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MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 22, n° 4, 1988, p. 655 à 676)

ON THE NUMERICAL SOLUTION
OF THE FIRST BIHARMONIC EQUATION (*)

by P. PEISKER (^

Commumcated by O. PIRONNEAU

Abstract — We consider a mixed finite element discretization of the biharmonic problem
Followmg Glowinski and Pironneau the original indefimte linear system is transformed into a
positive definite one for the unknown boundary value \ = Au 13ft. This system is solved by a
conjugate gradient method We establish a preconditioning and prove that the number of itération
steps required for a given accuracy is independent of the mesh size.

Résumé. — On considère une méthode d'éléments finis mixtes pour le problème de Dinchlet
de l'opérateur biharmonique Comme Glowinski, Pironneau, on transforme le problème
original, qui est indéfini, en un problème défini positif pour la trace k = Au \ biî. Ce problème est
résolu par la méthode du gradient conjugué On établit une méthode de préconditionnement et on
démontre que le nombre d'itérations pour réduire l'erreur d'un facteur fixe ne dépend pas du
paramètre de discrétisation.

1. INTRODUCTION

We consider the numerical solution of the biharmonic équation

(1.1) A 2 w - / in H , u=— = 0 on bVt ,
3w

where O is a convex, polygonal domain in the plane. Suppose that the
boundary value \ * = Au|8n is known. Then (1.1) is splitted into two
separated Poisson équations. An initial guess X^o) for the boundary value
may be iteratively improved using the following procedure for
k = 0,1,2, ...

(*) Received in August 1987, revised m October 1987.
C) Institut fur Mathematik, Ruhr-Umversitat Bochum, D-4630 Bochum , West Gcrmany
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656 P. PEISKER

Given \ ( / c ). Then solve

=f in H ,

(1.2) Au(*> = 4><*> in H

This method is known as coupled équation approach in the finite différences
context (see e.g. [7]). In the framework of finite éléments the discrete
analogue of (1.2) was first studied by Ciarlet & Glowinski [6], see also [3]
for numerical experiments, and further improved by Glowinski & Pironneau
[8].

Given X, dénote by (<J>X, wx) the solution of (1.2a, b) with right hand side
ƒ = 0. A linear mapping L is defined by

^ •> (<k> wx) i> .
an

Glowinski & Pironneau [8] observed that the operator L is //~1/2(r)-elliptic
for a smooth domain. The corresponding discrete operator Lh reflects this
property. Specifically, the matrix Lh is positive definite and the spectral
condition number K(L A ) = Kax(^h)/Kón(Lh) E r o w s a s h~1 [8], where
h is a mesh parameter. The discrete system is solved by the method of
conjugate gradients [1].

In order to speed up the convergence, Glowinski & Pironneau have
already suggested to use the H~1/2(r)-ellipticity for preconditioning.
Following this idea we will provide a preconditioning matrix Ch, such that
the resulting condition number becomes independent of the mesh size. The
matrix Ch is based on the inverse of the square root of a discretization of
— d2/ds2 with homogeneous boundary conditions on each line segment
vk of an.

The proof, which is postponed to the last sections, has the following
structure. First, we will generalize the properties of the continuous
operator, mentioned above, to the case of a convex, polygonal domain.
Here, the dual spaces H'112^^ of #oo2(r(-), Tt being a line segment of 3O,
are involved. Specifically, we distinguish between V H~V2{Tt) and

H~m(T). Next, we will show that the properties of L carry over to the
discrete operator Lh. Finally, we will prove that the inner product
\JlCh\h induces a norm which is equivalent to the V/f~1/2(r/)-norm on

i

the finite element space.
Numerical experiments which confirm the theoretical results are included.

Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



NUMERICAL SOLUTION OF THE FIRST BIHARMONIC EQUATION 657

2. PRELIMINARIES

We study a finite element discretization, which is based on the mixed
variable formulation of (1.1) :

find (<$>,u)eH\CL)xHl(n) suchthat

(2.1) I <H dx - Vu Vi|i dx = 0 , VI|I e Hl

f Vc(> Vu dx = - f /ü dx , Vv e
Jn Jn

In the numerical solution, the Sobolev spaces Hl{Çl) and Hl(£l) are
replaced by finite dimensional subspaces Xh a Hx(fl) and Xok =
Xh n HQ(Q,). Specifically, let Xh be the finite element space of continuous,
piecewise linear polynomials on the given regular triangulation 75ft of
H. Let Rh dénote the /?-dimensional subspace of Xh spanned by those basis
functions, which are associated with nodes on the boundary. Then

(2.2) Xh = XOh@Rh.

Identifying each finite element function via the nodal basis with the
associated coefficient vector, the discrete problem which corresponds to
(2.1) is written in matrix-vector notation as

(Mn Mn

, 3 , ( t * .

The square-matrix Bo represents the discretization of the Poisson équation
with Dirichlet boundary condition.

With respect to the décomposition (2.2) we write <ph as <p£ = ((pft0, \h).
After eliminating the variables cpft0 and uh in (2.3) we obtain a positive
definite linear system

(2.4) L h kh = b k ,

where

(2.5) Lh=(T B0 ,1,

Since the matrix Lh is only given implicitly, we prefer an itérative procedure
for the solution of (2.4), especially the method of conjugate gradients.
Given \h e Rh, the évaluation Lh \h requires the solution of two discrete
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658 P. PEISKER

Poisson équations. For this purpose a multigrid algorithm [9] is well suited
(see [4, 11]).

We will be concerned with preconditioning techniques in the application
of the cg-algorithm. Given a positive definite matrix Ch, the condition
number of Lh with respect to Ch is given by K(C^"1 Lh). Specifically, let
0 <: oih <= $h be constants such that

(2.6) a , Xj Ch \ h ^ kT
h Lh Xh ̂  $h KT

h Ch \ h ,

then K(C^"1 Lh) =s= $h/oih. We will provide a preconditioning matrix
Ch such that the constants in (2.6) are independent of the mesh size
h.

The finite element solution <px e Xh of

(2.7) f V<pX;_ Vvh dx = 0 VvheXoh, <pH-\heXOh,

is called discrete harmonie. The coefficient vector is given by <pXft =

1 \h. Hence, from (2.5) it follows that
Ip I

(2-8) *lLhH= IKII^n)-

Therefore, in order to prove (2.6) we will be concerned with a priori
estimâtes of the L2-norm of discrete harmonie functions in terms of their
boundary values.

3. THE PRECONDITIONING MATRIX

When using the method of conjugate gradients for the solution of the
linear system Lh x — b, the number of itération steps required for a given
accuracy grows as \jK(Lh) = O(h~m). In order to speed up the conver-
gence, preconditioning techniques have turned out to be useful.

We shall now construct a preconditioning matrix Ch such that the
condition number K(C^*1 Lh) is bounded independently of the mesh size.
Since Cl is assumed to be polygonal, the boundary F of Cl consists of a finite
number of straight lines F^, 1 =s k === r. Let pk dénote the number of the
interior nodes of Tk. The number of all boundary nodes is equal to

P — X (Pk + !)•
k= 1

The pk x p^-matrices

(3.1) Dfc = tridiag [ -1 ,2 , -1 ]
Modélisation mathématique et Analyse numérique
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NUMERICAL SOLUTION OF THE FIRST BIHARMONIC EQUATION 659

correspond to the usual three-point approximation of the differential
operator - d2/dx2 with homogeneous Dirichlet boundary conditions on
Tk. The eigenvectors and eigenvalues of these Toeplitz-matrices are
explicitly given by

and

x/*> = 4 sin2 ( -Li- ) .

Therefore, Dk admits the factorization

where Qk = [e{*>, e|fc), ..., ej*>] is unitary and Ak = diag (Xp>,

X^°, ..., XJ*>). The powers D%, s e R, are defined by

(3.2) D{ = QkK\Ql.

Using Fast Fourier Transform (FFT), the évaluation of Ds
k x requires only

O(pklnpk) arithmetic opérations [16], provided that pk = s*2t with
s being smalL

We shall also need the tridiagonal pk x /7^-mass matrices

(3.3) *k' tyj '
U =

on Tk, where i>i(x) dénotes the piecewise linear nodal basis function, which
satisfies <!*,-(**) = 8i;, 1 ̂  i *~pk for the nodes xf on Fk. Set

(3.4) Ck-.= MkDk-
mMk.

For preconditioning, we choose the pxp matrix Ch, which has block
diagonal form :

(3.5)

vol. 22, n* 4, 1988



660 P. PEISKER

The application of the preconditioning (3.5) requires for k = 1, 2, ..., r
two real sine transformations and the solution of two linear Systems with the
tridiagonal mass matrix Mk. Since Mk is spectrally equivalent to Ifk, one
might expect at first glance, that MkDk

m Mk and Dk
m are spectrally

equivalent, too. Indeed, if the meshpoints are distributed equidistantly,
then the associated matrices

Dk = tridiag [- 1, 2, - 1 ] , Mk = ± tridiag [1, 4, 1 ] ,

hk — l/(pk + 1), have the same eigenvectors. Thus, the matrices Mk and
Dk

llA commute, i.e.

Mk Dk
 m Mk = Dk

 1/4 M2
k Dk

 1/4 ,

and we obtain

-D~m*z — M D~1/2M ^Dk
m.

However, if the meshpoints on Tk are not distributed equidistantly, then
Dk and Mk do not commute. In this case the conjecture is not always true, as
is illustrated by the following example.

Example : Consider the matrices

D=\0 l ) ' M = ( l 2)

with a>l. The diagonal dominant matrix M has the eigenvalues
\x = 1 and X2 = 3. Set x = (1, - 2) r . Then

xTDx = a + 4, x TMDMx = 9 .

Now we state our main resuit.

THEO REM 3.1 : Let Ci be convex and let Ch be the preconditioning matrix
(3.5). Then the condition number K(C^ l Lh) of Lh with respect to
Ch is bounded independently of the mesh size h.

We finish this section with the following remark. The condition number
K(C,~ 1 Lh) dépends on the interior angles o>k of the polygon Cl and grows as

max ] — - — | . Angles, which are close to zero or ir spoil the condition
{ sur oyk J

number. Specifically, Theorem 3.1 does not apply if Cl = Cih is the polygonal
approximation of a smooth domain. In that case another preconditioning is
appropriate : Consider on the whole boundary T the three-point approxi-
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mation Dh of / - d2/dx2 with periodical boundary conditions [10] and set

4. FURTHER PRECONDITIONING. THE BIHARMONIC EQUATION IN A SQUARE

The preconditioning matrix (3.5) has block diagonal form, each block
Ck corresponding to a line segment Tk. Therefore, the condition number of
Lh with respect to the block diagonal part of Lh is again independent of the
mesh size. In gênerai, solving a linear system with the block diagonal part of
Lh is still expensive, Ho wever, if ft is the unit square, then the block
diagonal part is easy to invert, as we wül describe in the remainder of this
section. Thus, in this special case, another preconditioning matrix is
available.

We approximate the biharmonic problem by piecewise linear éléments on
a subdivision of ft into Courant's triangles Kh of length h, h = l/(n + 1).
Using the quadrature rule

/ meas (Kh)

when evaluating intégrais, the mass matrix M in (2.3) is replaced by the
diagonal matrix M = 2 diag (M). The same discretization results when the
13-point finite différence approximation is used. Inserting M into (2.5) and
neglecting the équations corresponding to the four corner points, we obtain

(4.1) Lh = ll + TBö2TT.

We décompose the boundary space Rh as

Rh = Rl 0 Rl,

where Rl is spanned by those basis functions, which are associated with
nodes on the lower and upper part of the boundary and R% is defined
analogously. With respect to this décomposition the (4 n x 4 n )-matrix
Lh has 2 x 2-block structure. The preconditioning by the block diagonal part
diag (Ln , L22) is investigated. Each block Lu corresponds to the biharmonic
problem with Au rather than un specified on two opposite sides of the square
ft. Bjjdrstad [2] has observed that this problem is easy to solve, since
séparation of the variables is possible. Assuming that Au is specified at the
left and right part of the boundary, we choose a row-wise ordering of the

vol. 22, n° 4, 1988



662 P. PEISKER

nodes. The resulting linear équations of the f uil problem have the following
structure

%* , ° *o \ / < P Ö \ / 0

(4.2) | 0 ^I2n - t / 7 ® / J U U °2
B° -U®In 0 J\u) \-h fhi

with U = [el9 en]. After eliminating the variable <p? we obtain the positive
definite system

Au = h fh,

with

(4.3) A = Bl + 2(UUT® I) .

Since the inverse of L n can be expressed via the inverse of the matrix
A as

(4.4) L ï i 1 = = ! [ 2 ( £ / r ® / ) / r 1 ( £ / ® / ) - i r ] ,

we will study the solution of a linear system with the matrix A. The
discretization Bo of the two-dimensional Laplacian on the unit square can be
expressed via the approximation of the one-dimensional Laplacian

D = tridiag [- 1, 2, - 1] ,

as

with / = In. Using the spectral décomposition of D, i.e.

D=QAQ

with A = diag (À,-) and Q = [8l5 92, ..., Qn] as defined in § 3, the matrix
A can be written as

A - / ® Z)2 + 2(Z>® D) + D2® I + 2(UUT® I)
2 2 r ® ƒ)](ƒ

each block corresponding to a row. Using the permutation P, which
converts the row-wise ordering into a column-wise ordering, Bjjdrstad [2]
obtains

(4.5) A = (I ® Q)P[A2® J+2(A® D) + I ® P 2 + 2(J® UUT)] x

x P (I ® Q) - (/ ® Ö) PSP (/ ® Ö) •

Modélisation mathématique et Analyse numérique
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The matrix S = diag (S( ) is block diagonal with (n x n )-matrice$

Si; = X? / + 2 Xi D -f £>2 + 2 £/£/r

having bandwidth d = 2 and therefore being easily invertable.
Inserting (4.5) into (4.4), we obtain

Lu1 = 1 [2(UT® Q) PS~'P(U® Q) - I] .

Therefore, the évaluation of L^1 rt involves four sine transformations of
length n and the solution of a linear system with the n2®n2-matrix
5, which is pentadiagonaL

5. NUMERICAL RESULTS

We will provide some numerical results for the biharmonic équation on
the unit square. We use Courant's triangulation with triangles of length
h, h, \j2 h. In order to détermine the unknown boundary value X = au13ft,

we solve the system of linear équations

(5.1) LhKh = bh

using the method of conjugale gradients. The évaluation of Lh requires the
solution of two discrete Poisson équations. Since O is the unit square, we
have used Buneman's algorithm for this purpose.

The performance of the preconditioning techniques is studied by choosing
the right hand side as

__ fsin (TTX) + sin (irx/î"1^) on {(x, 0), 0 *zx ̂  1}

which is a superposition of low and high frequencies. The starting value is
xjp = 0. The itération is terminated, if the relative error of the residuum
with respect to the Euclidian norm is less than e, i.e.

Without preconditioning the number of itération steps required to gain a
given accuracy E is bounded by O(&~~1/2log e"1). This is confirmed by the
following table.

vol. 22, n° 4, 1988



664 P. PEISKER

TABLE 1

Number of cg-iterations for a given accuracy e

mesh size h

accuracy e
1/16 1/32 1/64

io-3 7
12

9
16

12
21

The next table shows the independence of the number of pcg-iterations on
the mesh size h, when using the preconditioning (3.5).

TABLE 2

Number o f pcg-iterations with Ch~ Z>~1//2

mesh size h

accuracy s

e = 10-3

s = 10-6

1/16

7
12

1/32

7
13

1/64

7
13

Finally, we present the results when using the block diagonal part of
Lh for preconditioning. Note, ho wever, that this preconditioning is only
available in case of a rectangular domain O.

TABLE 3

Number of pcg-iterations with Ch = blockdiag (Lh)

mesh size h

accuracy e

e = 10-3

s = 10-6

1/16

6
9

1/32

7
10

1/64

7
10

6. A PRIORI ESTIMATES

The rest of this paper is concerned with the proof that the condition
number K(C^"1 Lh) is independent of the mesh size, i.e.

(6.1) \ÏLhkh^fikT
hChkh, kheRh

M2AN Modélisation mathématique et Analyse numérique
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with a, p being independent of h. Here, Ch is the preconditioning matrix
(3.5).

Let <px e Xh be the discrete harmonie funetion with boundary value
Xh, i.e. the solution of (2.7). Using (2.8) and the notation

inequality (6.1) is rewritten as

(6.1') «IIM C l *

In order to prove (6.1), we consider the continuous case at first. Let

dénote the interpolation space [10], and let

H-m(Ti)= (fl^cr,-))'

dénote the dual space. Set
f r \ 1/2

(6.2) IIML1/2,r
:= I

\i = i

In the proof of the following theorem, we will make use of a trace theorem
given in the appendix.

THEOREM 6.1 : Let the polygonal domain O c R 2 be convex and
X e Hm(T). Then the L2-norm of the harmonie funetion 4>x can be estimated
from below and from above by the || • || _ m r-norm ofifs boundary value X :

(6.3)

Proof: Since X e Hm(T), we have 4>x e H1^). By partial intégration we
obtain for all u e H$(n) n

(6.4) f (^Aw)<|>xrfjc= f VuV$xdx~ \ — X ds
Jn Ja Jrdn

= - — X ds .
Jr an

We will first prove the second inequality of (6.3). Let ux e HQ(Ü>) dénote the
solution of the Poisson équation (1.26) with right hand side <J>X. Since ft is
convex, regularity theory ensures that uk e HQ PI H2(Q) and that
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666 P. PEISKER

Furthermore, the trace theorem given in the appendix states that

— - E H^2(rt) and that
dft

1 / 2

Inserting (6.6) and (6.5) into (6.4) yields

I2 - f

which proves the second inequality of (6.3).
Next, let pj € H^(Tt) such that ||pf || m . = 1 and

lL 2 (Û>'

(6.7) | |X | |_ 1 / 2 r ^c 4 f \Plds.

By the trace theorem, there is M G HQ(Q) C\ /J2(H) such that —

Ji = 0, / # i and
dn rl

(6.8) \\u\\H\n) ^ C5llp< ü<(r ) = C5 *

From (6.4) we get

(6.9) | 9lkds= 1 (-Au)^dx

Inserting (6.9) and (6.8) into (6.7) yields the first inequality of (6.3). D
The estimate for the continuous case may be carried over to the discrete

case (see also [12], [13] for similar arguments used in different contexts).

THEOREM 6.2 ; Let O be convex. Given Xh e Rh, let <pXft be the discrete
harmonie function with boundary value \h, Le. the solution o f (2.7). Then
there are positive constants a? p? such that

M2AN Modélisation mathématique et Analyse numérique
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Proof: Let <|>Xfc e H 1(Q>) dénote the harmonie function with boundary

value Xh. By the approximation properties of the finite element space
XhJ we see that ([8], p. 184)

(6.11) \\K'^JLm^^hm\\^

Therefore, Theorem 6.1 implies

which proves the second inequality of (6.10).
Next we will prove the first inequality of (6.10). Since the triangulation is

regular, a simple scaling argument yields

Put ^^hm\\\h\\ y/\\\h\\^m r From (6.3) and (6.11) we conclude that

(6.13) ^^II^I

- (c3-

Using (6.12) and (6.13) we obtain

(6.14) K J L 2 ( n ) ^ m a x {C2^ C3 - ci ̂ ) Wkh\\_y2iT .
Since

c3 c2min max {c2 T\, C3 - cx T\} = •= a > 0 ,
T) > 0 c l + C2

we get the result as stated. D

7. DISCRETE NORMS AND MATRIX-REPRESENTATIONS

In order to apply Theorem 6.2 for the proof of (6.1), we must verify that

the norm ( IM|i 1/2 r + ^ IMI^ (r))
1/2 'IS represented by the matrix Ch defined

by (3.5). More precisely, we will prove that the norms ||- | |c and

(II* II-1/2, r + 1̂1* II i (r))1/2 a r e equivalent on Rh with constants being inde-
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pendent of the mesh size. Let R®aRh dénote the subspace consisting of
those piecewise linear fonctions which vanish at the corners of 6O. Then
vh G /?£ if and only if vh G Rh and vh | r G / ^ ( I^ ) , l ^ ^ r .

7,1. Matrix-Représentation of the E^ÇT^norm on HjL .

We dénote the nodes on the line segment Tk = PkPfç + i by

F vk vk v k

jt = % < X 1 < « " < Xpk

Let vh G R%\ . Then

1 . . 1 2 «—1 -*•

-x?

Since the triangulation is regular, Le. <T/Î ̂  |^f+i — f̂| ^h, the
on i?ftL is equivalent to

Pk k k 2~ | 1 / 2

1 = 0 J

and the associated bilinear form is represented by the tridiagonal
Pk ^ jPfc-ïïiâtrix

(7.1) lD f c = itridiag [ - 1 , 2 , - 1 ] .

By interpolation we obtain the following

PROPOSITION 7.1 : The norms

llt>J|„i/2.„ * and III1H§(k) 1/2, rfe -

are equivalent on Rh\r with constants being independent of the mesh size h.

Proof: Let s^O. Set

[ / \ 1/2

Then the imbeddings
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