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(Vol. 22, n° 2, 1988, p. 311 à 342)

INCREMENTAL METHODS IN NONLINEAR, THREE-DIMENSIONAL,
INCOMPRESSIBLE ELASTICITY (*)

by Robert NZENGWA (*)

Communiqué par P G. ClARLET

Abstract — In this paper, we apply the incrémental methods to approximate the equihbrium
équations of nonlinearly elastic incompressible bodies, subject to dead or live loads, with pure
displacement or traction boundary conditions We establish the convergence of the methods

Résume — Dans cet article, nous appliquons des méthodes incrémentales pour approcher les
équations d'équilibre de corps élastiques non linéaires incompressibles, soumis à des forces
mortes ou a des forces vives, avec des conditions aux limites de déplacement pur ou de traction
pure Nous établissons la convergence de ces méthodes

INTRODUCTION

We first specify the notation we shall use, concerning notably vector
fields, matrices, function spaces, derivatives and norms. In what follows,
Latin indices take their values in the set {1, 2, 3} and the repeated index
convention is used.

pressure field,
displacement field,
déformation field,
unit outer normal vector to the boundary of a
domain,
Euclidean inner product,
Euclidean vector norm,
matrix with element Al} (i : row index, j : column
index),

(*) Reçu en octobre 1986
(*) Laboratoire d'Analyse Numérique, Tour 55-65, Université Pierre et Marie Curie, 4 place

Jussieu, 75005 Pans
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matrix inner product,
matrix norm associated with the matrix inner
product,
adjugate of the matrix A = transpose of the
cofactor matrix,
set of all matrices of order 3,
set of skew symmetrie matrices of order 3,
set of symmetrie matrices of order 3,
set of symmetrie positive definite matrices,
set of orthogonal matrices,
set of orthogonal matrices, with determinant equals
to one,
first Piola-Kirchhoff stress,
second Piola-Kirchhoff stress,
volume force operator
surface force operator,
loading operator,
a dead load,
for some integer m ^ 0 and some real number

-f? sym

Mm>q

Si sym

= wm-2,

= {(6,i)e ^"-
= o, Y<t(o) = Y<J?(O)T}.

1"1/", f b+ C T = O

4

¥<t>
div

— » _

9

= (ô(<t>;)efy3

T = (9,7;,) G O?3

usual partial derivatives,

partial derivative with regard to the matrix variable
4,
gradient of a mapping c[> : fi <= [R3 -• IR3,
divergence of a tensor field T: O, cz IR3 -• Ml3,
first and second Fréchet derivatives of an operator
e . \r vr Ck* {u\ en T tV V^ Û" (n\ ei T f Y V \ Y^ . J\. —> I , ö yU ) c JU yA., I ) , U \ll ) fc 1^2 V-"- ï * ) j ^

and y being two normed vector spaces.
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We dénote by C1; C2? etc., constants which are independent of the
various functions found in a given inequality.

Let fl be a bounded open connected subset of R3 with a sufficiently
smooth boundary F. We assume that Ü is the référence configuration
occupied by an elastic incompressible body in the absence of any applied
force. The constitutive law of the material is given by

î = «(¥$)-/> adj y$T , (o.i)

for a given C00 matrix-valued function a : (x, A) e Ü x M3 -• M3, f being
the first Piola-Kirchhoff tensor. For details about the constitutive law, the
interested reader should refer to [14].

The equilibrium équations for such a body subject to body force
b are of the form

divf + è = 0 in H , (0.2)
det V£ - 1 = 0 in CL , (0.3)

the déformation <J> and the pressure p being the unknowns. The équations
(0.2) and (0.3) together with the boundary condition

$ = id on T (0.4)

constitute the pure displacement problem while the boundary condition

{«(¥$) ~/>adj V$T}v = T onT (0.5)

together with the équations (0.2)-(0.3) constitute the pure traction problem.
In what follows the real number q > 3. Taking into account équation (0.3)

leads to the définition of the Sobolev submanifold

22, = { £ e Wm + 2 '*,det V$ - l in 11}

and two nonlinear elasticity operators (̂  and §2 corresponding respectively
to the pure displacement and pure fraction problems. When we consider the
displacement u and the pressure p as the unknowns, the first operator
§! maps %q

m n Wj1* x Wm'+hq into \Vm'q for each integer m ^ 0 and real
number q > 3. With the same conditions on (m, q) the second operator
e2 maps S^ x Wm + l'q into a submanifold of the set of loads L. The pure
displacement and traction problems respectively reduce to solving the
équations

§i(B,/>) = 6 (0-6)

and

h(é,p)= ( 6 , i ) . (0-7)
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The incrémental methods consist in approximating the above nonlinear
équations by a séquence of linear problems. Unfortunately these operators
are not defined between affine manifolds and moreover they do not always
possess the inverse function theorem property, a crucial condition on which
dépends the applicability and the convergence of the method as proved by
Bernadou-Ciarlet-Hu [5]. We therefore have to modify the incrémental
methods according to the problem we want to solve.

In Section 1 we study the pure displacement problem. The corresponding
nonlinear operator ex defines a local diffeomorphism between the spaces
%qm n Woq x Wm + 1~q>° and VT** but since the space %q

m is not an affine
manifold, we define a second operator \x between ym + 2'q x wm + l>q>° and
W71^ x wm + 1'q>° which are both linear spaces. This operator satisfies the
crucial inverse function theorem property. We then describe the relation
between both operators Gj and èa and we apply the incrémental methods to
the second operator, in order to approximate the local solution for the pure
displacement problem in the case of a dead load.

In Section 2 we consider the pure traction problem. The associated
operator 02 is defined on a non affine manifold. As in Section 1 we define a
second operator §2 between the spaces Wm + 2>q x Wm + hq and L x Wm + hq.
Using results due to Chillingworth-Marsden-Wan [6] and Wan, Y. H. [21],
we prove that this operator defines a local diffeomorphism between an open
neighborhood of (id, 0) in the linear space Çsym x Wm + lyq and a non affine
Sobolev submanifold A^ofLx Wm + 1'q. From the décomposition of the load
space as L = Le © skew, we show that the submanifold TV is the graph of a
function G defined from Le x Wm + 1'q into Skew. Let £ be a dead load in
Le with no axis of equiiibrium ; then iocaîiy there exists a unique rotation Q
such that the element (Ql,0) e N. Consequently we obtain the local
unique solution corresponding to the load £. The solution corresponding to
the dead load Ql is obtained from the solution of an appropriate differential
équation between the above considered spaces, with Q£ as a parameter in
the vector field. The approximation comprises two steps : we first approach
the parameter Q | , then we apply Euler's method to the differential
équation in which the approximate value of g£ is a parameter.

Finally we consider a class of live loads. Under some additional
assumptions on the loading operator f we first prove the existence and local
uniqueness of a solution via the fixed point theorem, using in a crucial way
the polar décomposition of invertible matrices. The approximation of the
solution consists in approaching a finite séquence of solutions for traction
problems of the dead load type.
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1. APPROXIMATION OF A PURE DISPLACEMENT BOUNDARY-VALUE PROBLEM
FOR INCOMPRESSIBLE MATERIALS

1.1. Existence

Let ft be an open bounded and connected subset of R3 with a sufficiently
smooth boundary F. We assume that ft is the référence configuration of an
incompressible body in the absence of any applied forces. The equilibrium
équations of the body, when it is subjected to a body force b, are :

m il , U--1-1J
det V$ = 1 inft , (1.1-2)

$ = id onT . (1-1-3)

Given a constitutive law for the first Piola-Kirchhoff stress f as defined in
[14]

<J?T , (1.1-4)

where p is the pressure and the constitutive law is a matrix-valued
C00 mapping a : ft x M3 -> M3, the problem then consists in solving the
following boundary-value problem for the displacement field u — (ut) and
the pressure p :

-djv {«(/ + Vw)-/?ad^ (ƒ + Vw)T} =b in ft , (1-1-5)

d e t ( / + Vw) = l i n f t , (1-1-6)
w = 0 o n T . (1-1-7)

The dependence on x in the constitutive law has been omitted in the
formulas. The second Piola-Kirchhoff stress

CT= (7 + Vw)-1 f (1.1-8)

could be equivalently used in these équations as in [5],
In what follows the different Sobolev spaces are defined for integers m

and real numbers q satisfying the condition

mmO and q>3 . (1.1-9)

Considering the équations (l.l-6)-(l.l-7) and the condition (1.1-9) we
define the set of admissible displacements

%q
m= { w e V " " + 2 ' * , d e t ( / + V u ) = l i n ft}. (1.1-10)
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This set has a C ̂ -submanifold structure because of the condition (1.1-9)
as shown in [14], The pure displacement problem reduces to solving the
équations

(u,p)el%xWm + l>*9 (1.1-11)

- div [q (I + Vu) - p adj (/ + Vuf) = b in XI . (1.1-12)

In order to analyse the properties of the left hand side of the équation
(1.1-12) which will be useful in the sequel, we gather here all the properties
of the constitutive law a under our hypotheses :

• the matrix-valued function a : Ù x Ml3 -> Ml3 is of class C™,
(1.1-13)

• the référence configuration is a natural state, i.e. a(I) = 0,
(1.1-14)

• the prindple of material frame-indifference is satisfied, i. e.

a(QF) = Qa(F), forallQinO\ (1.1-15)

• letting Ç = 9^a(/), there exists a real number (3 ;> 0 such that

Cl]kîel]ekî^^el}el] (1.1-16)

where e = (etJ) is a symmetrie matrix.
From the above hypotheses we deduce that the équations (1.1-11) and

(1.1-12) are equivalent to solving

where the nonlinear operator Gj is defined by

- - d i v {q(I + Vw)-/?adj (ƒ +Vw)T} e W™'*. (1.1-18)

This operator is C °° and locally bounded as a composition of the mappings
u i-> adj (ƒ -+- Vw), (u,p) \-^p sxQ (I + Vw)T and the Nemytsky operator
$ >-> «(Y^) which are all C00 and locally bounded ([13], [20]). It is clear
from (1.1-14) that 9^0, 0) = 0.

In order to apply the inverse function theorem we must compute
§{(0,0) and verify that it is an isomorphism between TQ %q

m x Wm + 1'q>° and
W71^, where

TQ H= {u e Ym + 2>v, div u = 0} (1.1-19)
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is the tangent space to %q
m at the origüi O and

eWm + 1-*9 f /> = o l . (1.1-20)
Ja

The équation

is equivalent to the linear pure displacement boundary-value problem

- d i v {C G (M) -pi} = b in XI, (1.1-22)
divu = g inft, (1.1-23)

u = A o n T , (1.1-24)

with

0 = 0 and A = 0 . (1.1-25)

The tensor e (M) is the linearized strain tensor defined by

e ( M ) = (e„(M)) , with 2 6 ^ ( ^ = ^ + 3 ^ . (1.1-26)

Clearly the operator defined by (1.1-21) is continuous. Under the
hypotheses (Ll-13)-(1.1-16) and the additional hypothesis :

• The complementarity condition of Agmon-Douglis-Nirenberg ([3], [4])
holds for the équations (l.l-22)-(l.l-24), (1.1-27)

it follows ([14]) that the operator §i (Q, 0) is an isomorphism between the
spaces TQXq

m x wm + 1'q>° and Wm>q. We keep these various hypotheses
throughout ; we can now easily deduce existence results :

THEOREM 1 : For each pair of numbers (m, q) satisfying condition (1.1-
9), there exist a neighborhood B of 0 in Wm>q and a neighborhood
U x P of (0,0) in %q

m x Wm + 1><i>ö such that, for each load b in B, the pure
displacement boundary-value problem (l.l-5)-(l.l-7) has exactly one solution
in UxP. D

Such a solution therefore satisfies the équation (1,1-17) ; however the
incrémental method cannot be directly described. Indeed in the description
of the method [5], we compute the approximate solution (un + 1,pn + 1) at
step n + 1 from (un,pn) by a formula of the form

un + 1 = un + §un and pn + 1 = pn -h bpn (1.1-28)

where bun and §pn are « small » incréments of the displacement and the
pressure respectively. Since %q

m is not a linear space un + a = un + Sun does not
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belong to %q
m in général We overcome this difficulty by defining a second

operator èx between linear spaces such that

9i (« , />)= ( è , 0 ) (Ll-29)

be equivalent to (1.1-17) for the load b. A natural définition for

§i is

§i". («,/>) e Vm + 2*q x w m + 1'*-°->

-+ (§i (">/>)> det (/ + Vw) - 1) e Wm>* x Wm + 1 '* '° . (1.1-30)

We must therefore verify that

det (ƒ + VM) - 1 e wm + hq>° . (1.1-31)

We may write

det (/ + Ç M ) - 1 = d ivw+ {3I + 2M, + 2 ^ +1", + i -

^ w T ) / ; . (1.1-32)

We find that the intégral of the above expression vanishes using Green's
formula, the Piola identity and the boundary condition. Clearly this
operator is also Cœ and locally bounded with all its derivatives. It is easy to
conclude that

§J (Q>O)(M, /O= (b,g) (1.1-33)

defines an isomorpbism between r + M y ^ + M.o
I f , « x ^ « + U,oi Indeed the équation (1.1-33) is equivalent to the
équations (l.l-22)-(l. 1-24) for the particular case in which h = 0. The
operator §î(Q, 0) is also continuous and one-to-one. lts image is the subset

\(b,g,h)e Wm^q x W m + 1 ' ? ) O x wm + 2-i/q,q ^ f g _ f § . v = o l ,
l *~ Ja JT ~ J

(1.1-34)

which contains W™** x Wm + 1 ' 9 ' 0 x {0} , ([14]). We easily conclude using
the Banach theorem.

We can now deduce a theorem similar to theorem 1.

THEOREM 2 : For each pair of numbers (m,q) satisfying (1.1-9), there
exist a neighborhood B x G of (0 ,0) in W™^ x wm + hq>° and a neighbor-
hood UxP of (0 ,0 ) in ym + 2>q x wm + 1>q>° such that \x defines a
diffeomorphism between the two neighborhoods. D

M2 AN Modélisation mathématique et Analyse numérique
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Clearly the operator bx satisfies équation (1.1-29) in these neighborhoods.
For a given dead load b in B, we shall use the incrémental method to
approximate the solution of the équation

§i(«,/>) = (6.0) (1.1-35)

which is exactly the solution for the pure displacement boundary-value
problem (l.l-5)-(l.l-7).

1.2. Description and convergence of the method.

We begin by specifying some subséquent notations. We dénote by

'O | a | gm

the norm of the Sobolev spaces W"1'*, by

the norm of the product space Wm + 2yq x Wm + hq and its subspaces. We
shall dénote by the same symbol ||.| | the norms of the spaces L(X, Y),
L(Y,X) and L2(X, Y) for the normed spaces X and Y. We shall not
consider the case of a gradient vector field b e Cl(Cl, U3) for which a trivial
solution is given by the pair (0,p),

= f £
Jo

.xdt . (1-2-1)

We can now describe the approximation of the boundary-value problem
(l.l-5)-(l.l-7) by an incrémental method. Given a dead load b in the
neighborhood B, as defined in theorem 2, we approximate the solution
(U>P)> (QiiUiP) = (6>0)) as follows : let there be given any partition

0 = \° < X1 < . . . < kN = 1 (1.2-2)

of the interval [0, 1]. We let

Abn = (X" + 1 -\n)b, O ^ n ^ i V - 1 , (1.2-3)

u° = 0, p° = 0, (1.2-4)

then assuming un and pn are known, we solve the linear problem

&(%">Pn)(&ê«9 Spn) = (Abn, 0) , (1.2-5)

( b u n , b p n ) e y m + 2>q x Wm + 1>q>°. (1.2-6)
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We define the (n + 1 )-st approximate displacement and pressure

un + l =un + hun and pn + 1 = pn + 8j?n . (1.2-7)

We end this algorithm by computing the N-th approximate Piola-
Kirchhoff second stress tensor from the AT-th approximate displacement and
pressure by

?" = à(uN,pN)= (I + VuNrlx

VuN) -pNadi (I + ¥uN)T} . (1.2-8)

Bef ore proving the convergence of this method, we recall some relevant
results proved so far :

We showed that the operator hx is C °° and has locally bounded derivatives
of all orders. We deduced (theorem 2) from the hypotheses (1.1-13)-(1.1-
16) and (1.1-27) that ^ defines a local diffeomorphism between a
neighborhood UxP of ( 0 , 0 ) i n r + 2 l ? x r + 1 ' ? ' °anda neighborhood
B x G of (Q, 0) in Wm*q x wm + 1>q>°. For each element (u,p) in U x P,
Q[(u,p) is an isomorphism between the above spaces which are both
Banach spaces. We now describe these neighborhoods in the following
theorem.

THEOREM 3 (Bernadou-Ciariet-Hu 1983 theorem 2) : For each pair of
numbers Cm, q ) satisfying (1.1-9), there exists a real number p0 > 0 depending
on m and q such that if

O ^ P ^ P o , (1.2-9)

then

Q[(u,p) is an isomorphism for each (u,p) e Upx Pp , (1.2-10)

where

t / p x P p = {(u,p)eYm + 2>qxWn + 1>(i>\ \\(u,p)\\^p} , (1.2-11)

7 P = sup | | { 8 i ( « > J P ) } " 1 | | < + o o , (1.2-12)

llt^ifei^i)}"1- {i
(ulPl){uT£)eüxP Ij (Ki _ fe pi

+ oo . D (1.2-13)

M2 AN Modélisation mathématique et Analyse numérique
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We deduce from this theorem and a classical resuit in differential
équations (e.g. Crouzeix-Mignot [9]) :

THEOREM 4 (Bernadou-Ciarlet-Hu 1983 theorem 3) : For each real
number p which satisfies the inequality (1.2-9) and for each load (b, g) which
satisfies

P7p1 , (1.2-14)

the differential équation defined in the closed bail U? x P 9 by

g(O) = Q anrf £(0) = 0 (1.2-16)

/iay a unique solution which satisfies

h(uÇK)9p(\)) = ^{b,g) , O ^ X ^ 1 . D (1.2-17)

Consequently, one has

^ Ci max {\n + 1 - \rt} , (1.2-18)

and, as a by-product,

m a x {^" + 1 - ^ " } . (1-2-19)
^n^N-1

m a x {^ + 1 - n > (1-2-20)

where C j and C2 are constants which depend only on p, Lp and

2. APPROXIMATION OF A PURE TRACTION BOUNDARY-VALUE PROBLEM FOR
INCOMPRESSIBLE MATERIALS

2.1. Preliminary

To begin with, let us recall some définitions that we shall use in the
sequel. The mapping,

fc:(£,T)eL- f 6 ® J C + f T0JCGM 3 (2.1-1)
Ja Jr

vol. 22, n° 2, 1988
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is called the astatic load. A load | = (§, T) is equilibrated relative to the
natural state if and only if

(2-1-2)

We define two supplementary subsets of the load space L,

Le= {t e L,k(£) e sym} , (2.1-3)

skew = {(e L, k(t) e skew} . (2.1-4)

For a given load f in L, skew (£) will dénote the component of
jP in the subspace skew. A load £ in Le is without axis of equilibrium if the
following equivalent conditions are satisfied :

det ( & ( £ ) - t r f c ( | ) / ) # O (2.1-5)

or if the mapping

w e skew -• k {{) w + wk (jP ) e skew (2.1-6)

is an isomorphism. We define two canonical projections

Ae : g = (L, skew (£)) e L -+ i9 E L€, (2.1-7)

A : i = (2e, skew ( f ) ) e L - > skew (£) e skew . (2.1-8)

A loading operator is a continuous mapping

i : <$> e r + 2 ' ? - £(*) = (fe(*), ï (*)) e 4 • (2-1-9)

A loading operator is said to be a dead foad if it is constant
(£(<!>)= (ê> l))> otherwise it is called a live load. One should refer to
Chillingworth-Marsden-Wan [6] for details on the above définition and
assumptions.

We can now describe the pure traction boundary-value problem. We
consider the constitutive law of an incompressible material as defined in
Section 1 by the relation (1.1-4) and we keep the hypotheses (1.1-13)-(1.1-
16). The problem consists in finding a déformation $ and a pressure/» that
satisfy

q , (2.1-10)

} - § in H , (2.1-11)

j , } v = T on T, (2.1-12)
det V$ - 1 = 0 in H . (2.1-13)

Green's formula implies that the load (b, T) must be of total force zéro.
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Similarly as in Section 1 these équations can be put in the form of an
operator

§2= (*,jP)e Wm + 2>qx Wm + 1>q-> (-div { « ( ¥ $ ) - j
V} v , d e t y ^ - l ) e L x r + l l ?

5 (2.1-14)

which is also C°° and has locally bounded derivatives of all orders. Clearly
one has

§ 2 ( & 0 ) = (0 ,0) . (2.145)

In order to eliminate the indétermination due to rigid body motions we
shall restrict this operator to the set of Çsym x Wm +1} q. In this way we define

§2 : (?,/>) e Çsym x Wm + 1-*-> h(<?,P) e L x Wm + 1-* . (2.1-16)

The équation

^ ) = (è,J»0) (2.1-17)

is equivalent to

-div {Ç

{Ce

e (v) -pi} =
(v) —pi} v =

div v =

fe in ft ,
T on T,
g in ft .

(2.1-18)
(2.1-19)
(2.1-20)

In addition to the hypotheses (1.1-13)-(1.1-16) we assume
• the complementarity condition of Agmon-Douglis-Nirenberg ([3], [4])

holds for the équations (2.1-18)-(2.1-20). • (2.1-21)

THEOREM 5 : Under the hypotheses (1.1-13)-1.1-16) and (2.1-21), the
linear operator 9̂  (id, 0 ) de fines an isomorphism between the spaces
Çsym x Wm + hq and L€ x Wm + hq.

Proof: Clearly ^(id, 0) is a continuous one-to-one mapping between the
spaces Çsym x Wm + x'q and LexWm +1;q. Let voeWm + hq dénote the right
inverse of g (see [14]) for the divergence operator. One has

divgo = 0 . (2.1-22)

We let

Si = Eo-2o(O). (2.1-23)
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We still have

d i v 2 1 = g , but ?h(0) = 0 . (2.1-24)

The linear mapping

w : x s O, -+ (skew A) x e U3 , (2.1-25)

where the matrix

4 = Y2i(0), (2.1-26)

satisfies the condition

divw = 0 and w(0) = 0 . (2.1-27)

It follows that the vector field

22 = Ei - w (2.1-28)

is the right inverse of g in the space Csvm. The change of variable in the
équations (2.1-18)-(2.1-20) leads to an equivalent system

-d iy{C e (u)-ql} = b' in ft , (2.1-30)
{Ç e (u)~ql}v = T' o n T , (2.1-31)

diyu = 0 in ft, (2.1-32)

where

b' = b + diy {Ç e (»)} , (2.1-33)
T' = T - Ç G (g)v . (2.1-34)

Evidently the load (è' , T ') belongs to Le. For m => 3/2 — 1 it is known
([21]) that this system possesses a unique solution in H^*2 x Hm + 1. The
hypothesis (2.1-21) guarantees that the regularity results hold for m = 0 and
q > 3 ; e/. Geymonat [10]. D

T H E O REM 6 : There exists a neighborhood U x P of (id, 0) i'w

Csym x ^ m + 1'9 whose image under the operator 02 is a C °° submanifold N in

L x Wm + 1'«.

Proof: First, we redefine the operator 02, using the projections
Ae and A of the load space L onto its supplementary subspaces
Le and skew, by letting

?det V<p-1)G Le x skew x wm + hq . (2.1-35)
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For convenience we let

*e(<g,p) = (Aeè2( î , Jp)?detVcp-l) (2.1-36)

and rewrite

&(?,P) = (h(<£>P)> A§2(<P,/>)) • (2.1-37)

Clearly 0g(id,0) is an isomorphism between Ç s y mxWm + 1 '9 and
Le xWm + l'q and be defines a local diffeomorphism. For a given load
2, we shall write

L = A e £ . (2.1-38)

The mapping

X:(<f,p)€Ç sy raxW" + 1 ' ^

1 ÇsymxWm + 1-« (2.1-39)

is of class C °° and also defines a local diffeomorphism in a neighborhood of
(id, 0) in ÇsymxWm + hq that we dénote UxP. For ail (<£,p) in
U x P, we have

i ( î ^ ) = §;(id )0)X($ Î Jp). (2.1-40)

We may then write

&(?,/>)= (LA&lêe}" 1 ^^)^ ) , (2.1-41)

where

L ) . (2.1-42)

We deduce immediately that the image N of the neighborhood
UxP under 62 is the graph of the function

G : (L, g)eLexWm + 1>«^Ah2{hey
1 (fe, 0) e skew , (2.1-43)

which is also C°° and satisfies

G(0 ,0 )=(Q,0) and G' (Q, 0)(fe, öf) = 0
for ail (fe, ̂ ) G Le x Wm + 1>? . (2.1-44)

D We have thus shown that Af is a submanifold of class C °°.
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In the sequel, we choose the neighborhood U x P to be the closed bail
defined by

UxP = 5(id, Po/2) x B(0, Po/2) . (2.1-45)

Let a load ( | , 0 ) be in N, then we infer from theorem 5 that a solution for
the pure traction boundary-value problem (2.1-10)-(2.1-13) is

(?,/>)= {h}~\l,0). (2.1-46)

Arguing as in Section 1, we find that there exists a constant Co such that
for each load ( | , g) e N

|| || C Q - ' P O , (2.1-47)

where

C o = sup IH&CîP^)}"1!!- (2-1-48)

Thus the projection of TV onto LexWm + 1'q is contained in the bail

2.2. Approximation of the pure traction boundary-value problem with dead
load

We first consider the case of a dead load that belongs to the submanifold
N (the results obtained in this case will be used later). Let there be given a
load ( | 5 0) in N ; then the solution of the problem is such that

1(<?,P)= (L,0) . (2.2-1)

We can now proceed as in Section 1. We consider a regular partition of
the interval [0, 1],

0 = k° < X1 < . . . < \N = 1 (2.2-2)

such that

A\n = kn + 1 - \ n = j-9 O^n^N -1 , (2.2-3)

and we let Â  approach infinity. The incrémental method is defined as in
Section 1 : we let

(p° = id and />° = 0 , (2.2-4)
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