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l MATHEMATICALMOOEWHGANDNUMERICALANALYSIS
J J MOOÉUSATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 23, n° 1, 1989, p. 87 à 101)

ASYMPTOTICS OF THE SCATTERING FREQUENCIES FOR A THERMO-
ELASTICITY PROBLEM WITH SMALL THERMAL CONDUCTIVITY (*)

by Marco CODEGONE (*) and Enrique SANCHEZ-PALENCIA (2)

Abstract. — We give a physical example of a system, depending on a parameter E, such that,
for e = 0, it has an eigenvalue with infinité multiplicity, which, for e > 0, splits into the set of an
eigenvalue with infinité multiplicity and infinitely many scattering frequencies with finite
multiplicity. The system is made of a thermoelastic heterogeneous medium and e dénotes the
thermal conductivity of a bounded région of the medium.

Resumé. — Nous donnons un exemple physique d'un système dépendant d'un paramètre tel
que, pour e = 0, il a une valeur propre de multiplicité infinie, qui éclate, pour e > 0, en
l'ensemble d'une valeur propre de multiplicité infinie et d'une infinité de fréquences de scattering
de multiplicité finie. Le système est formé par un milieu thermoélastique hétérogène et s désigne
la conductivité thermique d'une région bornée du milieu.

1. GENERALITIES

It is known [6], [7] that the thermoelasticity system in a bounded domain
has an eigenvalue at the origin when the thermal conductivity vanishes. This
point of the spectrum splits into infinitely many eigenvalues for positive
thermal conductivity. We consider hère an analogous problem in an
unbounded domain, which exhibits a more singular behaviour : for positive
thermal conductivity there is an eigenvalue with infinité multiplicity plus
infinitely many scattering frequencies, the corresponding scattering func-
tions not belonging to the functional space where the problem is considered.
We shall focus our study on the différence with respect to the case of
bounded domain, and the reader is referred to [6], [7] for some questions. In
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88 M. CODEGONE, E. SANCHEZ-PALENCIA

this context, the density and spécifie heat will be taken equal to 1. Otherwise
weighted spaces should be taken as in [6]. The thermal conductivity
ek and the thermal-elastic coupling coefficient p will be considered isotropic
(i.e. scalar).

Throughout this paper, the notations are standard. If u is a function,
u I ~ dénotes its restriction to the domain E. The same notation is used for

1 Ci

traces. If H is a Hubert space, H' dénotes its dual ; ££ (H, V) dénotes the
space of the continuous operators from H into V, and £? {H) = J?(H, /ƒ).
Vectors in the physical space are noted with boldface types :

(1.1) u = (MJ, M2, M3)

and in the same way, L2 and H1 will dénote (L2)3 and (Hlf, i.e. the space of
« vectors » with components in the space of square integrable functions and
in the space of functions with square integrable derivatives of order 0 and 1.

The convention of summation of repeated indices will be used, and
hij will dénote the classical Kronecker tensor.

The linear thermoelasticity system (see [4] for instance) reads

(1.2)
dt2

(1.3) — (O + pdiviO-efcAO = 0

where u and 0 dénote the displacement vector and the température, A is the
Laplace operator, a r is the « total » stress tensor, which décomposes into
two parts depending on u and 6 according to

(1.4) a r = a(u)

(1.5) a , » = aijlm elm(u) ; elm(n) = \ ( ^ L
l \ dxm

(1.6) <T,;.(e) = - p ô l 7 e .

The part a is the classical elasticity tensor (or isothermal elasticity tensor)
which dépends on the strain tensor e(u) according to (1.5), where
a{jim are the elasticity coefficients, which satisfy the symmetry and positivity
conditions :

(l-7) aijlm = aijmi = amlij

(1.8) aijlm elm etj 5= C ei} ei} V etj symmetrie

for some C 5= 0.
Of course, (1.2) should be considered in the distribution sense, and then it
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ASYMPTOTICS OF THE SCATTERING FREQUENCIES... 89

implies the transmission condition

(1.9) K*/]=°
on the eventual discontinuities of the medium, where the bracket dénotes
the jump across a surface with normal n.

Let us recall that the strain-stress relation (1.5) in the isotropic case
becomes

(1.10) a l7 = X emm btj + 2 \L etj o aijlm = X btj blm + p, (8W Ô/m + 8,7 bim)

where X, (x are the Lamé constants of the material.
After these generalities on the thermoelasticity system, we consider the

spécifie case where the space R3 is divided into two parts, a bounded one B,
with boundary F, and the exterior région E. The medium is supposed to
have constant properties on each of the régions B and E. Then, the coupling
coefficient p, the conductivity ek and the elasticity coefficients a^im are
functions of x of the form :

(1.11) P ( * ) = ( P = c o n s t . > 0 i i x e B
l p£ = const. > 0 if x e E

(1.13) aijlm =
i?nm = const. if x G B

afjim = isotropic const. if x e E

where it is understood that the afjlm are constants expressed in terms of
Lamé constants KE, \xE according to (1.10). The medium is not necessarily
isotropic in B. On the other hand, we note that (1.12) expresses that the
thermal conductivity vanishes in the exterior région E. More precisely the
thermal conductivity will be ek(x), with k(x) given by (1.12), where e
dénotes a small parameter taking values s= 0. In f act, we shall also consider
complex values of s in a neighbourhood of the origin, in order to use
techniques of holomorphic functions.

On the interface F we shall prescribe the boundary condition (1.9) and the
continuity of the displacement vector ; moreover, for e ^ 0, we shall
prescribe a Neumann boundary condition for 6 on the side B, expressing the
fact that the heat cannot pass across F into the région E where the
conductivity vanishes :

(1.14) [u] = 0 ; [<r£ « , ]=() on F

(1.15) — = 0 on F, side B, for s ^ 0, nothing for s = 0 .
on

vol. 23, n' 1, 1989



90 M. CODEGONE, E. SANCHEZ-PALENCIA

We note that the term ek(x) AO in (1.3) may be written £ A^ 0, where
Ajv dénotes the Laplace operator in B with Neumann boundary condition.
This may be written in the distribution sensé on R3 as :

(1.16) 8 /
;
a*,- \

k{X) 36

In order to study the évolution System (1.2), (1.3) we shall reduce it to a
first order System with respect to t by introducing the velocity field :

(1.17)
t

We shall study the évolution of U = (u, v, 9) in the space of configur-
ations

(1.18) x x L\R3) .

We note that u e H1 shows that the first relation (1.14) is automatically
satisfied in the trace sensé. The System (1.2), (1.3) with (1.16) becomes :

(1.19)
' dV

~dt
U = (u,

f e v =
v , e )

0

>

0
oer- •

0

- 1

0

3 d i

0

dxt dxt

We note that the derivatives are taken in the distribution sensé on
R3. Then, si\ maps #P into a larger space. In order to define s/e as an
unbounded operator of Jf, we define its domain

(1.20) Z>(a*.)= U = (u,v,
9x,aac,-

and we emphasize that this domain dépends on e. We then have :

PROPOSITION 1.1 : For real e === 0, r/ze operator — j / e w generator of a
strongly continuons semigroup of bounded operators in 2ffî which solve the
system (1.19).
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ASYMPTOTICS OF THE SCATTERING FREQUENCIES... 91

Proof: For the sake of simplicity, we shall choose on L2 and
L2 the classical norm, and on H1 :

(1.21) ||u||^i = fl(u,u)+ ||u||22,where

(1.22) «(u,v) = f aijlmelm{u)^{y)dx
JR3

which is equivalent to the classical one by the Korn's inequality. Moreover,
changing U(t) = exp (at)Y(t), we have for V an analogous problem with
s/£ + al instead of s/B. We shall prove that, for sufficiently large positive a,
- (s/B + oei ) is generator of a contraction semigroup (note that the
corresponding semigroup générâted by - s/e is not necessarily of contrac-
tion). According to the Lumer-Phillips theorem ([2] or [6]), it sufficies to
prove that s/z + a/ is acretive and surjective on ffi, i.e.

(1.23)

there exists a solution U G D

(séz + al) U = V9 for any given V9 G Jf? .

In order to prove (1.23), using the définition (1.19), we obtain :

(1.25) ( ( ^ e + a / ) U , U ) = (-v,u)H i + fl(u,v)- (p0, div v)L2 +

+ (P div v, G)L2 + e |6 |2 <ix 4-a ||u||^i + a ||v||22-h a
J 5

and taking the real part, we have (1.23) for a > 1. We note that (1.25)
amounts to formai intégration by parts ; in fact it is rigorously obtained by
taking the product in j f of s/e U with U" :

U" = (u", vn> 6") G 3 x @ x & ( = space dense in J f )

and letting Urt -> U in Jf ; as for U", intégration by parts is merely the
interprétation of (1.19) in the distribution sensé.

In order to prove the solvability of (1.24), we write it down, with

— v + a u = n9

- e — (kÇx) —) + ae =

vol. 23, n° 1, 1989



92 M. CODEGONE, E. SANCHEZ-PALENCIA

Eliminating v this is equivalent to

(1.26) - a '7 + (3 — + a2
 Ui = vf + a w?

(1.27) a 0 - 8 — (/c(x) — ) + ap div u = 0ff - p div u* .
öXt \ bxt f

In the case e = 0, we solve (1.27) with respect to 0 and we substitute int o
(1.26), which becomes a standard elasticity problem for the modified
elasticity System :

(1.28) (°0'(u) + P2 div u) = given terms '
ƒ

which is solved by the standard Lax-Milgram method ; formai intégration by
parts is performed as above.

The case e > 0 is in f act analogous ; but in order to solve (1.27) with
respect to 0 we must study separately the restrictions of 0 to B and E. In B,
(1.27) is solved with the Neumann boundary condition (1.15). In this case
(1.24) is also solvable. •

Now, it is easily seen that zero is an eigenvalue of j / e . The eigenspace is
the kernel of the operator, Le. the (closed) subspace of the solutions of
i E U = 0. We have immediatly :

PROPOSITION 1.2 : The kernel o f si'e is

' ( u , v , 0 ) G Jf ; v = 0 , - ~ ^ - + p ^ - = 0 for e = 0

( u , F , e ) G j r ; v = 0 , e | B = c o n s t . , - I J V + P — = 0 f for e ^ O .
uX i * (̂

It is evident that this kernel for g ̂  0 is a strict subspace of that for
e = 0. We shall see that as e -> 0 there are « infinitely many » scattering
frequencies converging to 0.

2. THE SCATTERING FREQUENCIES

Let us seek for solutions of (1.19) depending on t by the factor
exp(- it), i.e. of the form

(2.1)
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We shall also dénote Ç = /<*>, and either £ or œ will be called the
corresponding frequency (in fact the genuine frequency is Ü)/(2TT)) : this
leads to the system

- v =

(2.2)

and we note that, for x e E, i.e. k(x) = 0, this is equivalent to

(2-3) - ± (a,,(u) + (P£)2 div u 8tf) = - £2 u,

which is a modified elasticity system with the Lamé coefficients

(2.4) \ + (p£)2, |x instead of k, \x .

Then, the behaviour at infinity of the eventual eigenfunctions is the same as
for the elasticity system. It is known that this system is much alike the
Laplace équation [1] ; there are no eigenvectors (belonging to the space),
and they must be replaced by scattering functions ; the corresponding
frequencies are the scattering frequenties, which replace the classical
eigenfrequencies. In order to define them, we consider the fundament al
solution of the elasticity system (2.3), i.e. the solution G1 of

(2.5) - A (al7(G') + (P*)2 div G' Sy) + ? G| = 8„ 8

where ô dénote the Dirac mass at the origin, and 8f/- is of course the
Kronecker symbol. This function is given by ([1] or [3]) :

1

<«> ^ - J
for i # 0, with

(2.7) « 2 = \ + (p £ ) 2 + 2 | x ; b2=ix; r = \x\

where the sign + or — are used in the so-called outgoing or incoming
fundamental solution, respectively. This dénomination is obvious on
account of the dependence e x p ( - £*) on time. Each one of the solutions
depend homomorphically on Ç G C and they both become for Ç = 0 the

vol. 23, n° 1, 1989



94 M. CODEGONE, E. SANCHEZ-PALENCIA

fundamental solution of the static elasticity System :

(2.8) Gy(*,0) = —

Remark 2.1 : The fundamental solution for £ = 0 (2.8) is homogeneous of
degree — 1, and consequently it enjoys the behaviour at infinity

/-o m r^r n\ -1 BG(jC, 0) _ 2 ^G(x, 0) _ 3

(2.9) G(x, 0 ) « r *; ^—^ ~ r 2 ; \ ' y ~ r J , r-> oo

but this is not true for £ ̂  0, (2.6).This property in the case Ç = z'to, o> real, is
associated with the Sommerfeld radiation condition at infinity and energy
flux at large distance, but the case £ = 0 is singular in this respect.

DEFINITION 2.2 : The scattering functions and frequencies o f the thermoe-
lasticity system (2.2) are the solutions u # 0 o f the System of équations (2.2)
which are outgoingy i.e. they are, for sufficiently large |jc|, convolutions o f
the outgoing fundamental solution (i.e. (2.6) with sign +) with functions or
distributions with compact support. •

In order to transform the problem of the scattering frequencies into a
problem in the bounded domain B, we shall solve the Dirichlet problem in
E:

[ Find u satisfying (2.3) in E and
(2.10) u = <ponT

[ u is outgoing
i

where <p is a given element of H 2 ( r ) . Outgoing is understood as in
Définition 2.2. This problem is well posed unless for some values £ (the
scattering frequencies of the Dirichlet problem in E) which form a discrete
set contained in the halfplane Re {£} > 0. For the values £ for which (2.10)
is solvable, we may compute

(2.11) K-(u)+ ( P ^ d i v u ô ^ l r = CBtt)«pX-

where the right side constitutes a définition of the operator T5. In this
connection we have the following proposition, which is the exact analogue
of Proposition IX.3.8 of [6] :

PROPOSITION 2.3 : The operator 15(0 defined in (2.11) is a meromorphic
function ofoy (with poles at the scattering frequencies of problem (2.10), with

values in JS? ( H 2 ( r ) , H 2 (T)j . In particular, it is holomorphic in a

neighbourhood of i = 0. •
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LEMMA 2.4 : For £ = 0 the operator 15(0) satisfies

(2.12) C 5 ( 0 ) < p , * > H - 5 H ï = - f [ 4 m e / i n ( u * ) e l 7 ( u * ) +
JE

for any <p, i|/e H 2 , where u9, u^ dénote the corresponding solutions of
(2.10).

Proof: As 0 is not a scattering frequency of (2.10), u* and u* are well
defined. Let us write (2.10) (and (2.3)) with <p, u9. Taking the product with
u^ and integrating by parts on ER = E C\ { \x\ < 7?} for some large i?, we
obtain an expression analogous to (2.12) but with the right side integrated
on ER instead of E and the supplementary term

(2.13) f [atf (u*) + (P£)2 div u* Sy] n,- uf dS
J \x\ = R

but u9, u*, which are convolutions of G(x, 0), behave at infinity as (2.9).
Then, letting R -> oo, we get (2.12). •

In order to transform the scattering frequency problem into a problem on
the bounded domain B, we shall define the sesquilinear form on

(2.14) û « ; u , w ) = f 4mc,O T(u)e ï 7(w)^- CB«)u| r ,w| r> \ \

and the corresponding operator of JSf ( H 1 ^ ) , H 1 ^ ) ' ) :

(2.15) <A(O u, w ) H ! W H ! W = a(£, u3 w) Vu, w e H 1 ^ ) .

We then have :

LEMMA 2.5 : For ÇeC (different from the scattering frequencies of the
Dirichletproblem in E, (2.10)), the form a(i) defined in (2.14) is continuons
on Hl(B) and dépends holomorphically on £ for fixed u, w. For
i = 0 the form is hermitian. For sufficiently small | £ |, zero belongs to the
résolvent set of A(£), and A(Ç)"1 is holomorphic of£ (with values either in

l ) \ H\B)) or in g(l?(B)). The same result holds true for
2 1

Proof: The first assertion follows from Proposition 2.3. For £ = 0, we
have, from (2.14) and Lemma 2.2 :

+ teuim «/m(»*)*,•ƒ(**) + (P£)2 d i v u * d i v **] dx
JE

vol 23, n° 1, 1989



96 M. CODEGONE, E. SANCHEZ-PALENCIA

where u*, w* dénote the extension of u and w to E defined by the solution
of the outer Dirichlet problem (2.10) with Ç = 0 and the data 9 = u | r or
w | r We note that the traces of u and u * coincide on r (as well as those of w
and w*). Thus, the form a(0) is hermitian. Then, it is classical (see [2] or
[6], chapterV, if necessary) that the corresponding operator A(Q is
holomorphic with values in Jgf (H1 (B ) ', H1 (B ) ) or even in ££ (L2 (B ) ), when
taking the restriction to L2(£), i.e. considered as an unbounded operator in
L2(B). Moreover, because of the compact imbedding of H1 (B) into
1?(B), it is an operator with compact résolvent. As a(0) is hermitian,
A (0 ) is selfadjoint. From (2.16) we see that Ö ( 0 } W , W ) ^ 0 and consequently
the eigenvalues of A(0) are real and ^ 0. In addition, 0 is not an
eigenvalue. For, from (2.16),

(2.17) a (0 ,u ,u) = 0=>e£;-(u) = 0 , eu(u*) = 0

which shows that u* and u are rigid motions in E and B. In f act they are the
same rigid motion on R3 because the traces of u* and u coincide on F.
Moreover, as we saw at the end of the proof of Lemma 2.4, u * tends to zero
at infinity. Then, the rigid motion vanishes and (2.17) implies u = 0. This
shows that 0 is not an eigenvalue of A(0) and then A(0)~x belongs to
JSfCH1',!!1) or ^ ( L 2 ) . According to classical holomorphic perturbation
theory, A(t,)~l and [A(£) + Ç2]"1 are well defined and holomorphic in a
neighbourhood of Ç = 0. •

Now we are able to write the scattering problem as a functional problem
on B:

PROPOSITION 2.6 : For £ e C (different from the scattering frequenties of
the Dirichlet problem in E (2.10)), the problem of finding the scattering
frequenties and functions o f the thermoelasticity problem (Définition 2.2) is
equivalent to find £ e C , u e H 1 ^ ) , Q e L2(B) (not both vanishing) such
that

- \(2.18) a ( £ ; u , w ) - \ P* 6 div w <& = -

(2.19) - s A0 = £(e + p 5 divu) in B

(2.20) 30/6/2 - 0 on F for s > 0

where « equivalent » means that u in (2.18)-(2.20) must be extended to E by
the solution of (2.10) with the corresponding £ and the datum <p = u | r .

. Proof: Définition 2.2 is equivalent to
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(2.22) - e

in B and E, with the transmission and boundary conditions (1.14), (1.15) on
F, and u outgoing. Then, solving in E, we see that this is equivalent to
(2.21), (2.22) in B with the boundary conditions on r :

(2.23) <rfj rij = ("6(0 u| r) f and 88/6n = 0 for e >- 0 ,

because afj rc; and u take the same value on both sides of F. Now, (2.18)-
(2.20) is merely some kind of variational formulation of this last prob-
lem. •

Let us think about (2.18)5 (2.19) with e = 0, £ ̂  0. Solving (2.19) with
respect to 9 and inserting it into (2.18) we see that this problem is equivalent
to the purely elastic problem with the coefficients

(2.24) *y/m + B l78 /mp2.

As these coefficients take in gênerai different values in E and B, this is in
fact a diffraction problem of elastic waves by the obstacle B, This problem
has in gênerai scattering frequencies £7-, which form a discrete set with
Re {£,-} > 0.

The preceding Proposition furnishes in particular a description of the
scattering frequencies in a neighbourhood of Ç = 0 (as £ = 0 is not a
scattering frequency of (2.10)). This will be used in next section to prove our
main resuit. Nevertheless, we also have the following property of continuity
of the scattering frequencies with respect to e, which is proved exactly as
Proposition VII, 9.6 of [6] :

PROPOSITION 2.7 : Let A be an open domain of the complex plane the
closure of which does not intersect the real axis and do not contain scattering
frequencies of (2.10). Then, the scattering frequencies of the thermoelasticity
problem £(e) contained in A are continuons functions of e which converge, as
e\0 to the scattering frequencies of the elasticity problem with the
coefficients (2.24). Hère continuons is taken in the classical sense of
perturbation of eigenvalues : an eigenvalue may split into several ones.

3. SCATTERING FREQUENCIES IN THE VICINITY OF THE ORIGIN

In order to study the scattering frequencies near £ = 0, we shall perform
the dilatation

(3.1) l = Bz

vol. 23, n° 1, 1989



98 M. CODEGONE, E. SANCHEZ-PALENCIA

where z is the new spectral parameter, which we consider in any bounded
région of C (and then Ç of order O (e )). The équations (2.19), (2.20) become

(3.2) - A^e = z(0 + p*divu) in B

where A^ dénotes the Laplacian with Neumann boundary condition. Now
we shall « solve » (2.18) with respect to u and substitute into (3.2) to obtain
a functional équation in 0. Let us define an operator B e ££ (L2(B),
H1(B)')by:

(3.3) , w > H i < H l = $B

Then, (2.18) becomes :

(3.4)

According to Lemma 2.5, this équation may be solved in a neighbourhood
of £ = 0 by

(3.5) u= [AiO + er'BQ.

In order to substitute this into (3.2), we define the operator K(£>) by :

(3.6) B

LEMMA 3.1 : The operator K(£,) is well defined for £ in a neighbourhood o f
the origin, It is there a holomorphic function with values in J§? (L2(B)). The
operator I + K(Q is an isomorphism of L2(B) for sufficiently small
|£ | . Moreover, K(0) is hermitian and

(3.7) (*:(O)e,e)L2 (B)^o v e e L 2 ( 5 ) .

Proof: The first part is obvious from Lemma 2.5. Let us study
K(0). Let 6 and <(> be arbitrary éléments of L2(B). According to (3.5) with
Ç = 0, let ue, u9 be the corresponding solutions of (3.4), i.e.

(3.8) ^ ( 0 ) ^ = 5 9 ; A(0)ue=BQ

then, let us take the scalar product of the first one with ue (in f act the duality
product between H1' and H1) : by virtute of (2.15) and (3.3), we have :

(3.9) a ( 0 ; u * , u e ) = f p>B <p div üe dx .
JB

Moreover, from (3.6),

(3.10) X(0)6 = p s divu
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thus

(3.11) (<p,K(0)Q)L2{B)= f p%divüe</jt

and by comparison with (3.9) and using Lemma 2.5, we see that this
expression is hermitian. Moreover, taking in (3.9), (3.11) 9 = 6 we see that
(3.7) follows from (2.16). It is then classical that [/ + K(0)]'x e i ? (L2(B))
(see [6], Theorem III.6.5 if necessary). The same result remains valid for
sufficiently small |£|. Thus, I + K(i) is an isomorphism. •

Now, (3.2) becomes

(3.2) -A^O = z [ / + tf(ez)]e

which is an implicit eigenvalue problem in L2{B). We shall write this under
a more classical form by applying the isomorphism [I 4- K(Q]~l (Lemma
3.1) to (3.12), which becomes :

(3.13)

where

(3.14) A({)

We then have :

LEMMA 3.2 : A(£) with sufficiently small |£ | is a family of holomorphic
unbounded operators of L2(B). For £ = 0, A(0) has eigenvalues, noted
Z;(0) which are real and positive, tending to -f- oo as i -• oo and with finite
multiplicity. According to classical holomorphic perturbation theory,
A(£) has the eigenvalues z,-(O which are algebroid functions ofi, i.e. they are
holomorphic functions of some fractional power £/p of £, p integer

Proof: Let us consider the domain of - A^ as an unbounded operator of
L\B), i.e. :

(3.15) D(- AN) = {6 G H2(B), dB/dn = 0 on F}

which is a Banach space either for the norm of H2 or the graph norm of

Let us consider A(£) as an unbounded operator on L2(B) with domain
£>(- A^). As [/ + /C(Ç)]~l is an isomorphism, A(£) is closed, as it is easily
seen.

Moreover, its domain is independent of £ and A(£) 9 with a fixed
Q e D(~ AN) is holomorphic. Thus, A(£) is a holomorphic family of
unbounded operators [2] or [6], and as a conséquence, the isolated
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eigenvalues of finite multiplicity are algebroid fonctions of the parameter Ç.
It only remains to prove the conclusions on the eigenvalues of

A(0). Using again the isomorphism, we write the eigenvalue problem for
A(0) under the form

(3.16) ( - A^)9 =z[I +X(0) ]e in L2(B)

but — A^ and K(0) are self adjoint and positive ; it then follows easily that
the eigenvalues are real and positive (of course, z = 0 is an eigenvalue, with
the eigenfunction 9 = const.). Now, in order to prove that the eigenvalues
Z;(0) actually exist and form an infinité séquence, it sufficies to prove that
A(0) is an operator with compact résolvent. Let us take |UL >. 0 and consider

(3.17) [A(O) + |UL/]0 = ƒ in L2(B),

We shall see that [A(0) + &I]'1 is well defined and compact in L2{B)a We
see that (3.17) is equivalent to

{- A^ + |x[/ + K(0)]} 6 = [ƒ + K(fl)] f

and the left side is the operator associated by the classical Lax-Milgram
theory to the form

(grad 6, grad l)û{B) + |x([/ + K(0)] 6, e)L2(B)

on Hl(B), which is coercive by (3.7). Then, the résolvent is well defined and
continuous from L2(B) into Hl(B) (and even into D(-AN)) and thus
compact in L2(B), Q.E.D. •

Corning back to (3.12), finding z as a function of e is equivalent to
« solve » the implicit équation

(3.18) z = zt(ez)

for each i, where zi are the fonctions quoted in Lemma 3.2. We shall
disregard the first eigenvalue, z;(Ç) = 0, corresponding to the eigenfunction
0 = const. As we said in Lemma 3.2, z,-(O has in gênerai an algebraic
singularity as £ = 0, i.e. it is a p-valued function which is expressed as a
holomorphic function ƒ of £l/p with the p values of it. In order to use the
implicit function theorem for holomorphic fonctions, we use the same
device as in [5] : we write

(3.19)

and (3.18) becomes

(3.20) F
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In order to solve in a neighbourhood of

we check that at this point, dF/dz # 0. Then we obtain the implicit function
z(ti) and then

z = zp(t1/p)

which is ap-valued function of e, which we shall dénote fi(£1//p). Finally,
Ç = e/ (e 1 / / ? ) , and we have proved the following ;

THEOREM 3.3 : The considered thermoelasticity problem, with small e, has
infinitely many scattering functions £ near the origin, of the form

(3.20) l = *f,{*l/p)

which have in gênerai algebraic singularities {Le, each one is a holomorphic
function of some root e1///? of e). The values //(O) are real and positive, and
form a séquence tending to + oo. It should be noticed that all the functions
(3.20) are not necessarily defined simultaneously for sufficiently small e ; but,
taking a finite number of them, they are well defined for sufficiently small
e.
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