma, which is in fact a special case of the gênerai
interpolation theorem for Hubert scales, which we used earlier. The proof
of this lemma can be found in, for instance, [4] lemma 4.

LEMMA 4.1 : Let Hx and H2 be two complex Hubert spaces. Let
A : Hl -• H2 linear, bounded, Az, A^ l : Hlf -• Ht linear, bounded and positive
definite (i = 1,2).

Then for ail a, p, 7 G R with a ^ p ^ 7, it holds that

LEMMA 4.2 : If Cl has the s.LL.p., then there is a linear operator E that
maps fonctions on fl onto functions on W1 with the proper des

(a) E(f)\a - ƒ for ail ƒ G C ^ f ï ) ; that is, E is an extension operator.
(b) V/CGN 0 , the map E: Hk(O.) -> Hk(Ud) is bounded, the bound

depending only on k, d, « L » and « R » (cf. définition 2.14).

Proof [11] chapter VI § 3 theorem 5. An inspection of the proof there
shows the assertion about the bound in (b). D

LEMMA 4.3 : For ail k G f̂ J0, there are linear maps

0>h : G (hZd) -> Hh(Ud) a L2

and mh : L2(Ud) - G (hZd) with the properties :
(<*) \\&h\\i^t**c ^ G i°> kï ) (^ ^h is local (cf. lemma 3.12 (7))
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(e) 0th is pseudo local Le. 3c, dx>0 such that for all ue Co°(IRrf)>

t?A||0 ^ cAfc||M||fc, where vh e G(hZd) is defined by

vh = 01 h u on {xe hZ_d : dist (x, supp {u))^dxh}

= 0 etsewhere".

Proof: 0>
h := (Pji* (see définitions 3.13 and 3.11) has the properties (a)

and (b) (see lemma 3.12 (8) (7)). [2] §4.2.5 shows the existence of an

3th with property (d) and Mh 0>h = Jh ((c)). Using [2] § 5.1.3, one can

verify that there is a local Mh : L2(Ud) -> G (/zZrf) with

II Jh - ^ ^ ^ / j | | ^ chk. The estimate

in combination with the locality of §kh shows that Mh has property (e) (9).
D

Proof of theorem 2.12 : By the définition of ||. || _ s 0 for s > 0, it suffices to

give the proof for se [0, k].

(a) At first we prove the inequality | |MA| | J 0 *£ | |5A / 2*MA | | 0 ( ^ G [0,fc],

), or equivalently

*<ûA ^ - J / 2 1 0 ^ 0 f 0 *s 1 (*e [0, fc] ) ( c / . (2.5 )) .

For s = 0, we have that ||w/*||0<_0 0 = 1 and for s = A:

^ - i / 2 ! ! __ ili?~^2o)* ëi^1 â&^tù 5 " ^ 2 I I ^ 2

= i .

(9) In [5] proof of lemma 2.1, the existence of &h, 0th is assumed as in lemma 4.3, but with
in addition

\\3?hmhu-u\\^ | | ^ w A - « | | 0 forall u<=L2(Rd), wheG{hZd)

and §th local. It is easily seen that then necessarily holds that 0th = (@£ 0>hY
 x 0>%. From the

locality of &k> it follows that @k@£= {&% 0>h)~
X i s l oca l- I f w e n o w assume that

0>h is of the usual finite element form ï?h uh(x) = Y uh(Jh) \x ( ~ -j ) with |x e Hk(Ud)

jty v * ;

having a compact support, it appears by means of Fourier analysis that {|x(. —j ) :j e Zrf} is
an orthogonal set in L2(Md). However, at least in the usual case of positive jm, for
k > 0 this conflicts with the requirement ^(G(/ïZrf)) c Hk(Rd) unless JJL e H%(]0, 1 [d + c).
However, in the latter case the corresponding &h, if not 0, does not satisfy |] (?h || fc fc ̂  c.
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L e m m a 4 . 1 n o w g i v e s t h e r e s u l t || $fk<*h
 Bhsi2k\\0^0 0 ^ 1 (se [ 0 , fc]).

O ) F o r t h e p r o o f o f t h e i n e q u a l i t y \ \ B f k u k \ \ o o ^ C \ \ u h \ \ s O ( s e [ 0 9 k ] 9

uheG (flA))9 we will construct an Nh : G(hZd) -> G (Q,h) with Nh <oA = Ih

and \\BfkNhvh\\QQ^C\\vh\\s(se [ 0 , * ] , vkeG(hZd)), which is equival-

ent to

\\BfkNh ^ r / 2 \ 0 ^ 0 « c (se[0,k]).

From the existence of such an Nh the desired result follows directly by
substituting vh - <o, uh {uh e G (ft*)).

Because of lemma 4.1, it suffices to show that \BfkNh #*" J / 2*| |0 0_0 ^ c

for se {0, k } . This is equivalent to || Nh || Q ̂_ ^ c for ^ e {0, A:}, which for

s = k we see by writing

We define iVA = cojf MhF(h) 0>h as follows.
We take ^ A : G (hZd) -+ Hk(Rd), Mh : L

2(Ud) ^G(hZd) as in lem-
ma 4.3. By the locality of &h, there exists a J2 > 0 s u c n t n a t f° r a ^

supp {0>h Mh uh) c fL(h(d2 + D)) (for D, cf. notation 1.1).
Remark 2.16 shows that for all h e (0,/z0], where h0 is « small enough »,

a,(h(d2 + B)) and thus Rd\£l(h(d2 + D)) lias the s.i.L.p. with the « R »
and « L » from H (c/! définition 2.14). Thus by lemma 4.2, for all
h e (0, h0] there exists an extension

E (h) : H*(Md\n(h(d2 + D))) - H^U*) {t e No) ,

which is bounded uniformly in f e {0, k}, /i e (0, /i0].
Hence, if we defïne R(h) as the restriction of functions in IR̂  to

nd\a(h(d2 + D)) and F(h) : H*(%Zd) -+ H£(Ud) (£ e No) by

i^(A) = J~E(h)R(h),

then ^(/z) is bounded uniformly in £ E {0, &}, h e (0, Ao] too.
With the above définitions, we have

Nh co, = (o,* 0th F(h) 0>h co, = co,* mh 0>h co, = Ih

a n d H^llo,o^o^c-
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Since for k => 0, || <oA* || is unbounded with respect to h, we have to do
some more work in order to get the remaining estimate

* l l ^ t ) * c . Becauseof

, l h { ) l k ^ k ^ c and

it suffices to show

Define for u e Hk(Md), vh e G (hZd) by

vh = mhF(h)u on (Md\Ql((dl + d2 + D)h)) n / i Z ' ^ f r o m lemma 4.3)

= 0 elsewhere on hZ d .

Since for all u e Hk(Md), supp (F(h) u) <= D,(h(d2 + D)), the pseudo
locality of 01 h (lemma 4.3) implies the existence of a c, independent of u
(and h), with

\\vh\\0^chk\\F(h)u\\k.

The function (Jh - wA wA*) ^^ F(A) M - vh eG(hZd) is identically zero
outside fti\nfc, where 11̂  = n((rft + ^2 + D) h) O /iZrf. By remark 2.11
and lemma 2.10, with « 2 » = dx + d2 + 2 £>, applied to ft£, the existence is
shown of a c;, independent of u (and /*), with

By || F(h) \\k<_k =e c and || ̂ A ||̂ ^_fc ^ c, the proof is completed (10).

(10) In [5] proof of lemma 2.1, Calderón's extension theorem ([1] theorem 4.32) is used for
the construction of F{K) instead of Stein's extension theorem (lemma 4.2). Calderón's
extension operator needs less smoothness of the boundary than the s.l.L.p., in fact a kind of
« uniform c.p. » suffices. However, this extension operator (and thus « Nh ») dépends on the
degree (£) of the underlying Sobolev space, which implies that interpolation (lemma 4.1)
cannot be used.
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